SlideShare a Scribd company logo
1 of 93
Parasitology: Contents
Click a link to continue
Malaria Toxoplasmosis Leishmaniasis
Complement Activation Pathway
African Trypanosomiasis (Sleeping Sickness)
South American Trypanosomiasis (Chagas Disease)
Schistosomiasis Immunity to Filariasis
Hookworms
Human Intestinal Nematodes
Are Worms Good for Us?
Cestodes (Tapeworms)
Parasite GenomesParasite Vaccines
Parasitology Lecture 2 
Malarial Parasites ‐ Plasmodium Invasion 
 
Anopheles is a genus of mosquito. There are
approximately 460 recognised species: while over 100 can
transmit human malaria, only 30‐40 commonly transmit
parasites of the genus Plasmodium that cause malaria
which affects humans in endemic areas.
This photo shows a female mosquito. Only females feed
off humans, since the blood they collect is a nutrition‐rich
medium that is ideal for them to develop their eggs in.
Their gender is also easily classified as males have
feathery antennae.
There are over 1000 species of plasmodium that cause malaria in a variety of animals, but only four of these
are transmitted in humans:
P. falciparum ‐ Most widespread and responsible for most deaths
Found in Tropical Africa, Asia, Latin America
P. vivax ‐ Less virulent than P. falciparum and rarely fatal
Found worldwide in tropic regions,
P. ovale ‐ Rare compared to the above species, and substantially less dangerous than P. falciparum
Found in Tropical West Africa
P. malariae ‐ "Benign malaria", not nearly as dangerous as that produced by P. falciparum or P. vivax
Found worldwide, but patchy distribution
Malaria transmission requires an average temperature of >15°C, and the vector cannot survive above 3000m
The life cycle of malaria essentially follows a sequence of 4 phases; the first of which is sexual and only
occurs in anopheline mosquitoes (multiplication of the parasite does not occur here). This is followed by
three asexual phases, which involve multiplication of the parasite in the human body.
The spleen fights off infections on the blood, and so splenomegaly (an enlarged spleen) is a primary
symptom of malaria in children. Artwork has been discovered from centuries back depicting this, such as that
of Hippocrates palpating a child’s abdomen. A cartoon from WWII depicting the symptoms of malaria is
shown below. In modern warfare, statistics show that more soldiers die from malaria than enemy fire in
areas where malaria is endemic.
Stages of infection of red blood cells:
Individual parasites enter the RBCs, and can be seen on microscope images as little black dots
“Signet ring” phase (seen due to a large food vacuole and the peripherally situated nucleus)
Multiplication of the parasites inside the RBCs
Percentage parasitaemia refers to the percentage of red blood cells infected with parasites; from the ratio of
infected: non‐infected RBCs, a patient’s prognosis can be determined
The Life Cycle of Plasmodium
Sporozoites are injected into the bloodstream of a human host as a female mosquito feeds (A), they remain
in the bloodstream for 20 to 30 minutes, then head to hepatocytes in the liver (B), where they form
merozoites (daughter cells of protozoan parasites). After 30 to 40 minutes, the merozoites burst from the
hepatocytes, infect red blood cells (C) and rapidly reproduce asexually. Every 2 to 3 days, they burst from the
red blood cell hosts and go on to infect more RBCs (D). Antimalarial drugs can reduce these infections but
there is as yet no complete cure for malaria.
 
Some parasites go on to form male and female gametocytes (E), which can be picked up by the next
mosquito that feeds on the human host (F). Inside the gut of the mosquito the gametes fuse to form a zygote
(G), that penetrates, and forms a cyst in, the gut wall. The zygote eventually ruptures and releases many
sporozoites that head for the salivary glands of the mosquito (H), where they await injection into another
human host.
The sexual and first asexual phases of the plasmodium life cycle only occur in anopheline mosquitoes, the
second asexual phase is in the liver, and the third in the blood, which is repeated many times. Every asexual
phase begins with feeding and growth, and every phase ends when new invasive parasites appear.
The Sexual Phase of Plasmodium (Inside Anopheline mosquitoes) 
 
Ingested gametocytes swell and discharge osmophillic bodies (that can
tolerate high sugar concentrations) into the red blood cells. This disrupts
the RBC membrane, releasing gametocytes. During development of the
male gametocyte.
During development of the male gametocyte, the DNA is replicated
three times, so the nucleus of the activated gamete has 8 complete sets
of DNA. Eight kinetosomes are then formed in a microtubule organising
centre. Each kinetosome is the base and growing point for a flagellum
(axoneme). Eight flagella are formed in total, and the gamete explodes
releasing flagellum. This process is called exflagellation and occurs within
a few minutes after ingestion of the infected blood by the mosquito.
Each of the eight flagellum is a spermatozoa cell (sperm)! They actively
swim to the female gametocyte, fertilisation leads to the formation of a
zygote. In the next 5 to 10 hours, this develops into an ookinete (the first
invasive stage of the parasite’s life cycle), in which major changes occur
and apical complexes form, which allow the parasite to penetrate cells.
The ookinete is capable of moving spontaneously, it glides through the blood meal and penetrates the
stomach of mosquitos to form a thick‐walled structure known as an oocyst under the mosquito's outer gut
lining, where the next phase begins.
mosquito
midgut
Many oocysts on the inner mosquito midgut  A single oocyst 
Ookinete 
Sporozoite 
The First Asexual Phase of Plasmodium (Inside Anopheline mosquitoes) 
 
In this stage, the ookinete becomes a sporozoite.
First it develops from an ookinete to an oocyst
The phase lasts for 8 to 35 days, and the ookinete grows rapidly to 80μm in diameter. The oocyst projects
into the haemocoel of the insect and feeds on the haemoglobin of the insect’s blood meal, in this time, DNA
replication occurs
A haemocoel is a cavity or series of spaces between the organs of organisms with open circulatory systems. A
combination of blood, lymph, and interstitial fluid called haemolymph circulates through the haemocoel.
Each oocyst contains at least 1,000 sporozoites that burst out and migrate to the salivary glands of the
mosquito
Merozoite 
 
 
 
 
 
 
 
 
The apical complexes 
(marked by blue circles) are 
located in the same place in 
these structurally different 
morphologies of the 
plasmodium parasite 
apical
ring microtubules
Second Asexual Phase of Plasmodium (Inside human hosts) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sporozoites are injected into the human host’s bloodstream (1) by a feeding mosquito,
within 30 to 40 minutes they leave the blood and enter Kupffer cells (2); macrophage‐like cells that line
the liver capillaries. They then leave these cells and enter the nutrient‐rich hepatocytes (3), where rapid
growth occurs (40μm in 48 hours) and lose their morphology, rounding up to become trophozoites called
merozoites (4). (Trophozoites are protozoan parasites in the activated, feeding stage in their life cycle).
After this growth period, one sporozoite divides into 10,000 to
30,000 merozoites, this process of division is called schizogony
(or merogony), and the many dividing bodies are referred to as
shizonts.
NB: Because the sporozoite enters the hepatocytes, forming its own vacuole (3 & 4), it does not enter the
cytoplasm of the cell, and therefore an infected person shows no symptoms in this stage of infection,
however, in P. vivax, some trophozoites become a latent stage called hypnozoites, that cause relapses years
later.
collar
rhoptry
3‐layered pellicle
Don’t need to know these names, just understand the
basic structure of the apical complex
Third Asexual Phase of Plasmodium (Inside human hosts) 
 
The merozoites burst out of the hepatocytes and invade red blood cells. Once inside they ingest the
haemoglobin and first become erythrocytic schizonts, which divide to form between 16 and 18 merozoites.
This process takes 2 to 3 days overall and suffers experience malaise as their red blood cells synchronously
burst, releasing the merozoites and the substances contained inside the RBC. After several blood cycles
(about 4 days), some trophozoites differentiate into gametocytes, which remain dormant in the RBCs until a
person is bitten by a mosquito.
In order to invade the red blood cells, the merozoites must recognise and bind to RBC receptors, they then
deform the erythrocyte in order to enter the cell. NB: Erythrocytes are quite structurally tough due to their
sturdy cytoskeleton structure!
The major surface proteins on a human erythrocyte (RBC) are band 3 anion transporters, and glycophorins (a
family of sialic acid‐rich glycoproteins A, B, C and D), Glycophorins A & C, and band 3 anion transporters span
the RBC membrane. The invasion by a RBC depends on the glycophorins, especially the N‐terminal O‐linked
tetrasaccharide.
Other species require different molecules. P. vivax requires duffy blood group antigens in order to invade
erythrocytes, and in tropical areas where this parasite is endemic, there is a natural selection pressure for
individuals without these specific antigens.
The merozoite initially attaches anywhere on the erythrocyte surface (1) by the fibrils of its MZ surface coat.
A tight junction is formed, followed by subsequent invagination and formation of a parasitophorous vacuole
(2). The thick MZ surface coat is sloughed off as the merozoite enters the RBC (3).  Entry follows the
alignment of its apical end, and as in the second stage, the merozoite remains in its own vacuole rather than
the erythrocyte itself.
The formation of a parasitophorous vacuole involves a dramatic re‐organisation of the RBC cytoskeleton,
which occurs as organelles in the merozoite called rhoptries and micronemes secrete invasion molecules,
such as RESA (ring erythrocyte surface antigen molecule) that enhance the fluidity of the RBC membrane.
The RBC cytoskeleton is very tough, because of its highly ordered network which is very difficult to disrupt.
The most prominent component of this cytoskeleton is a fibrous polypeptide called spectrin. The spectrin
forms tetramers, that are organized into a meshwork fixed to the membrane by the protein ankyrin. Ankyrin
is itself connected to a transmembrane protein called 'band 3' or anion exchanger protein. Spectrin is also
linked to a transmembrane protein called glycophorin  C by the protein known as 'band  4.1.' Thus the
meshwork is anchored to the membrane at multiple sites. Band 4.1 stabilizes the association of spectrin with
actin, as does the protein adducing.
1                                                       2                                             3                                          4 
After entry of the RBC, the trophozoites feed by producing enzymes which degrade haemoglobin, the most
dramatic changes involve the shape and deformability of the RBC, they are identified by their irregular shape
and the presence of membrane knobs. After parasite invasion, the RBCs become sticky and attach to blood
vessel walls, decreasing the velocity of blood flow. This is an effective strategy employed by the parasite that
ensures it is kept away from the spleen for as long as possible. (Remember, it is the spleen that destroys
infected blood cells (this is why splenomegaly is a primary sign of malaria; it is caused by dilation of the
splenic sinuses due to an increased lysis of red and white blood cells.
The image below shows a false colour scanning electron micrograph of an infected red blood cell, merozoites
have burst from the cell and have started to invade the neighbouring cell.
The knobs found on the surfaces of erythrocytes are parasite derived and parasite induced. They are
important in the adhesion of parasitized RBCs to deep seated capillary endothelium, which slows blood flow
and allows the parasites to avoid destruction in the spleen for as long as possible.
This can cause cerebral malaria, especially with P. falciparum. Cerebral malaria can be fatal, a person can slip
into coma in very short periods of time due to the short multiplication period of parasites after the
sequestration of red blood cells.
The image below is of an affected brain; the red spots are sites of petechial haemorrhage. A petechia is a
small (1‐2mm) red or purple spot on the body, caused by a minor haemorrhage due to burst capillary vessels
A seropositivity incidence for different
countries can be established by analysing
sera (blood plasma) for antibodies :
Parasitology Lecture 10
Toxoplasma gondii
Toxoplasma gondii is a member of the
apicomplexan phylum, which consists of
members who have an apical complex that is
of great importance for penetrating host
cells. This phylum includes the Plasmodium
parasites that cause malaria. T. gondii is an
obligate intracellular protozoan parasite that
infects almost any warm-blooded mammal or
bird and is the most successful on the planet;
affecting 12-80% of the human population.
Since Toxoplasma is easier to manipulate
than Plasmodium, lots of research into this
parasite has helped to understand malaria.
Human cells infected with T. gondii. Parasites (yellow-
green) rupture out of a dying host cell (blue); in the
background is an intact host cell containing a large
parasite-filled vacuole
Ctenodactylus gundi
In 1908 T. gondii was discovered in the gundi (above), whilst looking for the Leishmania
parasite in Africa. (In retrospect the correct name for the parasite should have been
Toxoplasma gundii since the scientists that discovered it incorrectly identified the host’s
name.) A series of suggestions were then made about the parasite’s life cycle:
1939 - identified as a congenital infection
1960 - suggested it was transmitted through ingestion of uncooked meat (carnivorism)
1965 - found to appear in populations of carnivorism (such as in Paris*)
1970 - the parasite was linked to cat faeces and the life cycle was finally understood
*In a survey in Paris (where raw meat is routinely eaten), Desmonts et al. (1965) found over 80% of the adult population
sampled had antibodies to T. gondii.
William McPhee Hutchison (1924-1998) was born in Glasgow and studied Zoology at
Glasgow University. While working at the University of Strathclyde in Glasgow, in the 1960’s,
he demonstrated that Toxoplasma gondii was a parasite of cats which shed oocysts in
faeces. Hutchison’s work was rewarded with the Robert Koch Medal and Prize in 1970.
T. gondii life cycle
The definitive host of T. gondii is the cat. Felines ingest either oocysts (containing
sporozoites, or tissues that are infected with bradyzoite cysts. The parasites then burst out
of the cysts and invade the intestinal epithelium; both forms can differentiate into male
and female gametes and after fertilisation they become oocysts containing sporozoites.
Any warm-blooded animal can ingest these oocysts, which releases sporozoites into the
intestine that invade the tissue. They differentiate into the tachyzoite stage and
disseminate throughout the body, invading cells and becoming bradyzoite cysts. These
unsporulated oocysts are passed in the cat’s faeces and, outside the host, turn into
sporulated oocysts (containing sporozoites), which feed on soil and water .
If another warm-blooded animal eats infected tissue (through uncooked mead or
contaminated water), the bradyzoites are released into the intestine, differentiate back
into tachyzoites and then disseminate round the body where they eventually become
bradyzoite cysts again. If a bradyzoite cyst is ingested by a cat, bradyzoites invade the
intestinal epithelium and differentiate into male and female gametes and then become
oocysts again. Tachyzoite transmission through the placenta can infect a foetus and cause
developmental problems.
Parasite movement
Parasite movement does not involve projection of pseudopod-like extensions, they rely on
an intricate linear motor system that is sandwiched between the parasite’s plasma
membrane and a pair of membranes known as the inner membrane complex. Actin and
myosin, together with special ‘gliding associated proteins” are involved’. The actin is linked
to the trans-membrane adhesive proteins (see next page).
The inner membrane complex rides against the plasma membrane. This movement takes
place at the ‘moving junction’ of the host cell as the parasite enters, and helps it move into
the cell after pre-digestion of the membrane with (step 5, bottom diagram on next page)
For more information see the attached article (not recommended by lecturer):
Formin’ an invasion machine: actin polymerization in invading apicomplexans
(Holder, 2008)
Sporozoites (“seed animals”) infect new hosts. The oocysts
form in the feline intestinal epithelium, unsporulated oocysts
are shed in faeces for 3-18 days and sporulate for a period of
three weeks outside the cat’s body. They contaminate water,
soil, fruits and vegetables and are very stable, especially in
warm and humid environments. Although the cats only shed
these organisms for a short period of time, re-infection can
raise the number of organisms present at a given time.
Tachyzoites (“fast animals”) are in an asexual stage of rapid
growth. They inhabit intermediate hosts and accumulate
inside almost any nucleated cell. The parasites are secreted
into the bloodstream, causing an acute disease known as
parasitaemia. This is limited by the immune response,
which induces the change of the tachyzoites into cyst-
forming bradyzoites.
bradyzoites (“slow animals”) are sessile (slow-growing) and
inhabit intermediate hosts. In chronic toxoplasmosis, the
bradyzoite presents as irregular crescent-shaped clusters
(pseudocysts) in infected neural and muscular tissues (brain and
skeletal and cardiac muscle). These cysts persist to cause chronic
disease and if an individual becomes immunocompromised ,
they can cause acute encephalitis.
Roprtries and micronemes are specialised secretory organelles that contain numerous enzymes
released during the penetration process
Clinical manifestations of Toxoplasma
infection are usually asymptomatic (and thus
undiagnosed). They may occur in outbreaks,
as with Vancouver, 1995, or in isolated cases.
The incubation period is usually about 4 to 21
days and infection can result in focal
lymphoadenopathy, where the lymph glands
swell at the infection site, and flu-like
symptoms, such as fever, sore throats and
headaches. There are also claims of T. gondii
inducing an altered behaviour.
The parasite was introduced to test rats,
which subsequently became mildly attracted
to cat urine, the parasite is believed to be
more likely to invade the amygdala of the
brain, which is involved in a variety of fear-
related behaviours.
Remember, that if a rat is attracted to cat urine, there is a greater possibility that the
animal will be consumed, allowing the parasite to continue its life cycle inside a feline host.
In immuno-compromised patients, reactivation of a latent disease can cause fatal
pneumonia, ocular problems, and in 25% of HIV patients it causes encephalitis, leading to
coma and death. Diagnosis of encephalitis in HIV patients in France alone was 800 in 1992,
and 200 in 2002, due to anti-virals that slow the destruction of the immune system.
Vertical transmission to infants can also occur and can lead to problems such as diminished
vision or blindness in 14% of infants, hydrocephalus and intracranial calcifications, leading
Prevalence of T. gondii in livestock
1 pig feeds 300 to 400 people, and
remember that more than one pig
may be used in any one product!
Health risks for T. gondii
DALY = YLL + YLD
(DALY: disability adjusted life year, YLL: years lost to
mortality, YLD: number of years lived with a disability).
In comparison to common infections, T. gondii is very
successful and it is therefore a significant health issue
Conditions occurring after several months or years include visual impairment, mental and
cognitive abnormalities and seizures or learning disabilities, but the early diagnosis and
treatment of these conditions reduces the risk of complications.
Immune response to T. gondii
It is probable that a rise in the immune response to Toxoplasma causes them to
differentiate into the bradyzoite stages; this is a Th1 response with IFN-γ. The immune
response keeps the infection in check and dormant, but Toxoplasma also secretes a
molecule that enhances the Th1 response. It does this by enhancing the production of the
cytokine IL-12, which promotes IFN-γ production by T cells.
The molecule cyclophilin 18 (made by the parasite) binds to the chemokine receptor ‘CCR5’
on antigen-presenting dendritic cells to induce the formation of IL-12, which can then act
on T cells, as mentioned above, to promote IFN-γ formation.
It does this to prevent intermediate host mortality and allow them to distribute infection.
The incidence of congenital Toxoplasmosis from different
countries. The rate is especially high in France
Clinical manifestations are usually
asymptomatic at birth (70 to 90% of
cases), but can appear as rash,
lymphoadenopathy, hepatosplenomegaly,
hyperbilirubinaemia (jaundice), anaemia
and thrombocytopaenia (few platelets). In
<10% of cases the classic triad of
chorioretinitis (inflammation of the
choroid), intracranial calcifications and
hydrocephalus (an accumulation of
cerebrospinal fluid in the ventricles, or
cavities, of the brain) can result.
to CNS abnormalities in 11.4% of infants, miscarriage or still births in 5% of cases (this is
also common in livestock). It can also cause premature birth and intra-uterine growth
retardation.
The inverse relationship between the incidence of
foetal infection and the severity of the foetal damage;
infection is most severe if contracted in the first
trimester of pregnancy than if it were contracted in the
third trimester (Remington et al., 1995)
Hydrocephalus as a result of congenital Toxoplasmosis
Toxoplasma is believed to affect the behaviour of humans by slowing reaction times and
making one more likely to take risks, and people with Toxoplasma infections are twice as
likely to be involved in a car accident, although scientists are unsure which of these factors,
contributes to this result. In rats it has been observed that the most basic of instincts; a fear
of cats, can be overridden, the rat becomes attracted to cat urine, meaning it is more likely
to be eaten and continue the parasite’s life cycle.
For more information, watch the Horizon video at:
http://193.60.156.105/wmv/lifesciences/bodysnatchers/body2.wmv
Does Toxoplasma influence sex ratios?
Woman that are seropositive for Toxoplasia are seen to have more sons than uninfected
women and mice infected with Toxoplasma produce more males in their litters during the
early stages of the disease. This could be because males are known to ‘roam’ more than
females; they leave their habitats more often and are more likely to act more
spontaneously and adventurously and take bigger risks.
Treatment
Treatment of Toxoplasma includes sulphonamides, pyrimethamine and other anti-
malarials. Spiramycin is used to reduce the risk of congenital infection transmission and a
live vaccine of the cystless strain of T. gondii is available for immunisation of sheep. There is
currently no human vaccine and no drugs can currently target encysted bradyzoites.
T. gondii has molecules on its surface such as profilin, that acts as ligands for the toll-like
receptors (TLRs); single membrane-spanning proteins that activate the immune cell
response on recognition of these molecules. TLR ligands are structurally conserved in
pathogens, and distinguishable from host molecules. Activation of this receptor leads to
activation of MYD88; a universal adaptor protein, that drives the production of protein
complexes that regulate cell activities and, in turn, produce IL-12.
Parasitology Lecture 3 
Leishmania 
 
Leishmaniasis is a disease caused by protozoan parasites of the
genus Leishmania.  and is transmitted by certain species of
sandfly; by Phlebotomous in the “old world” (Asia and Europe),
and by Lutzomyia in the “new world” (South America). Many of
these species infect humans, but they are primarily classified as a
zoonosis (an infectious disease that is transmitted from
vertebrate animals to humans). Visceral Leishmaniasis is a severe
form of the disease in which the parasites have migrated to the
vital organs.
Leishmania is a very complex group of infectious agents, containing the following species:
 
 
 
 
 
L. tropica ‐ L. tropica 
L. major ‐ L. major 
L. aethiopica ‐ L. aethiopica 
L. mexicana ‐ L. mexicana, L. amazonensis, L. garnhami, L. pifanoi, L. venezuelensis 
L. braziliensis ‐ L. braziliensis, L. guyanensis, L. panamensis, L. peruviana 
L. donovani ‐ L. donovani, L. infantum, L. chagasi 
The incidence rate of infection is about 400,000 per year, there are about 12 million cases in the
world, and it can be fatal, leading to over 20,000 deaths a year in India alone.
Leishmania is an obligate intracellular parasite that live in cells of the macrophage lineage in the
immune system. Although the parasitic forms infecting macrophages are morphologically identical,
clinical manifestations are very diverse depending on which types of macrophages are affected; they
can all act as hosts for different Leishmania
Top right: Leishmania parasite entering a macrophage cell 
An infected female sandfly introduces flagellated promastigotes into the host skin, where they are
taken up by macrophages. Here they lose their flagella and become amastigotes, they then multiply
and burst out of the cell to infect more macrophages. If the infected macrophages are ingested by a
sandfly, they develop into infectious metacyclic promastigotes that are introduced into another
mammal as the sandfly next feeds.
the morphological differences between 
promastigotes (flagellated) and amastigotes 
Cultured macrophages 
show parasite infection 
Leishmania skin lesion 
Leishmania is a disfiguring disease that can lead
to destruction of body parts, such as the ear or
nose (see right), due to cartilage destruction, and
secondary bacterial infections can often result.
Blemishes that appear on the skin are caused by
uncontrolled lesion growth due to parasitic
infection.
Leishmania is primarily a zoonosis; a disease that is transmitted between an animal and a human.
Transmission of a disease from humans to animals is typically referred to as “reverse zoonosis”. The
Leishmania parasite exhibits its effects in a wide variety of hosts, including wild rodents, sloths and
dogs. There is an enormous reservoir of infection for this disease.
 
 
 
 
 
 
 
 
 
 
 
 
What is the aim of a parasite on entering a mammalian host and how does the host respond? 
 
The parasite aims to enter the macrophage cells of the reticuloendothelial system, the host wants to
protect itself and as the first line of defence, employs the innate (or non specific) immune system,
which consists of cells which respond to pathogens in a generic way without conveying long‐lasting
immunity to the host. Paradoxically the main type of cells involved in the host defence are the
macrophages themselves.
The infective stage of the parasite is a flagellated promastigotes (in its metacyclic form), that is
about 20‐25μm long including the flagellum. When a parasite interacts with a host, the parasite/
host surface interface is very important. The Leishmania promastigotes have three types of
molecule of their surface; Lipophosphoglycan (LPG), glycoprotein GP63 and glycoinositol
phospholipids (GIPLs)
Lipophosphoglycan is composed of an inositol lipid anchor and many repeating saccharide units.
LPG is a component of the glycocalyx; a network of polysaccharides that project from cellular
surfaces and allow attachment to various surfaces, as well as providing protection for the cell.
Glycosylphosphatidylinositol (GPL) anchored proteins such as GP63 (a protease of molecular weight
63 KDa) increase in levels during transformation of non‐infective promastigote forms to infective
metacyclic forms.
LPG  
5 x 106 molecules per 
cell 
GIPL 
1 x 107 molecules 
per cell 
GP63 
0.5 x 106 molecules 
per cell 
The Complement System 
 
The complement system is a biochemical cascade that is activated when foreign bodies enter the
cells and helps clear pathogens from an organism. Inactive precursors (or zymogens) from the liver,
circulate in the blood until activated, and on activation they are cleaved into two or more
fragments. The major fragment has two biologically active sites; one to bind the target and the
other to act as the enzymatic site.
The complement functions to aid the process of phagocytosis through ‘opsonisation’ by sticking to
the foreign body and allowing it to be targeted, it also promotes cell lysis through the insertion of
channels in the foreign body that lead to cell lysis due to a change in osmotic gradient. Complement
also aid chemotaxis and inflammation due to the existence of smaller proteins
 
Complement Activation & Membrane Attack Complex (MAC) Formation  
NB: This is in much greater depth than is needed, use as reference only!
 
 
Antibodies bind to antigens on the bacterium surface. A C1 complex composed of 1 molecule of C1q
and 2 molecules of both C1r and C1s bind to the aggregated antibody molecules and cross‐
phosphorylation of the C1r and C1s complexes take place (1). They then cleave the complement
protein C4, into a large C4b fragment, which binds to the bacterial membrane, and a small C4a
fragment, which acts as an anaphylatoxin. Anaphylatoxins trigger degranulation of endothelial cells,
mast cells and phagocytes, producing a local immune response
The C4b complex is activated by the enzyme C2b, and after the attachment of C3b, this
C4b/C2b/C3b complex leads to the production of many more C3b proteins, which bind to the
bacterial membrane and induce its phagocytosis (2). C5 then attaches to the C4b/C2b/C3b complex,
and is cleaved to form C5a; a potent anaphylatoxin and important chemoattractant (a substance
that promotes chemotaxis). C5b then dissociates from the C4b/C2b/C3b complex, and acts to
initiate the formation of the membrane attack complex.
C5b associates with C6 and C7, and C7 allows this complex to insert itself into the bacterial
membrane. C8 then binds to this complex and inserts itself into the cell membrane. This newly
formed C5b/C6/C7/C8 complex then catalyses the addition of many C9 molecules, which arrange
themselves in a cylindrical manner across the membrane surface, creating a pore (3) that disrupts
the ionic and osmotic balance across the membrane, thus killing the bacterial cell.
Infiltration of Macrophages by Leishmania 
 
Leishmania binds with GP63 and LPG molecules to CR1 (complement receptor 1), CR3 and mannose
1                                               2                                               3 
fructose receptors on macrophage (Mφ) surfaces. These attachments to the CR1 and CR3 molecules
occur either directly, or indirectly via complement components.
The parasite is not destroyed as it is engulfed because the LPG molecules increase in thickness when
progressing from the non‐infective to infective stages. This process of elongation increases the
thickness of the glycocalyx from 7 nm to 17 nm, and also stops the MAC complex from forming,
GP63 is also important, because it proteolytically cleaves the complement component C3b into its
inactive form, and so prevents lysis. LPG and GP63 also interact with complement receptor sites on
the macrophage that do not activate the macrophage cell.
Finally when a macrophage engulfs a foreign body, they usually enter an endosomal compartment
that fuses with lysozymes and destroys the pathogen. It survives this by creating a parasitophorous
vacuole, LPG molecules with a pH of between 4.2 and 5.2 inhibits lysosomal enzymes (this technique
is employed in many parasites that establish themselves in living host cells. LPG also inhibits Protein
Kinase C, that is involved in the generation of toxic macrophage metabolites, and GP63 inactivates a
host’s proteases, especially around a pH of 4.0.
Amastigotes (cells with no flagella) also make scavenger enzymes such as superoxide dismutase and
glutathione peroxidase
Parasitology Lecture 8 
Leishmania Prophylaxis 
Before reading this lecture understand lecture 3 ‘Leishmania’, most importantly, remember
it is an obligate intracellular parasite that lives in macrophage cells.
Luckily for researchers, Leishmania is a zoonosis and mice are natural hosts of the parasite.;
we can therefore use mice as hosts for research purposes. Like in humans, there is a
spectrum of disease in mice, some are resistant, others susceptible, and others are affected
in different ways. This resistance or susceptibility is inherited.
The infection is controlled in two ways: initially by macrophages in the reticuloendothelial
system, followed by the induction of adaptive immunity, allowing specific pathogens to be
targeted and antibodies produced against them. Research suggests that the basis for the
difference in the resistance or susceptibility of mice relies on a single major genetic locus,
and to investigate, a congenic mouse strain was produced by conventional genetic
breeding. A congenic mouse strain is when one mouse is genetically identical to another,
only differing in the single gene under investigation.
Concept
In order to create a congenic mouse strain, cross a resistant strain with a susceptible one
and backcross the F1 progeny that are still susceptible with the resistant strain.
This process is repeated, and after several backcrosses the resulting mice all have the
resistant strain’s genes, except the one determining the mouse’s susceptibility (so the
mouse remains susceptible).
The response to a Leishmania infection of these susceptible mice is then compared to
that of the original resistant strain
Analogy
Think of how to make a dry martini, starting with 50% gin and 50%
vermouth. The olive represents the gene you want to conserve (the one
that makes the mouse susceptible to Leishmania).
To make a martini more dry you spill out half of the drink and add more
gin, but keep the olive, if you do this for long enough the drink will
eventually contain all gin, but still contains the original olive.
Eventually, the single gene controlling Leishmania susceptibility was identified and named
Lsh. Scientists working round the world also identified single genes that confer resistance to
a specific infective agent; mycobacteria causes tuberculosis and is controlled by the Bcg
locus, and salmonella is controlled by the Ity locus.
The genes were eventually cloned and called Nramp (natural resistance associated
macrophage protein). Mouse strains which varied in their initial response to Leishmania
show mutations in this gene and database searches showed that the gene encoded a
divalent ion transporter molecule, although its function is not entirely understood.
Nitric Oxide Pathway 
 
Nitric Oxide (NO) is a short‐lived but very toxic molecule that is produced by macrophages.
When a Leishmania parasite enters a macrophage it creates a parasitophorous vacuole in
order to evade the immune system, but NO can readily diffuse across lipid membranes;
meaning it can easily get into the parasitophorous vacuole and destroy the parasite.
Oxygen Citrulline
L‐Arginine Nitric Oxide
NO Synthase
Tetrahydrobiopterin
NADPH
Tetrahydrobiopterin and NADPH are two essential cofactors for the above process. NO is
also spontaneously oxidised to form NO2‐ and NO3‐ ions, but NO2‐ can be reduced back to
NO in low pH conditions. Note that the parasitophorous vacuole has a low pH...
Nramp‐1 (Natural resistance associated macrophage protein 1 ) 
 
This is an integral membrane protein expressed exclusively in cells of the immune system in
mice, which is recruited to the membrane of a phagosome (vacuole formed around a
particle) upon phagocytosis. It has a hydrophobic core of ten transmembrane domains and
scientists believe it could be involved in transporting NO2‐ ions into the parasitophorous
vacuole. In theory the concentrated NO2‐ ions would then be reconverted back to NO inside
the vacuole, due to its low pH, and would kill the parasite.
Schematic representation of the structure of the Nramp protein and its orientation in the cell membrane 
However, more recent work has modified the above view. It has been suggested that
Nramp‐1 is a divalent cation transporter and , for example, extrudes Mn2+ from the
parasite. Other cations such as Fe2+ and Zn2+ may be involved and the process depends on
the pH ‐ the more acidic the solution, the faster the transport of these ions. Manganese
(Mn2+) ions are essential co‐factors for the production of an enzyme called superoxide
dismutase (SOD). With less Mn2+, the parasites cannot produce as much SOD and are
therefore more susceptible to the superoxide produced by macrophages.
Superoxide (O2‐) 
Superoxide is a biologically toxic molecule that is deployed by the immune system to kill
invading microorganisms. In phagocytes, superoxide is produced in large quantities by the
enzyme NADPH oxidase for use in oxygen‐dependent killing mechanisms of invading
pathogens. Because superoxide is toxic, nearly all organisms living in the presence of
oxygen contain isoforms of the enzyme superoxide dismutase. SOD detoxifies reactive
superoxide radicals produced by activated macrophages and is therefore a major
determinant of intracellular survival of Leishmania.
Adaptive Immunity
When the innate immune system fails, the adaptive
immune system kicks in (T and B lymphocytes), enabling
mouse strains that are initially susceptible to infection to be
able to control it. We need to understand why this
happens:
Macrophages are activated by cytokines such as IFN‐γ
(interferon gamma), which are produced by CD4+ T cells. To
see if these CD4+ T cells are important, an adaptive transfer 
of  immunity is performed, where lymphocytes from one
mouse species are transformed to another. These adaptive
transfer studies must be performed in inbred strains of
mice, this ensures that the donor and recipient are
genetically identical so the transplanted tissue is not
rejected by the recipient.
A mouse was infected with Leishmania, its CD4+ T cells were then removed and
transplanted into another mouse of the inbred strain. The ability to control infection of
mice that did get the CD4+ T cells , and those that did not were compared.:
The inbred mouse strain C3H healed faster after receiving
the CD4+ T cells.
Another inbred mouse strain BALB/c suffered a worse
manifestation of the disease.
Therefore it was determined that CD4+ T cells have two different effects in 
different strains of mice!
Leishmania and T cell cytokines 
Different types of Th (helper T) cells secrete different cytokines which have different effects 
on macrophages, Th1 cells increase the macrophage’s ability to kill (a good response for this 
situation), while Th2 cells increase the growth  and proliferation of macrophages (the wrong 
response for this situation) 
 
Th1 cells secrete Interleukin 2 (IL‐2) and Interferon gamma (IFN‐γ) 
Th2 cells secrete Interleukins 4,5,6,9 and 10 
Both cells secrete IL‐3 and Granulocyte macrophage colony‐stimulating factor (GM‐CSF) 
 
‘Good’ CD4+ cells secrete high levels of IFN‐γ, and low levels of IL‐4 
‘Bad’ CD4+ cells secrete high levels of IL‐4, IL‐3 and GM‐CSF, and low levels of IFN‐γ  
 
To validate the above theory, the antigen is introduced into a mouse, after a few days, the 
supernatant of cell cultures is collected and a cytokine assay is carried out... 
 
In the C3H mouse strains (naturally resistant to Leishmania infection), the IFN‐γ produced 
was neutralised, and the mice experienced an exacerbated form of the disease (a). 
 
In  the  BALB/c  mouse  strains  (naturally  susceptible  to  Leishmania  infection),  the  IL‐4 
produced was neutralised, and the mice appeared to be resistant (b). 
The converse experiments were then carried out; at the start of infection  susceptible mice 
were given IFN‐γ, and were cured, while resistant mice were given IL‐4, and their symptoms 
were exacerbated. 
 
After it was proved in mice, the genetic basis for this varied disease manifestation was 
tested for in human populations using a skin test for a delayed type hypersensitivity (DTH) 
reaction,  in  which  Leishmania  antigen  is  injected  into  a  patient  to  trigger  the  T‐cell 
response. Patients immune to the disease show a DTH reaction due to increased T1 blood 
lymphocyte proliferation, while individuals susceptible to the disease show no response. 
 
An effective immunisation technique would be to scratch off a part of a lesion from an 
infected individual and scratch it into one’s leg to trigger the T1 proliferation, but this would 
only work if they would produce the correct immune response! 
Weeks following infection
Size of
lesion
Parasitology Lecture 6 
African Trypanosomiasis (Sleeping Sickness) 
 
The  trypanosome  parasite  is  a  single‐celled 
kinetoplasmic,  extracellular  protozoan;  it  contains 
kinetoplasts  (disk‐shaped  masses  of  circular  DNAs 
inside  a  large  mitochondrion  that  contains  many 
copies  of  the  mitochondrial  genome),  lives  in  the 
host’s bloodstream and can be a zoonosis, many of 
these  characteristics  are  rather  like  that  of 
Leishmania. The parasites are transmitted to humans 
through  the  bite  of  a  tsetse  fly  of  the  genus 
Glossinna and never exist outside a host. 
 
Currently over 66 million people are exposed to the disease in 36 countries, there are 
300,000 new cases a year, many with advanced stages of the disease and in the 1960s, the 
prevalence o sleeping sickness had been reduced to less than 100 cases per 100,000 people 
per annum, but following the independence of many countries and outbreaks of civil war, 
the  changes  in  health  policies  have  led  to  a  significant  rise  in  the  number  of  cases  of 
sleeping sickness, and this is worryingly on the increase. 
 
There are two forms of the disease that are caused by two different species: 
 
  Trypanosoma gambiense ‐ named after the Gambia in West Africa, causes a chronic 
infection lasting years, affects countries of Western and Central Africa. 
 
  Trypanosoma  brucei  rhodesiense  ‐  named  after  Rhodesia,  now  called  Zimbabwe, 
causes acute illness lasting several weeks, affects Eastern and Southern Africa. 
Gambia 
Zimbabwe 
Due to the large number of livestock affected, cattle farming in these areas is poor, which also affects the economy
The initial clinical signs of trypanosomiasis are fever, weakness, 
headache,  swollen  lymph  nodes  and  joint  pains,  followed  by 
anaemia , heart problems and oedema. In advanced stages the 
parasite invades the CNS. People can no longer concentrate and 
exhibit mood changes, lethargy and increasing torpor (temporary 
hibernation ‐ a state of decreased physiological activity, usually 
characterized  by  a  reduced  body  temperature  and  rate  of 
metabolism). Eventually this disease leads to coma and death. 
 
Trypanosoma  predominantly  lives  as  a  free‐living  organism  in  the  bloodstream,  until  it 
enters the CNS, where it causes the most serious symptoms. If untreated, the infection is 
fatal and there is currently only one drug, discovered in 1932, called melarsopral, that is an 
arsenic‐based, and therefore very toxic, drug with serious side effects. Of the small number 
of  people  who  get  this  treatment,  approximately  1,000  die  every  year  from  arsenic 
encephalopathy, which may manifest as seizures, mental status changes, and coma. 
 
Like  most  protozoa,  Trypanosoma  exists  in  a  
number  of  different  forms;  the  main  forms  being 
slender  and  stumpy,  although  a  variety  are 
illustrated by the diagram to the left. They are found 
in the blood and are transmitted when an infected 
tsetse  bites  a  human  host.  Only  the  stumpy 
morphologies  survive  in  the  tsetse  midgut,  then 
undergo a series of multiplication stages which end 
with the parasite relocating to the salivary glands. 
The infective stages are known as metacyclics (the 
same terminology as with Leishmania). 
 
Tsetse flies are quite big, their 
bites  are  very  painful  and 
cause large sores to form. 
The Trypanosoma 
flagellum looks 
like a fin, sitting 
on top of its body 
Note the characteristic arrangement 
of the microtubules in the flagella of 
the Trypanosoma parasite and also 
the kinetoplast at the anterior end of 
the organism 
 
Once in the mammalian host, the Trypanosoma change into the long slender forms and 
multiply by binary fission with a doubling time of about 6 hours; some change into the 
stumpy forms that will go on to infect flies. A characteristic feature of chronic infection in 
man  and  animals  is  the  occurrence  of  regular  fluctuations  in  the  numbers  of  parasites 
present  in  the  blood,  this  observation  was  known  for  many  years  and  1910  an  Italian 
scientist called Massaglia stated 
 
“trypanolytic  crises  are  due  to  the  formation  of  anti‐bodies  in  the  blood.  A  few 
parasites escape destruction because they become used or habituated to the action of 
these antibodies. These are the parasites which cause the relapses” 
 
This was a very prophetic statement, in the sense that the structure of antibodies was not 
to be discovered until about 50 years later in the 1960s. He relied on development of lab 
models  and  techniques  for  purifying  tryptases  (the  most  abundant  secretory  granule‐
derived serine proteases contained in mast cells that have recently been used as a marker 
for mast cell activation) and electron microscopy. 
 
In his investigations he Identified a thick surface coat, and 
analysis of different clones of the parasites (obtained by 
the organisms dividing by binary fission) showed that they 
had  “biochemically”  different  clones  from  one  another. 
Each  coat  was  different  enough  to  be  encode  by  a 
different  gene  and  each  type  was  known  as  a  variant 
antigen type. The surface molecule is known as variable 
surface glycoprotein (VSG), and has a molecular weight of 
61kDa,  they  exist  as  a  very  tightly  packed  monolayer 
above  the  parasite’s  lipid  bilayer,  and  cover  the  entire 
organism’s surface. 
 
Massaglia looked at the peptide sequences of four different clones and saw that the amino 
acid sequence was different at the beginning of the VSG, confirming that each VSG was 
encoded by a different gene; about 10% of the biomass of the organism consists of the VSG 
alone! At any one time in the blood of a mammal, the majority of blood stream forms are 
slender and express only one type of VSG, but there are also a few stumpy non‐dividing 
forms that co‐exist with them. 
 
The  immune  system  of  the  host  recognises  the  dominant  VSG  in  the  population  of 
Trypanosoma, over the next few days they then make the specific antibody and kill 99% of 
the  pathogens;  the  ones  that  express  the  dominant  VSG,  by  complement  fixation  and 
opsonisation. However, some pathogens in the population have a different VSG type that 
the antibody is not designed to recognise, so these survive, grow up and reproduce by 
binary fission to increase the population size. This process constantly repeats itself and is 
responsible  for  the  fluctuating  parasite  levels  found  in  a  host  suffering  from  chronic 
infection (see diagram on following page).  
 
NB:  Antibodies  are  very  specific,  they  can  distinguish  between  proteins  with  a  single 
different amino acid, or even a single enantiomer of an amino acid 
glycoproteins  are  recognised  produces  the 
fluctuating levels of parasites in the blood. 
 
A  new  VSG  type  is  recognised  by  B  lymphocytes, 
which engulf the parasite and display its antigens on 
their  outer  membrane.  They  then  act  as  antigen‐
presenting cells in the lymph nodes and stimulate Th 
cells  to  produce  specific  lymphokines  (types  of 
cytokine) that enable B cell clonal expansion, where 
the  B  cells  mature  into  plasma  cells  that  produce 
antibodies. 
 
Activated  B  cells  subsequently  produce  antibodies 
which help to inhibit pathogens until phagocytes or 
the  complement  system,  for  example,  clears  the 
host of the pathogens. 
 
The VSG switch still occurs in animals that cannot make antibodies, and if you move the 
parasites between animal hosts faster than they can make new antibodies, the parasite still 
switches  its  VSGs  regardless.  This  process  of  VSG  switching  even  occurs  in  vitro!  The 
number of VSGs the trypanosome can make is probably in the region of 1,000! 
 
The question that remains is how the trypanosomes manage this VSG switching... 
A tell‐tale symptom of chronic Trypanosoma infection is a fluctuating 
concentration of parasites in the host’s blood stream 
The Immune Response 
 
One in about 104 to 105 parasites express a heterotype VSG, but the rest express a single 
homotype which is recognised by the immune system, causing an immune response to take 
place. The antigens allow the parasites to be lysed via the complement system (see lecture 
3 ‐ Leishmania), and also stimulates agglutination and phagocytosis. 
 
Effectively  the  immune  system  allows  for  the 
selection of the heterotypes, which then go on to 
reproduce, and the repetition of this process as new 
The Genetics of VSG switching in trypanosomes 
 
A VSG gene encodes for a protein of approximately 500 amino acids long: 
The first 20 to 30 amino acids constitute a signal peptide involved in the movement of the 
new VSG across the parasite membrane. The next 360 amino acids vary in their structure 
between different VSGs, contributing to the antigenic variation. The last 120 amino acids at 
the C terminal are relatively similar in various VSGs, and is the site at which the protein is 
anchored in the cell membrane. But in trypanosomes, the last 20 amino acids are clipped 
off and replaced with an oligosaccharide structure that is linked to a phosphoglyceride 
carrying  2  fatty  acids  which  penetrate  the  membrane  and  anchors  the  VSG.  This 
oligosaccharide structure is the same in all VSGs. 
 
The trypanosomes have an enzyme that clips off the link to these fatty acids, so only one 
enzyme is needed to replace all the VSGs on the parasite surface. 
 
Only one VSG is expressed at a time, when some VSG genes are expressed, an expression 
link copy still remains stored in the genome. When a certain gene is expressed it is copied 
and moved to the expression site, it is then replaced when another VSG type is required to 
be made. In other words, the mRNA for the expressed VSG is transcribed from the copy of 
the original gene that is located at the expression site. This expression site is always found 
at the end of the chromosome, near the telomere.  
“A  single  VSG  gene  out  of  the  total  repertoire  is  expressed  when  it  is  duplicated  and 
translocated  to an expression site near a telomere.” The switch from one to another is 
effected by the degradation of one such copy and replacement by a copy of another gene. 
This is an unusual method of gene expression. 
 
Imposed on this source of variation is the fact that some VSG genes are expressed without 
being duplicated and translocated, because the genes are near the telomere anyway, about 
half the genes studied are telomere linked. NB: A telomere is a region of repetitive bases at 
the end of chromosomes, which protects the end of the chromosome from destruction.  
Since about half the VSG genes that have been studied are telomere linked, and there are 
hundreds of genes to encode for hundreds of different VSGs, there must be hundreds of 
chromosomes present in their genome. 
 
But, since the trypanosomes have a normal amount of DNA, they must have an array of 
different sized chromosomes. 
 
      Mini chromosomes ~ 105 nucleotides 
      Small chromosomes ~ 2‐7x105 nucleotides 
     
 
 
 
 
 
 
Middle chromosomes ~ 2x106 nucleotides 
Large chromosomes ~ >2x106 nucleotides 
 
So, we accept that VSG genes are found on chromosomes of all sizes, but since a gene on a 
large chromosome can also be expressed as a copy on a medium sized chromosome, it 
suggests  that  translocation  can  take  place  between  chromosomes.  A  further  degree  of 
variation  can  also  arise  from  recombination,  where  the  VSG  gene  is  generated  by  the 
“joining” of segments of two different telomere linked genes which each code for part of 
the resultant VSG.  
 
This may help explain why telomeres are the sites of expression; they have highly repetitive 
stretches of DNA such as short tandem repeats, and since such areas are highly likely to 
undergo recombination, more variation can be generated. 
 
Finally, a further new piece of information adds to reasons why only one VSG is expressed 
at any one time.  There  is  a  special  place  within  the  trypanosome  nucleus  where  this 
process  occurs,  and  where  all  the  necessary  molecules  required  for  expression  are 
sequestered (separated and stored). This site is called the expression  site  body, and is 
found in the nucleolus. 
 
This was discovered by Miguel Navarro and Keith Gull in the University of Manchester a few 
years ago. They also identified the enzyme which did the transcribing, and to their surprise 
it was RNA polymerase I (Pol I) which is not usually employed for protein transcription! 
Parasitology Lecture 7 
South American Trypanosomiasis (Chagas Disease) 
 
The South American Trypanosoma cruzi parasite is transmitted by 
the triatomine, or kissing, bug as the females feed off a human 
host. However, the parasite is not transmitted in the saliva of the 
insect, but in its faeces! When they feed, the bugs defecate on the 
host, usually on the face (hence the name ‘kissing disease’), and 
as the individual scratches the wound (or rubs their eyes) they 
infect themselves with the contaminated faeces. An estimated 16 
‐18 million people are infected and 50,000 will die each year. 
 
The parasite is found across the middle and southern Americas 
particularly in poor, rural areas of Mexico, Central America, and 
South America; very rarely, the disease has also originated in the 
Southern United States.  
As the host scratches and infects themselves, a swelling, 
known as a cutaneous chagoma occurs on the skin. If the 
infection  is  accidentally  rubbed  into  the  eye,  an  ocular 
chagoma,  commonly  known  as  ‘Romaña’s  sign’  occurs, 
which includes swelling of the eyelids on the side of the 
face near the bite wound. 
 
The  triatomine  bug  excretes  metacyclic  trypomastigotes  in  their  faeces,  which  is  the 
infective stage of the parasite, on entering the host they lose their flagella and become 
amastigotes, where they multiply intracellularly. As other cells are infected the infective 
cycle continues, and this may cause clinical symptoms such as fever, fatigue, body aches, 
headache,  rash,  loss  of  appetite,  diarrhoea,  and  vomiting.  The  signs  on  physical 
examination can include mild enlargement of the liver or spleen and swollen glands. Some 
intracellular amastigotes, however, transform into trypomastigotes, where they burst out 
of the cells and enter the bloodstream to await an opportunity where it can be transformed 
back to the vector; the triatomine bug. Animals can also act as intermediate hosts for the 
parasite 
 
Although the early stage disease is not usually severe, chronic symptoms may develop after 
10 to 30 or 40 years, which includes cardiac problems such as enlarged hearts and cardiac 
arrest.  South  American  footballers  have  dropped  dead  on  the  pitch  to  an  apparently 
unknown cause, later found to be due to trypanosomiasis. Other chronic symptoms include 
dilation of the digestive tract (megacolon and megaesophagus), accompanied by severe 
weight loss. Swallowing difficulties may be the first symptom of digestive disturbances and 
may lead to malnutrition. 
A C
B
D
A: Many of trypanosome parasites are found in the tissues of infected individuals. B: an enlarged heart, a 
light probe here shows just how thin the apex becomes on enlargement. C: A dilated colon, all muscle tone 
has been lost and extensive swelling is present. D: a dilated colon has been cut open to expose the inside. 
T.cruzi has a remarkable capacity to invade every nucleated cell it encounters, so it can 
survive and replicate in many cells. As with many protozoans it lives (at least for part of its 
life cycle) in a parasitophorus vacuole, but unlike other protozoans such as Leishmania, 
engulfment  is  not  an  actin  mediated  phagocytic  event    and  the  membrane  of  the 
parasitophorus vacuole is not derived form the plasma membrane of the host cell. 
 
Instead,  the  parasitophorous  vacuole  is  derived  from  the  membranes  of  lysosomes. 
Lysosomes  are  organelles  that  contain  digestive  enzymes  (acid  hydrolases).  They  digest 
excess  or  worn‐out  organelles,  food  particles,  and  engulfed  pathogens  by  fusing  with 
vacuoles and dispensing their enzymes, digesting the vacuole’s contents. 
1)  The parasite secretes oligopeptidase B molecules that bind G protein coupled 
receptors on the host cell surface. This activates phospholipase C, which then 
induces an increase in cellular calcium. 
 
2)  The  parasite  secretes  Cruzipain,  which  cleaves  kininogen  into  kinins; 
inflammatory  mediators  that  bind  to  cell  surface  kinin  receptors,  eventually 
activate PLC and induce a rise in intracellular calcium. 
 
Following  accumulation  of  lysosomes  under  the  parasite  attachment  site,  lysosome 
membranes fuse and create a membrane of the parasitophorus vacuole. It is believed that 
the parasite enters the cell by a combination of its own movement and the ‘pulling and 
recovery’ of lysosomal membranes along microtubules that ‘drag’ the it in. 
 
Most parasites do not want to allow lysosomal fusion, but T. cruzi actually requires it! 
The function of a lysosome in an animal cell 
The parasite attaches to varied molecules (matrix proteins or integrins) on a cell surface. 
Both Transforming growth factor beta receptor II (TGFβRII) and Receptor Tyrosine Kinases 
(RTKs) can act in this way, and they both these expressed on many cell types 
 
This complementary binding triggers a rise intracellular calcium in host cell, causing an 
accumulation of lysosomes under the site where the parasite attaches. T. cruzi effectively 
‘fools’ the host cell into thinking there is some damage to the cell membrane and triggers a  
cellular wound repair process. The intracellular Ca2+ concentration is raised, and lysosomes 
are then transported to the ‘wounded’ membrane along microtubules. 
 
The parasite is thought to increase cellular calcium by a variety of processes, including: 
 
B is the main method of entry into a cell, as described above, but A shows another way of entry, in which the parasite 
first forms a plasma membrane around it, then recruits lysosomal membranes to replace the original coat. 
A low pH triggers differentiation from the trypomastigote to the amastigotes and switches 
on the production of Tc‐Tox; a molecule that disrupts the parasitophorus vacuole and frees 
the parasite into the cytoplasm where it replicates. Tc‐Tox is very similar to the C9 molecule 
that the host immune system uses to punch holes in cells (a member of the complement 
system). 
Comparison of different organisms’ mechanisms inside the host cell. Box ‘f’ refers to the trypomastigote  
So, in summary, in the host cell lysosomes are summoned to the plasma membrane to 
repair putative plasma membrane damage – and are hijacked by the parasite to help with 
cell invasion. 
 
The infection is initially mostly quiescent, but immune suppression can cause re‐activation 
of the disease, and transplanted organs and blood transfusions can transmit infection! 
Parasitology Lecture 4 
Invasion by Helminths (Parasitic Worms) 
Platyhelminthes and Nematoda 
 
Platyhelminthes (Flatworms) include tapeworms and planarians (non‐parasitic flatworms) 
  Trematoda is a class within the above phylum, containing blood flukes and schistosomes 
 
Nematoda (Roundworms) 
 
 
Caenorhabditis and Filariae are genera of the above phylum 
Geohelminths are a group of soil‐transmitted parasites, that include hookworms such as 
   
   
Ancylostoma duodenale 
Necator americanus 
 
In this lecture, we will deal with two different species that have very different morphologies 
 
Schistosomiasis (or bilharzia) 
A diseased caused by schistosomes that affects over 250 million people and is most commonly 
found in Asia, Africa, and South America, especially in areas where the water contains numerous 
freshwater snails, which may carry the parasite. 
 
    3 major species infect man:      2 major species infect animals: 
 
 
 
 
 
 
Schistoma mansoni   
Schistoma haematobium 
 
 
 
 
Schistoma bovis (cattle) 
Schistoma mattei (sheep) 
      Schistoma japonicum 
 
It is a chronic debilitating disease and many infections are asymptomatic, with mild anaemia and 
malnutrition being common in endemic areas. Acute schistosomiasis (Katayama's fever) may occur 
weeks after the initial infection, especially by S. mansoni and S. Japonicum. Manifestations of the 
disease include: abdominal pain, cough, diarrhoea, eosinophilia (extremely high eosinophil count), 
fever, fatigue and hepatosplenomegaly (enlargement of both the liver and the spleen). Occasionally 
central nervous system lesions occur: cerebral granulomatous disease may be caused by ectopic S. 
japonicum eggs in the brain 
S. haematobium 
Terminal spine at the posterior end 
 
Usually associated with urinary schistosomiasis. 
Adults are usually found in venous plexuses 
around the urinary bladder, they release eggs 
that traverse the bladder wall and can cause 
haematurea and fibrosis of the bladder 
S. mansoni 
Lateral spine at the side 
S. japonicum 
No spine present 
 
Adults are usually found in the mesenteric or rectal veins and release 
eggs which move to the lumen of the intestine and pass out in faeces. 
The rest of the eggs are filtered at the periportal tracts of the liver, 
and can sometimes cause liver fibrosis 
(fibrosis is formation of excess fibrous connective tissue). 
The Schistosome eggs hatch outside the human host in response to light and other factors, and the 
miracidia that are released penetrate the tissue of freshwater snails and reproduce. The developed, 
free‐swimming cercariae are released back into the water and they penetrate the skin of a human 
host using enzymes from acetabular glands to aid their entry, upon which they lose their tails. After 
about three days they manage to get into the circulation and migrate to the portal blood system via 
the pulmonary circuit over the next week or so, and mature into adults, which takes about 49 days. 
The males and females then pair up and remain in copulation for the rest of their lives. They migrate 
to the superior mesenteric or inferior mesenteric veins, or to the venules surrounding the urinary 
bladder, depending on which species they are (see above image for specific locations), the average 
life span of an adult is about 5 years, and it can release up to 300 eggs a day. The eggs are released 
back into the environment and find their way back to a body of freshwater, and the cycle repeats 
itself. (The cercariae look like tadpoles, but swim in a completely different way.) 
 
In about 50% of cases, the eggs become trapped in the body and are responsible for the symptoms 
of schistosomiasis, the adults are not responsible for any symptoms of schistosomiasis! 
 
During  normal  cercarial  penetration,  unicellular  glands  called  acetabular  glands  empty  their 
contents onto a human host’s skin. The proteases in this secretion digests elastin, keratin, collagen, 
gelatin  (solid  substance,  derived  from  the  collagen  inside  animals'  skin  and  mostly  bones), 
fibronectin (high molecular weight extracellular matrix glycoproteins) and laminin (sheets of protein 
that form the basement membrane of all internal organs) 
 
 
their  glycocalyx  is  shed  (via  microvilli),  and  a  new  double  unit  membrane  is  formed  from 
membranous vesicles. The trigger for this change is a stepwise transfer in saline concentration. A 
larval schistosome that has shed its tail becomes known as a schistosomulum. 
“Swimmer’s  itch”  can  be  caused  by  some  schistosomes  from  another  species  (e.g.  birds).  They 
attempt to penetrate a human’s skin, but do not secrete the right enzymes to aid penetration and 
so they die in a host’s skin, causing an itchy rash (above images). 
 
Cercariae are 125μm long and 25μm 
in diameter, with a 200μm long tail. 
They  are  covered  by  a  continuous 
syncitial  tegument  (multinucleated 
dermal  cells),  that  is  about  0.5μm 
thick.  The  exterior  surface  consists 
of  a  glycocalyx,  and  trilaminar 
plasma and basement membranes. They have a primitive nervous system and primordial digestive 
and reproductive systems (the earliest systems of that kind). 
Scanning electron micrograph of an 
early skin‐stage schistosomulum  
Scanning electron micrograph of 
a lung‐stage worm  
Scanning electron micrograph of a late 
skin‐stage schistosomulum  
Schistosomes have oral and ventral suckers. They 
may  lie  in  the  mesenteric  veins  for  months  on 
end, and both males and exist in copulation from 
this point in their life cycle until death. 
♀
♂
 
You can estimate how heavily someone is infected by counting the number of parasite eggs in their 
urine or faeces. Urine from heavily infected people is cloudy, and usually bloody. This disease was 
identified in ancient Egypt, as “the aaa‐disease” and the identifying symptom was the discharging 
phallus. In its later stages, schistosomiasis can cause massive liver fibrosis, leading to an expanded 
abdomen, the prognosis for late liver fibrosis is not good. 
 
Miracidium 
The  intermediate  host  is  a  freshwater  snail,  the 
schistosome  eggs  hatch  on  contact  with 
freshwater, releasing Miracidium (200μm x 40μm). 
Their  surface  is  covered  by  anucleate  epithelial 
plates  that  are  covered  in  cili,  and  allow  the 
organism to swim very fast. They can swim about 
2mm/sec,  and  to  turn  it  angles  its  body  in  a 
“rudder‐like” manner. 
 
Salinity changes tell the organism when to slow 
down  as  it  approaches  a  snail  and  following 
penetration of the snail through either its mouth 
or foot, the epithelial plates are shed. Inside the 
digestive  gland  of  the  snail  the  organisms 
differentiate  into  sporocysts  and  reproduce 
asexually. Inside the sporocysts cercariae form, this process takes about 3 weeks in S. mansoni. 
These cercariae  can remain viable for up to 48 hours outside a host in freshwater bodies. 
 
These cercariae penetrate an unsuspecting human host, and the cycle begins again. 
Schistosomes are flatworms; they are Trematodes.  
Next we deal with Hookworms, which are Nematodes. 
 
Refer back to lecture 1 for the differences between these,  
but you should really know them by now! 
vector. Vaccination is therefore 
an  attractive  possible  solution, 
A: A freshwater snail is surrounded by miracidium. B: Bodies of fresh 
water in less developed countries such as Africa, carry schistosomes 
Parasitology Lecture 5 
Schistosomiasis Vaccination 
 
Schistosomiasis  is  very  difficult  A                                  B 
to  control  in  areas  that  are 
poorly  developed  on  political 
and social levels. Because their 
infrastructures  are  not  well 
developed  it  is  difficult  to 
introduce  medication  to  treat 
the  infected,  or  to  introduce 
molluscicides  to  kill  off  the 
but  it  is  still  difficult  to  introduce  the  vaccine  into  these  areas  ‐  smallpox  has  been 
eradicated in many countries, but still affects those where aid is less easy to acquire.  
 
In order to find a vaccine for this disease, it is necessary to understand immunity. The 
question  that  needs  addressing  is  how  can  schistosomes  live  in  the  blood  streams  for 
extended periods of time without being attacked by the host immune system... 
A                                                      B                                                       C 
Recapping the schistosome life cycle: Cercariae (A) penetrate a human host, migrate to the portal blood system and 
mature to schistosomes (B), where they stay in the venous blood supply. The male forms a gynecophoric canal that the 
female lies in, and they produce many eggs a day that hatch outside the body into miracidium (C) (here: S. mansoni) 
How do the schistosome parasites avoid the host’s immune response? 
 
Various laboratory models can be used to investigate infection in order to see how the 
animal and the parasite interact:  mice, rats, baboons, rhesus monkeys and cattle. When 
infected  with  a  strain  of  S.  mansoni,  these  animals  do  show  evidence  of  immunity  to 
various extents: 
 
 
 
 
 
Rhesus monkeys show a strong immunity 
Baboons have less resistance than rhesus monkeys 
Rats manage to terminate the primary infection 
Mice show a limited response and chronic infection ensues (results) 
 
NB: S. mansoni does not usually affect animals such as wild rodents, and so this may have 
an effect on the results shown in the above investigation. 
 
 
Smithers & Terry worked with Rhesus monkeys infected with S. mansoni in the late ‘60s 
and found that they were able to destroy cercariae worms from a second schistosomiasis 
infection,  but  could  not  destroy  the  adults  that  had  already  established  in  the  first 
infection. Immunity could either be stimulated with large numbers of irradiated cercariae 
(so they would die before they became adults), or with transplanted adults from another 
monkey. The conclusions drawn were that Immunity appeared to operate against the larval 
stages  and  not  the  adult  stages,  but  could  be  stimulated  by  both.  This  is  known  as 
concomitant  immunity. In the same way, some people have been known to develop a 
resistance to a secondary cancer, but this defence has no effect on the established primary 
tumour. 
 
In 1977, it was discovered that all investigated blood‐dwelling organisms contain an outer 
surface covering (tegument) that is unique in nature, consisting of fused cells surrounding 
the  worm  with  a  single  continuous  double‐bilayer  membrane.  On  penetration  of  the 
cercariae into the host skin, the outer glycocalyx is shed from their syncytial membrane, 
and within 30 minutes the 2nd lipid bilayer is laid down. Membranous bodies that have a 
double lipid bilayer are made in the perikarya in the sub‐tegumental cells; they fuse with 
the cell surface to create the new membrane structures (microvilli with bulbous tips form 
on the schistosome membrane due to this process). 
The homogenates of adult worms were found to contain many of the molecules that were 
found in the host species; antigens are shared, decreasing the antigenicity of the parasite  
(its  capacity  to  induce  an  immune  response).  This  is  due  to  acquisition  of  the  host 
molecules, rather than mimicry of them since when schistosome adults are incubated in a 
red blood cell medium containing larvae, they acquire RBC antigens (A and B blood group 
antigens) into their tegument via adhesion to their surfaces, allowing them to disguise 
themselves as “self” and thus avoid detection by the immune system. 
Experiment to show the acquisition of host blood group molecules 
 
Schistosomes were taken at the ages of 1) three hours and 2) four days and incubated with 
both anti‐schisto‐antibodies from an infected animal and anti‐host RBC antibodies  to give 
four samples. The antibodies produced on the cell membranes were labelled with gold 
particles so they would show up on an electron microgram. The type of protein that is 
present  on  the  schistosomulum  membrane  can  therefore  be  identified.  (NB:  A 
schistomulum is the immature form of a parasitic schistosome after it has entered the 
blood vessels of its host.) 
Young 3 hour schistosomulum + anti‐schisto
‐antibody. The schistosome antibody is 
displayed on the membrane 
4 day old schistosomulum + anti‐RBC‐antibody. 
The test now confirms the presence of RBC 
antibodies on the membrane 
Young 3 hour schistosomulum + anti‐RBC‐
antibody. There are no RBC antibodies 
detected on the cell membrane 
4 day old schistosomulum + anti‐RBC‐
antibody. There are now no schisto 
antibodies detected on the cell membrane 
Where the young schistosomulum once showed the presence of schisto proteins on its cell 
membrane, the more mature organism displays the host RBC proteins, and is therefore 
disguised as “self” rather than “non‐self” 
Concept
If  you  were  to  infect  a  monkey  with  schistosomes,  the  schistosomes  would  coat 
themselves with monkey antigens 
 
If  you  were  to  infect  a  mouse  with  schistosomes,  the  schistosomes  would  coat 
themselves with monkey antigens 
 
If you then take a monkey and immunise it with mouse proteins, the monkey’s immune 
system sees them as foreign bodies and makes antibodies that can be used in the case of 
future exposure. This monkey can now make antibodies to mouse proteins and is called 
an “anti‐mouse” monkey. 
Eosinophils attacking a schistosome cell 1: a schistosome cell, 2: a schistosome after exposure to
cytotoxic granules, 3: a necrotic mass
 
Experiment used to determine the presence of host antigens on the tegument of adult 
Schistosoma mansoni 
Since the monkey in experiment 4 had already been immunised, it was ready to mount an 
attack on any mouse proteins that were deemed foreign. In all other cases, the parasite is 
initially recognised as foreign, allowing long‐term immunity to be achieved, but then the 
parasite acquires a “self” protein coat, allowing the adults to evade the immune system. 
 
This led to the idea that the schistosomula could be artificially transformed to convey anti‐
larval immunity. In vitro killing assays were then carried out using the antibodies IgG and 
IgE, and cells like eosinophils and macrophages. If the cells were incubated with an IgE that 
was  specific  for  the  parasite  surface,  eosinophils  would  selectively  attack  them  with 
cytotoxic granules. This is known as antibody dependent cell mediated cytotoxicity. 
1                           2                            3   
The prevalence of infection with Schistosoma haematobium in a population living in an 
endemic area. 
 
This graph shows a peak of infection intensity 
of children roughly aged 6 to 15, but this is 
followed  by  a  decrease  as  a  person 
progresses into adulthood. 
 
This could be due to adults spending less time 
in the water as they age, since children are 
more  likely  to  play  in  the  water  etc.,  or  it 
could  be  that  children  are  susceptible  to 
infection in early life, but over time immunity 
builds up and renders the adults immune to 
infection. 
 
 
To investigate the resistance theory, re‐infection studies must be carried out 
 
Praziquantel is a drug that is not licensed for use in the UK for human consumption, but is 
available as a vetinary anthelmintic (drugs used to expel parasitic worms), or for certain 
humans on a named‐patient basis. It clears up infection, making sure human subjects are 
infection‐free  before  the  re‐infection  trials,  to  eliminate  the  variation  in  egg  numbers 
counted in faeces and urine. 
 
The  re‐infection  study  was  carried  out  in  Gambia  using  S.  haematobium.  Control  for 
exposure was done through controlling the subjects’ exposure to water, and before the 
study was carried out, the field staff moved into the village a year in advance so they could 
get to know every individual in the village and their personal histories. Every person in the 
village was then monitored during the study and the following factors were recorded: 
 
 
 
 
Activity and time in water 
Densities of snails (infected and uninfected) in the water at the time  
Densities of cercariae in the water at the time  
 
A massive statistical analysis was then carries out, which took all the data into account.
The study took place along the Gambia
River in the small villages of Madina,
Samaco and Njarinjufa. The Gambia is
the smallest country in Africa
The adults in the study were found to be immune, and their immune parameters were thus 
measured: parasite specific antibodies, eosinophils and other granulocytes. 
 
A  strong  association  was  found  to  exist 
between the types of antibody a person had 
and  their  resistance  to  re‐infection.  The 
population  was  divided  into  quintiles  (5 
groups)  on  the  basis  of  their  IgG4  or  IgE 
response;  those  in  the  highest  quintile  for 
IgE were found to be 10 times less likely to 
be re‐infected than the lower quintile, and 
those in the highest quintile for IgG4 were 
found to be 10 times more likely to be re‐
infected than the lowest quintile. 
 
The  eggs  of  the  parasite  are  the  main  pathogenic  stage,  the  move  to  the  outside 
environment  is  associated  with  the  release  of  enzymes  and  metabolic  products  which 
stimulate  very  strong  eosinophil  and  macrophage  rich  granuloma  (which  are  T‐cell 
dependent).  This  is  particularly  severe  when  the  eggs  are  washed  back  into  the  liver 
because lots of leucocytes flood into the liver to try and contain the infection, but this leads 
to granuloma formation and a reduced blood flow. I 
 
In  S.  mansoni  infections,  this  results  in  alterations  in  blood  flow  leading  to 
hepatosplenomegaly  as  more  RBCs  are  made  in  response  to  the  reduced  blood  flow, 
leading to a high blood pressure, oesophageal varices, and eventually death if untreated. 
 
In S. haematobium, damage to the bladder and urethra can result, leading to renal failure 
January & 
February  
Pre‐study 
chemotherapy 
 
Exposure to  
Re‐infection 
Low 
Medium 
High 
April & May  
Check efficacy 
of treatment 
Rains arrive 
2‐9 Year Olds 
Some 
Some ++ 
High 
August to 
November  
Transmission ‐ 
water conduct 
observations 
10‐14 Year Olds 
None 
Some 
Some/ ‐ 
April & May 
Re‐infection 
intensity 
Adults 
None 
None 
None 
Specific IgE against WWH shows a significant inverse 
correlation (p<0.05) with re‐infection 
← Oesophageal varices caused 
by  hypertension  can 
haemorrhage  spontaneously 
and  can  therefore  be  fatal  if 
not treated 
 
A large infiltrate of leucocytes 
to  the  liver  can  cause 
autoimmune  liver  fibrosis  as 
they  try  to  attack  the  foreign 
bodies  (schistosome  eggs) 
trapped there↓  
← Hepatosplenomegaly  due to schistosome infection 
The miracidia inside schistosome eggs release histolytic secretions when trapped in the 
host  tissues,  Th  cells  recognise  the  egg  antigens  and  release  lymphokines  (lymphocyte 
cytokines) that cause inflammatory cells to aggregate, forming a granuloma, and leading to 
hypersensitivity over long periods of time. The body eventually realises it’s doing more 
harm  than  good  through  the  immune  response  and  so  switches  off  the  hyperactive 
immunity, reducing the granuloma size and allowing the eggs to exit without too much 
reaction (see below) 
Lymphatic  filariasis  can  be  transmitted  by 
two  main  species  of  filarial  nematodes: 
Wuchereria bancrofti and Brugia malayi. It 
causes  inflammatory  damage  to,  and  the 
dysfunction  of  the  lymphatic  system, 
causing  fluid  accumulation  which  leads  to 
conditions  such  as  elephantiasis  (swollen 
limbs), and hydrocoele. Filariasis also causes 
filarial  fever,  lymphangitis  and  dermato‐
lymphangio‐adenitis  (inflamed  skin  and 
lymph  nodes).  These  parasites  live  in  the 
lymphatic  system  and  they  are  either  so 
large, or cause so much damage, that the 
fluid can’t drain. 
 
 
Onchocerciasis (river blindness) is caused by 
the microfilaria  of the parasite Onchocerca 
volvulus.  Here,  the  adult  parasites  live  in 
lymphatic  nodules  and  lay  microfalariae, 
which  migrate  to  the  dermis  and  cause 
itching  and  ageing  of  the  skin.  When  they 
migrate to the cornea, they can also cause 
river  blindness.  In  areas  where  this  is 
endemic, the older generation often rely on 
the guidance of children who can still see. 
 
The  thread‐like  filarial  parasites  live  in  the 
blood (C), and inside lymphatic vessels (D). 
They live for 4‐6 years, producing millions of 
microfilariae, which circulate in the blood. 
A                               B 
Hydrocoele testis (B) is common in regions where the 
parasites are endemic, and can on rare occasions affect the 
breast tissue in women (A) 
Parasitology Lecture 9 
Immunity to Filariasis 
 
 
 
 
 
 
 
 
 
 
 
The parasite is transmitted by the blackfly (Simulium), or a mosquito (Anopheles) 
A                                B 
 
 
 
 
 
 
 
C                                  D 
Total people afflicted 
Lymphoedema/ elephantiasis 
Hydrocoele testis  
Acute Inflammatory attacks 
Chyluria 
120,000,000 
15,000,000 
25,000,000 
15,000,000 
2,000,000 
With the filariasis life cycle mosquitoes or black flies can act as vectors. The mosquito injects the 
parasites into the lymphatic tissues and the microfilariae circulate in the blood, while the black fly 
injects the parasites into the subcutaneous nodules, and the microfilariae remain in the skin.    
The parasite is also fairly widely distributed across the southern hemisphere (below) 
Global Burden  
Pathology is mainly due to the adult worm living in the lymphatics or sinuses of the lymph 
node. Because the worms are very active, they thrash around a lot and cause dysfunction 
of, and inflammatory damage to the lymph system. The thichening of vessel walls from this 
damage causes incompetent lymph valves, and ultimately leads to the blockage of the 
lymphatics, especially upon the death of the worm (from senility ‐ old age) 
 
Elephantiasis is due to fluid accumulation, typically in the legs, but it 
can  also  affect  the  arms.  Due  to  secondary  infections,  the  skin 
eventually  becomes  cracked  where  bacteria  and  fungi  flourish,  a 
severe fever is also a common symptom. Treatment for this involves 
scrubbing the affected area to get rid of the bacteria and fungi that 
cause the exacerbation. 
 
Hydrocoele is the most common clinical manifestation. In endemic 
areas 40 to 60%  of adult males are affected by this. It is caused 
when  adult  worms  localise  in  scrotal  lymphatics  and  cause  fluid 
accumulation. 
 
Chyluria  is  often  due  to  hidden  internal  damage  to  the 
kidneys and lymphatic system, resulting in an intermittent 
discharge of lymph into the renal pelvis and subsequently 
into  the  urine.  Chyle  is  a  milky  white  bodily  fluid  that 
consists of lymph and emulsified fats or free fatty acids. 
This gives urine of an affected individual the characteristic 
appearance as seen to the left. 
 
The glass on this chyluria sufferer’s bedside table does not 
contain milk; it is a fresh urine sample! 
 
Treatment 
 
There is no vaccine available for this disease, the only ways to stop it are to interrupt its 
transmission or control the morbidity. To interrupt its transmission one must eliminate the 
microfilariae from the bloodstream with a single dose of a 2 drug regimen (albendazole 
with diethylcarbamazine or ivermectin) once a year for four to six years. This, however, is 
difficult to keep up for such a long period. Controlling its morbidity involves assisting the 
lymph slow and preventing secondary infections by introducing forms of basic hygiene. 
Morbidity refers to a diseased state, disability, or poor health due to any cause. 
 
Onchocerciasis (river blindness) 
 
The Onchocerca volvulus adults are 30 to 80 cm long and live in 
nodules  in  the  human  skin.  They  live  for  about  12  years  and 
produce many microfilariae (about 0.3μm long), which circulate in 
the skin and cause pathology. Transmission is via the bite of an 
infected black fly (Simulium), which breed in areas of fast‐flowing 
water.  Across  Africa  they  are  distributed  across  some  areas  of 
Venezuela, Brazil, Columbia and Equador. 
The nodules lie in the subcutaneous tissue, about 1 to 5 cm in diameter. An infected person 
may  have  several  hundred  at  various  locations  of  their  bodies,  such  as  the  skull,  ribs, 
elbows, hips, thighs and knees. Just one tiny nodule contains many adult parasites, but 
remember it is not the adults that cause the real problems! 
Palpation of a nodule (A), and an idea of the number of parasites contained within (B) 
A                                           B 
Eye manifestations are caused when the microfilariae migrate to the eye, where they die 
causing  a  profound  inflammatory  response  and  scarring  where  the  cornea  is  left  very 
opaque (see p.1). Onchocerciasis is the second leading cause of blindness of infectious 
origin, leaving 18 million people infected, 800,000 visually impaired and 270,000 blind. 
 
Skin manifestations 
 
These  are  less  widely  reported  than  river  blindness, 
involving chronic dermatitis and intense itching due to 
the  dying  microfilariae  that  cause  a  subcutaneous 
inflammatory  response  causing  the  skin  to  itch  and 
become  swollen  and  chronically  thickened,  known  as 
“lizard  skin”.  The  skin  also  becomes  lax  due  to  the 
destruction of elastic fibres, and may lose pigmentation, 
commonly known as “leopard skin”.  
 
Often  people  have  to  resort  to  scratching  themselves 
with rocks to alleviate this maddening itch. 
 
Control of the parasites is through the drug ivermectin to kill the worms, and through the 
spraying of the black fly breeding grounds with larvicides to break the transmission cycle. 
 
Immunology  
For further information on immunology, see back sheet entitled “Basic Immunology” 
 
There is a fascinating host‐parasite interaction in this case; the infected human is exposed 
to multiple life cycle stages, each interacting with different parts of the immune system. 
The following data focuses on lymphatic filariasis, but onchocerciasis also shares common 
immunological features... 
Filariasis  is  a  spectral  disease.  Multiple  infection  from  a  mosquito  vector  can  lead  to 
immunity,  tolerance  or  an  inappropriate  immune  response  and  an  immunology  is 
important in the understanding of these groups: 
 
  
 
Immunity ‐ no symptoms and no microfilaraemia infection 
Tolerance ‐ no symptoms, but an present microfilaraemia infection 
 The category which most individuals fall under 
 
  Inappropriate immune response ‐ symptoms include adenolymphangitis 
(inflammation of the lymph nodes and vessels) and periodic fever. Chronic disease 
includes oedema and chyluria, and elephantiasis may also result. 
 
In order to understand filarial immunity, comparisons must be drawn between the three 
main  groups:  endemic  normals  (EN),  microfilaraemics  (MF)  and  those  suffering  from 
chronic  pathology  (CP).  Humoral  responses  include  antibody  isotopes  and  antigenic 
epitopes, while cellular responses include a proliferative response with CD4+ T cells: 
 
  
  
 
Th1 cells (type 1) secrete IFN‐γ (interferon gamma) 
Th2 cells (type 2) secrete IL‐4, 5, 9 and 13 
T‐reg (regulatory) secrete IL‐10 and TGF‐β (transforming growth factor beta) 
 
The  immune  response  cabn  be  determined  by  the  secreted  cytokine  (Immunoglobulin) 
levels, as seen in the previous lecture (Leishmania Prophylaxis) 
  IgG1  IgG2  IgG3  IgG4  IgE 
Endemic Normal  13  2  4  25  12 
Microfilaraemic  32  3  6  761  9 
Elephantiasis  75  40  36  222  43 
Low levels of all Igs 
 
Large IgG4 amounts 
 
Large amounts of all 
Human filariasis: Levels of antigen specific isotypes of IgG (μm/ml) and of IgE (ng/ml) antibodies 
measured against adult B. malayi somatic extract 
From the above table it is clear that endemic normals tend to have higher lower antibody 
responses,  while  the  elephantiasis  patients  have  the  highest.  Those  that  asymptomatic 
have high IgG4 and lower IgE levels. Endemic normals and sufferers of elephantiasis have a 
lower IgG4:IgE ratio. IgG4 has been proposed as a blocking antibody, therefore the IgG4:IgE 
ratio may be important when considering immunity. 
 
High  IgG4  levels  may  reduce  some  pathology,  but  this  is  undesirable  if  the  effector 
mechanism is via some form of IgE‐mediated ADCC (Antibody‐Dependent Cell‐mediated 
Cytotoxicity) where the effector mechanism is not known. 
 
 
Hyporesponsiveness  is  specific  to  the  filarial 
antigen; it can be seen that in individuals with 
microfilariae  infection  (Mf+),  the 
responsiveness  of  the  T  cells  to  the  filarial 
antigen  is  greatly  reduced,  whereas  if  an 
irrelevant  antigen,  such  as  that  of 
streptococcus) is introduced into an individual 
with  microfilariae  infection,  there  is  no 
change in the T cell response. 
Here,  human  PBMCs  (peripheral  blood 
mononuclear  cells)  in  Mf+  individuals  have 
reduced IFN‐γ levels, but intact IL‐4 levels.  
 
This shows that the Th1 arm of the immune 
response  is  turned  off  in  the  case  of 
microfilaraemics,  while  the  Th2  response 
remains in tact. This is hyporesponsiveness of 
the  Th1  cells,  but  drug  treatment  with 
diethylcarbamazine  (DEC)  partially  restores 
the responsiveness of the human PMBCs, as 
shown in the following graphs: 
 
Summary of data so far:  
The largest population are asymptomatic microfilaraemics with reduced T cell responses 
but  with  high  IL‐4,  IL‐10,  TGF‐β  and    low  IFN‐γ  levels.  diethylcarbamazine  treatment 
restores both T‐cell responsiveness and IFN‐γ production. Endemic normals and those 
suffering from elephantiasis tend to have low worm numbers and greater IFN‐γ  levels. 
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series
Parasitology Lecture Series

More Related Content

What's hot (20)

Classification of medical parasites
Classification of medical parasitesClassification of medical parasites
Classification of medical parasites
 
Introduction to medical parasitology
Introduction to medical parasitologyIntroduction to medical parasitology
Introduction to medical parasitology
 
1. Entamoeba histolytica
1. Entamoeba histolytica1. Entamoeba histolytica
1. Entamoeba histolytica
 
Protozoan parasites
Protozoan parasitesProtozoan parasites
Protozoan parasites
 
Toxoplasma gondii
Toxoplasma gondiiToxoplasma gondii
Toxoplasma gondii
 
29. parasites
29. parasites29. parasites
29. parasites
 
Cestodes
CestodesCestodes
Cestodes
 
Trypanosoma
TrypanosomaTrypanosoma
Trypanosoma
 
Introcuction to Medical Parasitology
Introcuction to Medical ParasitologyIntrocuction to Medical Parasitology
Introcuction to Medical Parasitology
 
Taenia saginata
Taenia  saginataTaenia  saginata
Taenia saginata
 
ENTAMOEBA HISTOLYTICA
ENTAMOEBA HISTOLYTICAENTAMOEBA HISTOLYTICA
ENTAMOEBA HISTOLYTICA
 
GIARDIA LAMBLIA
GIARDIA LAMBLIAGIARDIA LAMBLIA
GIARDIA LAMBLIA
 
An introduction to Medical Parasitology
An introduction to Medical ParasitologyAn introduction to Medical Parasitology
An introduction to Medical Parasitology
 
Giardia
GiardiaGiardia
Giardia
 
Giardia lamblia
Giardia lamblia Giardia lamblia
Giardia lamblia
 
Parasitology
ParasitologyParasitology
Parasitology
 
Cestodes
CestodesCestodes
Cestodes
 
Nematode
NematodeNematode
Nematode
 
Medical Parasitology Laboratory
Medical Parasitology LaboratoryMedical Parasitology Laboratory
Medical Parasitology Laboratory
 
Balantidium coli
Balantidium coliBalantidium coli
Balantidium coli
 

Viewers also liked

Schistosomes
SchistosomesSchistosomes
Schistosomesraj kumar
 
Schistosomiasis
SchistosomiasisSchistosomiasis
Schistosomiasisamsunkenya
 
How to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your NicheHow to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your NicheLeslie Samuel
 

Viewers also liked (6)

Antibiotic Therapy
Antibiotic TherapyAntibiotic Therapy
Antibiotic Therapy
 
Schistosomes
SchistosomesSchistosomes
Schistosomes
 
Schistosomiasis
SchistosomiasisSchistosomiasis
Schistosomiasis
 
Schistosomiasis
SchistosomiasisSchistosomiasis
Schistosomiasis
 
MERS-CoV.pptx
MERS-CoV.pptxMERS-CoV.pptx
MERS-CoV.pptx
 
How to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your NicheHow to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your Niche
 

Similar to Parasitology Lecture Series

human Malaria
human Malariahuman Malaria
human Malariaaliaaaali
 
Life Cycle of Plasmodium.
Life Cycle of Plasmodium.Life Cycle of Plasmodium.
Life Cycle of Plasmodium.Manisha Sirohi
 
Describe the stages of malaria and the site of protozoal activity on.pdf
Describe the stages of malaria and the site of protozoal activity on.pdfDescribe the stages of malaria and the site of protozoal activity on.pdf
Describe the stages of malaria and the site of protozoal activity on.pdfmohdjakirfb
 
PPT ON MALARIA BY DAISY SAINI
PPT ON MALARIA BY DAISY SAINIPPT ON MALARIA BY DAISY SAINI
PPT ON MALARIA BY DAISY SAINIDaisy Saini
 
Phylum sporozoa or acomplexa
Phylum sporozoa or acomplexaPhylum sporozoa or acomplexa
Phylum sporozoa or acomplexaMerlyn Denesia
 
Presentation on The life cycle of plasmodium
Presentation on The life cycle of plasmodiumPresentation on The life cycle of plasmodium
Presentation on The life cycle of plasmodiummahnoorbaig11301
 
Medical Biology Lab. 11.pdf
Medical Biology Lab. 11.pdfMedical Biology Lab. 11.pdf
Medical Biology Lab. 11.pdfYassirBAlLuhaiby
 
Protozoa. Plasmodia, Toxoplasma Gondii. Diagnosis of Malaria & Toxoplasmosis....
Protozoa. Plasmodia, Toxoplasma Gondii. Diagnosis of Malaria & Toxoplasmosis....Protozoa. Plasmodia, Toxoplasma Gondii. Diagnosis of Malaria & Toxoplasmosis....
Protozoa. Plasmodia, Toxoplasma Gondii. Diagnosis of Malaria & Toxoplasmosis....Eneutron
 
plasmodium.pptx Manoj Mahato Clinical Micro
plasmodium.pptx Manoj Mahato Clinical Microplasmodium.pptx Manoj Mahato Clinical Micro
plasmodium.pptx Manoj Mahato Clinical MicroManoj Mahato
 
MALARIA – PATHOGENESIS AND COMPLICATIONS 1.pptx
MALARIA – PATHOGENESIS AND COMPLICATIONS 1.pptxMALARIA – PATHOGENESIS AND COMPLICATIONS 1.pptx
MALARIA – PATHOGENESIS AND COMPLICATIONS 1.pptxDrSamiyahSyeed
 
Plasmodium falciparum
Plasmodium falciparumPlasmodium falciparum
Plasmodium falciparumayooy1992
 
Plasmodium malarial parasite
Plasmodium   malarial parasitePlasmodium   malarial parasite
Plasmodium malarial parasiteARUL LAWRENCE
 

Similar to Parasitology Lecture Series (20)

human Malaria
human Malariahuman Malaria
human Malaria
 
Life Cycle of Plasmodium.
Life Cycle of Plasmodium.Life Cycle of Plasmodium.
Life Cycle of Plasmodium.
 
Describe the stages of malaria and the site of protozoal activity on.pdf
Describe the stages of malaria and the site of protozoal activity on.pdfDescribe the stages of malaria and the site of protozoal activity on.pdf
Describe the stages of malaria and the site of protozoal activity on.pdf
 
PPT ON MALARIA BY DAISY SAINI
PPT ON MALARIA BY DAISY SAINIPPT ON MALARIA BY DAISY SAINI
PPT ON MALARIA BY DAISY SAINI
 
Life cycle of malarial parasite
Life cycle of malarial parasiteLife cycle of malarial parasite
Life cycle of malarial parasite
 
Malaria
MalariaMalaria
Malaria
 
Project Malaria.pptx
Project Malaria.pptxProject Malaria.pptx
Project Malaria.pptx
 
Parasitology
ParasitologyParasitology
Parasitology
 
Malaria
MalariaMalaria
Malaria
 
Phylum sporozoa or acomplexa
Phylum sporozoa or acomplexaPhylum sporozoa or acomplexa
Phylum sporozoa or acomplexa
 
Plasmodium
PlasmodiumPlasmodium
Plasmodium
 
Presentation on The life cycle of plasmodium
Presentation on The life cycle of plasmodiumPresentation on The life cycle of plasmodium
Presentation on The life cycle of plasmodium
 
Medical Biology Lab. 11.pdf
Medical Biology Lab. 11.pdfMedical Biology Lab. 11.pdf
Medical Biology Lab. 11.pdf
 
Protozoa
ProtozoaProtozoa
Protozoa
 
Protozoa. Plasmodia, Toxoplasma Gondii. Diagnosis of Malaria & Toxoplasmosis....
Protozoa. Plasmodia, Toxoplasma Gondii. Diagnosis of Malaria & Toxoplasmosis....Protozoa. Plasmodia, Toxoplasma Gondii. Diagnosis of Malaria & Toxoplasmosis....
Protozoa. Plasmodia, Toxoplasma Gondii. Diagnosis of Malaria & Toxoplasmosis....
 
plasmodium.pptx Manoj Mahato Clinical Micro
plasmodium.pptx Manoj Mahato Clinical Microplasmodium.pptx Manoj Mahato Clinical Micro
plasmodium.pptx Manoj Mahato Clinical Micro
 
MALARIA – PATHOGENESIS AND COMPLICATIONS 1.pptx
MALARIA – PATHOGENESIS AND COMPLICATIONS 1.pptxMALARIA – PATHOGENESIS AND COMPLICATIONS 1.pptx
MALARIA – PATHOGENESIS AND COMPLICATIONS 1.pptx
 
Plasmodium falciparum
Plasmodium falciparumPlasmodium falciparum
Plasmodium falciparum
 
Plasmodium malarial parasite
Plasmodium   malarial parasitePlasmodium   malarial parasite
Plasmodium malarial parasite
 
E. histolytica
E. histolyticaE. histolytica
E. histolytica
 

More from meducationdotnet

More from meducationdotnet (20)

No Title
No TitleNo Title
No Title
 
Spondylarthropathy
SpondylarthropathySpondylarthropathy
Spondylarthropathy
 
Diagnosing Lung cancer
Diagnosing Lung cancerDiagnosing Lung cancer
Diagnosing Lung cancer
 
Eczema Herpeticum
Eczema HerpeticumEczema Herpeticum
Eczema Herpeticum
 
The Vagus Nerve
The Vagus NerveThe Vagus Nerve
The Vagus Nerve
 
Water and sanitation and their impact on health
Water and sanitation and their impact on healthWater and sanitation and their impact on health
Water and sanitation and their impact on health
 
The ethics of electives
The ethics of electivesThe ethics of electives
The ethics of electives
 
Intro to Global Health
Intro to Global HealthIntro to Global Health
Intro to Global Health
 
WTO and Health
WTO and HealthWTO and Health
WTO and Health
 
Globalisation and Health
Globalisation and HealthGlobalisation and Health
Globalisation and Health
 
Health Care Worker Migration
Health Care Worker MigrationHealth Care Worker Migration
Health Care Worker Migration
 
International Institutions
International InstitutionsInternational Institutions
International Institutions
 
Haemochromotosis brief overview
Haemochromotosis brief overviewHaemochromotosis brief overview
Haemochromotosis brief overview
 
Ascities overview
Ascities overviewAscities overview
Ascities overview
 
Overview of the Liver
Overview of the LiverOverview of the Liver
Overview of the Liver
 
Overview of Antidepressants
Overview of AntidepressantsOverview of Antidepressants
Overview of Antidepressants
 
Gout Presentation
Gout PresentationGout Presentation
Gout Presentation
 
Review of orthopaedic services: Prepared for the Auditor General for Scotland...
Review of orthopaedic services: Prepared for the Auditor General for Scotland...Review of orthopaedic services: Prepared for the Auditor General for Scotland...
Review of orthopaedic services: Prepared for the Auditor General for Scotland...
 
Sugammadex - a revolution in anaesthesia?
Sugammadex - a revolution in anaesthesia?Sugammadex - a revolution in anaesthesia?
Sugammadex - a revolution in anaesthesia?
 
Ophthamology Revision
Ophthamology RevisionOphthamology Revision
Ophthamology Revision
 

Parasitology Lecture Series

  • 1. Parasitology: Contents Click a link to continue Malaria Toxoplasmosis Leishmaniasis Complement Activation Pathway African Trypanosomiasis (Sleeping Sickness) South American Trypanosomiasis (Chagas Disease) Schistosomiasis Immunity to Filariasis Hookworms Human Intestinal Nematodes Are Worms Good for Us? Cestodes (Tapeworms) Parasite GenomesParasite Vaccines
  • 2. Parasitology Lecture 2  Malarial Parasites ‐ Plasmodium Invasion    Anopheles is a genus of mosquito. There are approximately 460 recognised species: while over 100 can transmit human malaria, only 30‐40 commonly transmit parasites of the genus Plasmodium that cause malaria which affects humans in endemic areas. This photo shows a female mosquito. Only females feed off humans, since the blood they collect is a nutrition‐rich medium that is ideal for them to develop their eggs in. Their gender is also easily classified as males have feathery antennae. There are over 1000 species of plasmodium that cause malaria in a variety of animals, but only four of these are transmitted in humans: P. falciparum ‐ Most widespread and responsible for most deaths Found in Tropical Africa, Asia, Latin America P. vivax ‐ Less virulent than P. falciparum and rarely fatal Found worldwide in tropic regions, P. ovale ‐ Rare compared to the above species, and substantially less dangerous than P. falciparum Found in Tropical West Africa P. malariae ‐ "Benign malaria", not nearly as dangerous as that produced by P. falciparum or P. vivax Found worldwide, but patchy distribution Malaria transmission requires an average temperature of >15°C, and the vector cannot survive above 3000m The life cycle of malaria essentially follows a sequence of 4 phases; the first of which is sexual and only occurs in anopheline mosquitoes (multiplication of the parasite does not occur here). This is followed by three asexual phases, which involve multiplication of the parasite in the human body. The spleen fights off infections on the blood, and so splenomegaly (an enlarged spleen) is a primary symptom of malaria in children. Artwork has been discovered from centuries back depicting this, such as that of Hippocrates palpating a child’s abdomen. A cartoon from WWII depicting the symptoms of malaria is shown below. In modern warfare, statistics show that more soldiers die from malaria than enemy fire in areas where malaria is endemic.
  • 3. Stages of infection of red blood cells: Individual parasites enter the RBCs, and can be seen on microscope images as little black dots “Signet ring” phase (seen due to a large food vacuole and the peripherally situated nucleus) Multiplication of the parasites inside the RBCs Percentage parasitaemia refers to the percentage of red blood cells infected with parasites; from the ratio of infected: non‐infected RBCs, a patient’s prognosis can be determined The Life Cycle of Plasmodium Sporozoites are injected into the bloodstream of a human host as a female mosquito feeds (A), they remain in the bloodstream for 20 to 30 minutes, then head to hepatocytes in the liver (B), where they form merozoites (daughter cells of protozoan parasites). After 30 to 40 minutes, the merozoites burst from the hepatocytes, infect red blood cells (C) and rapidly reproduce asexually. Every 2 to 3 days, they burst from the red blood cell hosts and go on to infect more RBCs (D). Antimalarial drugs can reduce these infections but there is as yet no complete cure for malaria.   Some parasites go on to form male and female gametocytes (E), which can be picked up by the next mosquito that feeds on the human host (F). Inside the gut of the mosquito the gametes fuse to form a zygote (G), that penetrates, and forms a cyst in, the gut wall. The zygote eventually ruptures and releases many sporozoites that head for the salivary glands of the mosquito (H), where they await injection into another human host. The sexual and first asexual phases of the plasmodium life cycle only occur in anopheline mosquitoes, the second asexual phase is in the liver, and the third in the blood, which is repeated many times. Every asexual phase begins with feeding and growth, and every phase ends when new invasive parasites appear.
  • 4. The Sexual Phase of Plasmodium (Inside Anopheline mosquitoes)    Ingested gametocytes swell and discharge osmophillic bodies (that can tolerate high sugar concentrations) into the red blood cells. This disrupts the RBC membrane, releasing gametocytes. During development of the male gametocyte. During development of the male gametocyte, the DNA is replicated three times, so the nucleus of the activated gamete has 8 complete sets of DNA. Eight kinetosomes are then formed in a microtubule organising centre. Each kinetosome is the base and growing point for a flagellum (axoneme). Eight flagella are formed in total, and the gamete explodes releasing flagellum. This process is called exflagellation and occurs within a few minutes after ingestion of the infected blood by the mosquito. Each of the eight flagellum is a spermatozoa cell (sperm)! They actively swim to the female gametocyte, fertilisation leads to the formation of a zygote. In the next 5 to 10 hours, this develops into an ookinete (the first invasive stage of the parasite’s life cycle), in which major changes occur and apical complexes form, which allow the parasite to penetrate cells. The ookinete is capable of moving spontaneously, it glides through the blood meal and penetrates the stomach of mosquitos to form a thick‐walled structure known as an oocyst under the mosquito's outer gut lining, where the next phase begins. mosquito midgut Many oocysts on the inner mosquito midgut  A single oocyst 
  • 5. Ookinete  Sporozoite  The First Asexual Phase of Plasmodium (Inside Anopheline mosquitoes)    In this stage, the ookinete becomes a sporozoite. First it develops from an ookinete to an oocyst The phase lasts for 8 to 35 days, and the ookinete grows rapidly to 80μm in diameter. The oocyst projects into the haemocoel of the insect and feeds on the haemoglobin of the insect’s blood meal, in this time, DNA replication occurs A haemocoel is a cavity or series of spaces between the organs of organisms with open circulatory systems. A combination of blood, lymph, and interstitial fluid called haemolymph circulates through the haemocoel. Each oocyst contains at least 1,000 sporozoites that burst out and migrate to the salivary glands of the mosquito Merozoite                  The apical complexes  (marked by blue circles) are  located in the same place in  these structurally different  morphologies of the  plasmodium parasite 
  • 6. apical ring microtubules Second Asexual Phase of Plasmodium (Inside human hosts)                                    Sporozoites are injected into the human host’s bloodstream (1) by a feeding mosquito, within 30 to 40 minutes they leave the blood and enter Kupffer cells (2); macrophage‐like cells that line the liver capillaries. They then leave these cells and enter the nutrient‐rich hepatocytes (3), where rapid growth occurs (40μm in 48 hours) and lose their morphology, rounding up to become trophozoites called merozoites (4). (Trophozoites are protozoan parasites in the activated, feeding stage in their life cycle). After this growth period, one sporozoite divides into 10,000 to 30,000 merozoites, this process of division is called schizogony (or merogony), and the many dividing bodies are referred to as shizonts. NB: Because the sporozoite enters the hepatocytes, forming its own vacuole (3 & 4), it does not enter the cytoplasm of the cell, and therefore an infected person shows no symptoms in this stage of infection, however, in P. vivax, some trophozoites become a latent stage called hypnozoites, that cause relapses years later. collar rhoptry 3‐layered pellicle Don’t need to know these names, just understand the basic structure of the apical complex
  • 7. Third Asexual Phase of Plasmodium (Inside human hosts)    The merozoites burst out of the hepatocytes and invade red blood cells. Once inside they ingest the haemoglobin and first become erythrocytic schizonts, which divide to form between 16 and 18 merozoites. This process takes 2 to 3 days overall and suffers experience malaise as their red blood cells synchronously burst, releasing the merozoites and the substances contained inside the RBC. After several blood cycles (about 4 days), some trophozoites differentiate into gametocytes, which remain dormant in the RBCs until a person is bitten by a mosquito. In order to invade the red blood cells, the merozoites must recognise and bind to RBC receptors, they then deform the erythrocyte in order to enter the cell. NB: Erythrocytes are quite structurally tough due to their sturdy cytoskeleton structure! The major surface proteins on a human erythrocyte (RBC) are band 3 anion transporters, and glycophorins (a family of sialic acid‐rich glycoproteins A, B, C and D), Glycophorins A & C, and band 3 anion transporters span the RBC membrane. The invasion by a RBC depends on the glycophorins, especially the N‐terminal O‐linked tetrasaccharide. Other species require different molecules. P. vivax requires duffy blood group antigens in order to invade erythrocytes, and in tropical areas where this parasite is endemic, there is a natural selection pressure for individuals without these specific antigens. The merozoite initially attaches anywhere on the erythrocyte surface (1) by the fibrils of its MZ surface coat. A tight junction is formed, followed by subsequent invagination and formation of a parasitophorous vacuole (2). The thick MZ surface coat is sloughed off as the merozoite enters the RBC (3).  Entry follows the alignment of its apical end, and as in the second stage, the merozoite remains in its own vacuole rather than the erythrocyte itself. The formation of a parasitophorous vacuole involves a dramatic re‐organisation of the RBC cytoskeleton, which occurs as organelles in the merozoite called rhoptries and micronemes secrete invasion molecules, such as RESA (ring erythrocyte surface antigen molecule) that enhance the fluidity of the RBC membrane. The RBC cytoskeleton is very tough, because of its highly ordered network which is very difficult to disrupt. The most prominent component of this cytoskeleton is a fibrous polypeptide called spectrin. The spectrin forms tetramers, that are organized into a meshwork fixed to the membrane by the protein ankyrin. Ankyrin is itself connected to a transmembrane protein called 'band 3' or anion exchanger protein. Spectrin is also linked to a transmembrane protein called glycophorin  C by the protein known as 'band  4.1.' Thus the meshwork is anchored to the membrane at multiple sites. Band 4.1 stabilizes the association of spectrin with actin, as does the protein adducing. 1                                                       2                                             3                                          4 
  • 8. After entry of the RBC, the trophozoites feed by producing enzymes which degrade haemoglobin, the most dramatic changes involve the shape and deformability of the RBC, they are identified by their irregular shape and the presence of membrane knobs. After parasite invasion, the RBCs become sticky and attach to blood vessel walls, decreasing the velocity of blood flow. This is an effective strategy employed by the parasite that ensures it is kept away from the spleen for as long as possible. (Remember, it is the spleen that destroys infected blood cells (this is why splenomegaly is a primary sign of malaria; it is caused by dilation of the splenic sinuses due to an increased lysis of red and white blood cells. The image below shows a false colour scanning electron micrograph of an infected red blood cell, merozoites have burst from the cell and have started to invade the neighbouring cell.
  • 9. The knobs found on the surfaces of erythrocytes are parasite derived and parasite induced. They are important in the adhesion of parasitized RBCs to deep seated capillary endothelium, which slows blood flow and allows the parasites to avoid destruction in the spleen for as long as possible. This can cause cerebral malaria, especially with P. falciparum. Cerebral malaria can be fatal, a person can slip into coma in very short periods of time due to the short multiplication period of parasites after the sequestration of red blood cells. The image below is of an affected brain; the red spots are sites of petechial haemorrhage. A petechia is a small (1‐2mm) red or purple spot on the body, caused by a minor haemorrhage due to burst capillary vessels
  • 10. A seropositivity incidence for different countries can be established by analysing sera (blood plasma) for antibodies : Parasitology Lecture 10 Toxoplasma gondii Toxoplasma gondii is a member of the apicomplexan phylum, which consists of members who have an apical complex that is of great importance for penetrating host cells. This phylum includes the Plasmodium parasites that cause malaria. T. gondii is an obligate intracellular protozoan parasite that infects almost any warm-blooded mammal or bird and is the most successful on the planet; affecting 12-80% of the human population. Since Toxoplasma is easier to manipulate than Plasmodium, lots of research into this parasite has helped to understand malaria. Human cells infected with T. gondii. Parasites (yellow- green) rupture out of a dying host cell (blue); in the background is an intact host cell containing a large parasite-filled vacuole Ctenodactylus gundi In 1908 T. gondii was discovered in the gundi (above), whilst looking for the Leishmania parasite in Africa. (In retrospect the correct name for the parasite should have been Toxoplasma gundii since the scientists that discovered it incorrectly identified the host’s name.) A series of suggestions were then made about the parasite’s life cycle: 1939 - identified as a congenital infection 1960 - suggested it was transmitted through ingestion of uncooked meat (carnivorism) 1965 - found to appear in populations of carnivorism (such as in Paris*) 1970 - the parasite was linked to cat faeces and the life cycle was finally understood *In a survey in Paris (where raw meat is routinely eaten), Desmonts et al. (1965) found over 80% of the adult population sampled had antibodies to T. gondii.
  • 11. William McPhee Hutchison (1924-1998) was born in Glasgow and studied Zoology at Glasgow University. While working at the University of Strathclyde in Glasgow, in the 1960’s, he demonstrated that Toxoplasma gondii was a parasite of cats which shed oocysts in faeces. Hutchison’s work was rewarded with the Robert Koch Medal and Prize in 1970. T. gondii life cycle The definitive host of T. gondii is the cat. Felines ingest either oocysts (containing sporozoites, or tissues that are infected with bradyzoite cysts. The parasites then burst out of the cysts and invade the intestinal epithelium; both forms can differentiate into male and female gametes and after fertilisation they become oocysts containing sporozoites. Any warm-blooded animal can ingest these oocysts, which releases sporozoites into the intestine that invade the tissue. They differentiate into the tachyzoite stage and disseminate throughout the body, invading cells and becoming bradyzoite cysts. These unsporulated oocysts are passed in the cat’s faeces and, outside the host, turn into sporulated oocysts (containing sporozoites), which feed on soil and water . If another warm-blooded animal eats infected tissue (through uncooked mead or contaminated water), the bradyzoites are released into the intestine, differentiate back into tachyzoites and then disseminate round the body where they eventually become bradyzoite cysts again. If a bradyzoite cyst is ingested by a cat, bradyzoites invade the intestinal epithelium and differentiate into male and female gametes and then become oocysts again. Tachyzoite transmission through the placenta can infect a foetus and cause developmental problems.
  • 12. Parasite movement Parasite movement does not involve projection of pseudopod-like extensions, they rely on an intricate linear motor system that is sandwiched between the parasite’s plasma membrane and a pair of membranes known as the inner membrane complex. Actin and myosin, together with special ‘gliding associated proteins” are involved’. The actin is linked to the trans-membrane adhesive proteins (see next page). The inner membrane complex rides against the plasma membrane. This movement takes place at the ‘moving junction’ of the host cell as the parasite enters, and helps it move into the cell after pre-digestion of the membrane with (step 5, bottom diagram on next page) For more information see the attached article (not recommended by lecturer): Formin’ an invasion machine: actin polymerization in invading apicomplexans (Holder, 2008) Sporozoites (“seed animals”) infect new hosts. The oocysts form in the feline intestinal epithelium, unsporulated oocysts are shed in faeces for 3-18 days and sporulate for a period of three weeks outside the cat’s body. They contaminate water, soil, fruits and vegetables and are very stable, especially in warm and humid environments. Although the cats only shed these organisms for a short period of time, re-infection can raise the number of organisms present at a given time. Tachyzoites (“fast animals”) are in an asexual stage of rapid growth. They inhabit intermediate hosts and accumulate inside almost any nucleated cell. The parasites are secreted into the bloodstream, causing an acute disease known as parasitaemia. This is limited by the immune response, which induces the change of the tachyzoites into cyst- forming bradyzoites. bradyzoites (“slow animals”) are sessile (slow-growing) and inhabit intermediate hosts. In chronic toxoplasmosis, the bradyzoite presents as irregular crescent-shaped clusters (pseudocysts) in infected neural and muscular tissues (brain and skeletal and cardiac muscle). These cysts persist to cause chronic disease and if an individual becomes immunocompromised , they can cause acute encephalitis.
  • 13. Roprtries and micronemes are specialised secretory organelles that contain numerous enzymes released during the penetration process
  • 14. Clinical manifestations of Toxoplasma infection are usually asymptomatic (and thus undiagnosed). They may occur in outbreaks, as with Vancouver, 1995, or in isolated cases. The incubation period is usually about 4 to 21 days and infection can result in focal lymphoadenopathy, where the lymph glands swell at the infection site, and flu-like symptoms, such as fever, sore throats and headaches. There are also claims of T. gondii inducing an altered behaviour. The parasite was introduced to test rats, which subsequently became mildly attracted to cat urine, the parasite is believed to be more likely to invade the amygdala of the brain, which is involved in a variety of fear- related behaviours. Remember, that if a rat is attracted to cat urine, there is a greater possibility that the animal will be consumed, allowing the parasite to continue its life cycle inside a feline host. In immuno-compromised patients, reactivation of a latent disease can cause fatal pneumonia, ocular problems, and in 25% of HIV patients it causes encephalitis, leading to coma and death. Diagnosis of encephalitis in HIV patients in France alone was 800 in 1992, and 200 in 2002, due to anti-virals that slow the destruction of the immune system. Vertical transmission to infants can also occur and can lead to problems such as diminished vision or blindness in 14% of infants, hydrocephalus and intracranial calcifications, leading Prevalence of T. gondii in livestock 1 pig feeds 300 to 400 people, and remember that more than one pig may be used in any one product! Health risks for T. gondii DALY = YLL + YLD (DALY: disability adjusted life year, YLL: years lost to mortality, YLD: number of years lived with a disability). In comparison to common infections, T. gondii is very successful and it is therefore a significant health issue
  • 15. Conditions occurring after several months or years include visual impairment, mental and cognitive abnormalities and seizures or learning disabilities, but the early diagnosis and treatment of these conditions reduces the risk of complications. Immune response to T. gondii It is probable that a rise in the immune response to Toxoplasma causes them to differentiate into the bradyzoite stages; this is a Th1 response with IFN-γ. The immune response keeps the infection in check and dormant, but Toxoplasma also secretes a molecule that enhances the Th1 response. It does this by enhancing the production of the cytokine IL-12, which promotes IFN-γ production by T cells. The molecule cyclophilin 18 (made by the parasite) binds to the chemokine receptor ‘CCR5’ on antigen-presenting dendritic cells to induce the formation of IL-12, which can then act on T cells, as mentioned above, to promote IFN-γ formation. It does this to prevent intermediate host mortality and allow them to distribute infection. The incidence of congenital Toxoplasmosis from different countries. The rate is especially high in France Clinical manifestations are usually asymptomatic at birth (70 to 90% of cases), but can appear as rash, lymphoadenopathy, hepatosplenomegaly, hyperbilirubinaemia (jaundice), anaemia and thrombocytopaenia (few platelets). In <10% of cases the classic triad of chorioretinitis (inflammation of the choroid), intracranial calcifications and hydrocephalus (an accumulation of cerebrospinal fluid in the ventricles, or cavities, of the brain) can result. to CNS abnormalities in 11.4% of infants, miscarriage or still births in 5% of cases (this is also common in livestock). It can also cause premature birth and intra-uterine growth retardation. The inverse relationship between the incidence of foetal infection and the severity of the foetal damage; infection is most severe if contracted in the first trimester of pregnancy than if it were contracted in the third trimester (Remington et al., 1995) Hydrocephalus as a result of congenital Toxoplasmosis
  • 16. Toxoplasma is believed to affect the behaviour of humans by slowing reaction times and making one more likely to take risks, and people with Toxoplasma infections are twice as likely to be involved in a car accident, although scientists are unsure which of these factors, contributes to this result. In rats it has been observed that the most basic of instincts; a fear of cats, can be overridden, the rat becomes attracted to cat urine, meaning it is more likely to be eaten and continue the parasite’s life cycle. For more information, watch the Horizon video at: http://193.60.156.105/wmv/lifesciences/bodysnatchers/body2.wmv Does Toxoplasma influence sex ratios? Woman that are seropositive for Toxoplasia are seen to have more sons than uninfected women and mice infected with Toxoplasma produce more males in their litters during the early stages of the disease. This could be because males are known to ‘roam’ more than females; they leave their habitats more often and are more likely to act more spontaneously and adventurously and take bigger risks. Treatment Treatment of Toxoplasma includes sulphonamides, pyrimethamine and other anti- malarials. Spiramycin is used to reduce the risk of congenital infection transmission and a live vaccine of the cystless strain of T. gondii is available for immunisation of sheep. There is currently no human vaccine and no drugs can currently target encysted bradyzoites. T. gondii has molecules on its surface such as profilin, that acts as ligands for the toll-like receptors (TLRs); single membrane-spanning proteins that activate the immune cell response on recognition of these molecules. TLR ligands are structurally conserved in pathogens, and distinguishable from host molecules. Activation of this receptor leads to activation of MYD88; a universal adaptor protein, that drives the production of protein complexes that regulate cell activities and, in turn, produce IL-12.
  • 17. Parasitology Lecture 3  Leishmania    Leishmaniasis is a disease caused by protozoan parasites of the genus Leishmania.  and is transmitted by certain species of sandfly; by Phlebotomous in the “old world” (Asia and Europe), and by Lutzomyia in the “new world” (South America). Many of these species infect humans, but they are primarily classified as a zoonosis (an infectious disease that is transmitted from vertebrate animals to humans). Visceral Leishmaniasis is a severe form of the disease in which the parasites have migrated to the vital organs. Leishmania is a very complex group of infectious agents, containing the following species:           L. tropica ‐ L. tropica  L. major ‐ L. major  L. aethiopica ‐ L. aethiopica  L. mexicana ‐ L. mexicana, L. amazonensis, L. garnhami, L. pifanoi, L. venezuelensis  L. braziliensis ‐ L. braziliensis, L. guyanensis, L. panamensis, L. peruviana  L. donovani ‐ L. donovani, L. infantum, L. chagasi  The incidence rate of infection is about 400,000 per year, there are about 12 million cases in the world, and it can be fatal, leading to over 20,000 deaths a year in India alone. Leishmania is an obligate intracellular parasite that live in cells of the macrophage lineage in the immune system. Although the parasitic forms infecting macrophages are morphologically identical, clinical manifestations are very diverse depending on which types of macrophages are affected; they can all act as hosts for different Leishmania Top right: Leishmania parasite entering a macrophage cell 
  • 18. An infected female sandfly introduces flagellated promastigotes into the host skin, where they are taken up by macrophages. Here they lose their flagella and become amastigotes, they then multiply and burst out of the cell to infect more macrophages. If the infected macrophages are ingested by a sandfly, they develop into infectious metacyclic promastigotes that are introduced into another mammal as the sandfly next feeds. the morphological differences between  promastigotes (flagellated) and amastigotes  Cultured macrophages  show parasite infection  Leishmania skin lesion  Leishmania is a disfiguring disease that can lead to destruction of body parts, such as the ear or nose (see right), due to cartilage destruction, and secondary bacterial infections can often result. Blemishes that appear on the skin are caused by uncontrolled lesion growth due to parasitic infection.
  • 19. Leishmania is primarily a zoonosis; a disease that is transmitted between an animal and a human. Transmission of a disease from humans to animals is typically referred to as “reverse zoonosis”. The Leishmania parasite exhibits its effects in a wide variety of hosts, including wild rodents, sloths and dogs. There is an enormous reservoir of infection for this disease.                         What is the aim of a parasite on entering a mammalian host and how does the host respond?    The parasite aims to enter the macrophage cells of the reticuloendothelial system, the host wants to protect itself and as the first line of defence, employs the innate (or non specific) immune system, which consists of cells which respond to pathogens in a generic way without conveying long‐lasting immunity to the host. Paradoxically the main type of cells involved in the host defence are the macrophages themselves. The infective stage of the parasite is a flagellated promastigotes (in its metacyclic form), that is about 20‐25μm long including the flagellum. When a parasite interacts with a host, the parasite/ host surface interface is very important. The Leishmania promastigotes have three types of molecule of their surface; Lipophosphoglycan (LPG), glycoprotein GP63 and glycoinositol phospholipids (GIPLs) Lipophosphoglycan is composed of an inositol lipid anchor and many repeating saccharide units. LPG is a component of the glycocalyx; a network of polysaccharides that project from cellular surfaces and allow attachment to various surfaces, as well as providing protection for the cell. Glycosylphosphatidylinositol (GPL) anchored proteins such as GP63 (a protease of molecular weight 63 KDa) increase in levels during transformation of non‐infective promastigote forms to infective metacyclic forms. LPG   5 x 106 molecules per  cell  GIPL  1 x 107 molecules  per cell  GP63  0.5 x 106 molecules  per cell 
  • 20. The Complement System    The complement system is a biochemical cascade that is activated when foreign bodies enter the cells and helps clear pathogens from an organism. Inactive precursors (or zymogens) from the liver, circulate in the blood until activated, and on activation they are cleaved into two or more fragments. The major fragment has two biologically active sites; one to bind the target and the other to act as the enzymatic site. The complement functions to aid the process of phagocytosis through ‘opsonisation’ by sticking to the foreign body and allowing it to be targeted, it also promotes cell lysis through the insertion of channels in the foreign body that lead to cell lysis due to a change in osmotic gradient. Complement also aid chemotaxis and inflammation due to the existence of smaller proteins   Complement Activation & Membrane Attack Complex (MAC) Formation   NB: This is in much greater depth than is needed, use as reference only!     Antibodies bind to antigens on the bacterium surface. A C1 complex composed of 1 molecule of C1q and 2 molecules of both C1r and C1s bind to the aggregated antibody molecules and cross‐ phosphorylation of the C1r and C1s complexes take place (1). They then cleave the complement protein C4, into a large C4b fragment, which binds to the bacterial membrane, and a small C4a fragment, which acts as an anaphylatoxin. Anaphylatoxins trigger degranulation of endothelial cells, mast cells and phagocytes, producing a local immune response The C4b complex is activated by the enzyme C2b, and after the attachment of C3b, this C4b/C2b/C3b complex leads to the production of many more C3b proteins, which bind to the bacterial membrane and induce its phagocytosis (2). C5 then attaches to the C4b/C2b/C3b complex, and is cleaved to form C5a; a potent anaphylatoxin and important chemoattractant (a substance that promotes chemotaxis). C5b then dissociates from the C4b/C2b/C3b complex, and acts to initiate the formation of the membrane attack complex. C5b associates with C6 and C7, and C7 allows this complex to insert itself into the bacterial membrane. C8 then binds to this complex and inserts itself into the cell membrane. This newly formed C5b/C6/C7/C8 complex then catalyses the addition of many C9 molecules, which arrange themselves in a cylindrical manner across the membrane surface, creating a pore (3) that disrupts the ionic and osmotic balance across the membrane, thus killing the bacterial cell. Infiltration of Macrophages by Leishmania    Leishmania binds with GP63 and LPG molecules to CR1 (complement receptor 1), CR3 and mannose 1                                               2                                               3 
  • 21. fructose receptors on macrophage (Mφ) surfaces. These attachments to the CR1 and CR3 molecules occur either directly, or indirectly via complement components. The parasite is not destroyed as it is engulfed because the LPG molecules increase in thickness when progressing from the non‐infective to infective stages. This process of elongation increases the thickness of the glycocalyx from 7 nm to 17 nm, and also stops the MAC complex from forming, GP63 is also important, because it proteolytically cleaves the complement component C3b into its inactive form, and so prevents lysis. LPG and GP63 also interact with complement receptor sites on the macrophage that do not activate the macrophage cell. Finally when a macrophage engulfs a foreign body, they usually enter an endosomal compartment that fuses with lysozymes and destroys the pathogen. It survives this by creating a parasitophorous vacuole, LPG molecules with a pH of between 4.2 and 5.2 inhibits lysosomal enzymes (this technique is employed in many parasites that establish themselves in living host cells. LPG also inhibits Protein Kinase C, that is involved in the generation of toxic macrophage metabolites, and GP63 inactivates a host’s proteases, especially around a pH of 4.0. Amastigotes (cells with no flagella) also make scavenger enzymes such as superoxide dismutase and glutathione peroxidase
  • 22. Parasitology Lecture 8  Leishmania Prophylaxis  Before reading this lecture understand lecture 3 ‘Leishmania’, most importantly, remember it is an obligate intracellular parasite that lives in macrophage cells. Luckily for researchers, Leishmania is a zoonosis and mice are natural hosts of the parasite.; we can therefore use mice as hosts for research purposes. Like in humans, there is a spectrum of disease in mice, some are resistant, others susceptible, and others are affected in different ways. This resistance or susceptibility is inherited. The infection is controlled in two ways: initially by macrophages in the reticuloendothelial system, followed by the induction of adaptive immunity, allowing specific pathogens to be targeted and antibodies produced against them. Research suggests that the basis for the difference in the resistance or susceptibility of mice relies on a single major genetic locus, and to investigate, a congenic mouse strain was produced by conventional genetic breeding. A congenic mouse strain is when one mouse is genetically identical to another, only differing in the single gene under investigation. Concept In order to create a congenic mouse strain, cross a resistant strain with a susceptible one and backcross the F1 progeny that are still susceptible with the resistant strain. This process is repeated, and after several backcrosses the resulting mice all have the resistant strain’s genes, except the one determining the mouse’s susceptibility (so the mouse remains susceptible). The response to a Leishmania infection of these susceptible mice is then compared to that of the original resistant strain Analogy Think of how to make a dry martini, starting with 50% gin and 50% vermouth. The olive represents the gene you want to conserve (the one that makes the mouse susceptible to Leishmania). To make a martini more dry you spill out half of the drink and add more gin, but keep the olive, if you do this for long enough the drink will eventually contain all gin, but still contains the original olive. Eventually, the single gene controlling Leishmania susceptibility was identified and named Lsh. Scientists working round the world also identified single genes that confer resistance to a specific infective agent; mycobacteria causes tuberculosis and is controlled by the Bcg locus, and salmonella is controlled by the Ity locus.
  • 23. The genes were eventually cloned and called Nramp (natural resistance associated macrophage protein). Mouse strains which varied in their initial response to Leishmania show mutations in this gene and database searches showed that the gene encoded a divalent ion transporter molecule, although its function is not entirely understood. Nitric Oxide Pathway    Nitric Oxide (NO) is a short‐lived but very toxic molecule that is produced by macrophages. When a Leishmania parasite enters a macrophage it creates a parasitophorous vacuole in order to evade the immune system, but NO can readily diffuse across lipid membranes; meaning it can easily get into the parasitophorous vacuole and destroy the parasite. Oxygen Citrulline L‐Arginine Nitric Oxide NO Synthase Tetrahydrobiopterin NADPH Tetrahydrobiopterin and NADPH are two essential cofactors for the above process. NO is also spontaneously oxidised to form NO2‐ and NO3‐ ions, but NO2‐ can be reduced back to NO in low pH conditions. Note that the parasitophorous vacuole has a low pH... Nramp‐1 (Natural resistance associated macrophage protein 1 )    This is an integral membrane protein expressed exclusively in cells of the immune system in mice, which is recruited to the membrane of a phagosome (vacuole formed around a particle) upon phagocytosis. It has a hydrophobic core of ten transmembrane domains and scientists believe it could be involved in transporting NO2‐ ions into the parasitophorous vacuole. In theory the concentrated NO2‐ ions would then be reconverted back to NO inside the vacuole, due to its low pH, and would kill the parasite. Schematic representation of the structure of the Nramp protein and its orientation in the cell membrane 
  • 24. However, more recent work has modified the above view. It has been suggested that Nramp‐1 is a divalent cation transporter and , for example, extrudes Mn2+ from the parasite. Other cations such as Fe2+ and Zn2+ may be involved and the process depends on the pH ‐ the more acidic the solution, the faster the transport of these ions. Manganese (Mn2+) ions are essential co‐factors for the production of an enzyme called superoxide dismutase (SOD). With less Mn2+, the parasites cannot produce as much SOD and are therefore more susceptible to the superoxide produced by macrophages. Superoxide (O2‐)  Superoxide is a biologically toxic molecule that is deployed by the immune system to kill invading microorganisms. In phagocytes, superoxide is produced in large quantities by the enzyme NADPH oxidase for use in oxygen‐dependent killing mechanisms of invading pathogens. Because superoxide is toxic, nearly all organisms living in the presence of oxygen contain isoforms of the enzyme superoxide dismutase. SOD detoxifies reactive superoxide radicals produced by activated macrophages and is therefore a major determinant of intracellular survival of Leishmania. Adaptive Immunity When the innate immune system fails, the adaptive immune system kicks in (T and B lymphocytes), enabling mouse strains that are initially susceptible to infection to be able to control it. We need to understand why this happens: Macrophages are activated by cytokines such as IFN‐γ (interferon gamma), which are produced by CD4+ T cells. To see if these CD4+ T cells are important, an adaptive transfer  of  immunity is performed, where lymphocytes from one mouse species are transformed to another. These adaptive transfer studies must be performed in inbred strains of mice, this ensures that the donor and recipient are genetically identical so the transplanted tissue is not rejected by the recipient. A mouse was infected with Leishmania, its CD4+ T cells were then removed and transplanted into another mouse of the inbred strain. The ability to control infection of mice that did get the CD4+ T cells , and those that did not were compared.: The inbred mouse strain C3H healed faster after receiving the CD4+ T cells. Another inbred mouse strain BALB/c suffered a worse manifestation of the disease. Therefore it was determined that CD4+ T cells have two different effects in  different strains of mice!
  • 25. Leishmania and T cell cytokines  Different types of Th (helper T) cells secrete different cytokines which have different effects  on macrophages, Th1 cells increase the macrophage’s ability to kill (a good response for this  situation), while Th2 cells increase the growth  and proliferation of macrophages (the wrong  response for this situation)    Th1 cells secrete Interleukin 2 (IL‐2) and Interferon gamma (IFN‐γ)  Th2 cells secrete Interleukins 4,5,6,9 and 10  Both cells secrete IL‐3 and Granulocyte macrophage colony‐stimulating factor (GM‐CSF)    ‘Good’ CD4+ cells secrete high levels of IFN‐γ, and low levels of IL‐4  ‘Bad’ CD4+ cells secrete high levels of IL‐4, IL‐3 and GM‐CSF, and low levels of IFN‐γ     To validate the above theory, the antigen is introduced into a mouse, after a few days, the  supernatant of cell cultures is collected and a cytokine assay is carried out...    In the C3H mouse strains (naturally resistant to Leishmania infection), the IFN‐γ produced  was neutralised, and the mice experienced an exacerbated form of the disease (a).    In  the  BALB/c  mouse  strains  (naturally  susceptible  to  Leishmania  infection),  the  IL‐4  produced was neutralised, and the mice appeared to be resistant (b).  The converse experiments were then carried out; at the start of infection  susceptible mice  were given IFN‐γ, and were cured, while resistant mice were given IL‐4, and their symptoms  were exacerbated.    After it was proved in mice, the genetic basis for this varied disease manifestation was  tested for in human populations using a skin test for a delayed type hypersensitivity (DTH)  reaction,  in  which  Leishmania  antigen  is  injected  into  a  patient  to  trigger  the  T‐cell  response. Patients immune to the disease show a DTH reaction due to increased T1 blood  lymphocyte proliferation, while individuals susceptible to the disease show no response.    An effective immunisation technique would be to scratch off a part of a lesion from an  infected individual and scratch it into one’s leg to trigger the T1 proliferation, but this would  only work if they would produce the correct immune response!  Weeks following infection Size of lesion
  • 26. Parasitology Lecture 6  African Trypanosomiasis (Sleeping Sickness)    The  trypanosome  parasite  is  a  single‐celled  kinetoplasmic,  extracellular  protozoan;  it  contains  kinetoplasts  (disk‐shaped  masses  of  circular  DNAs  inside  a  large  mitochondrion  that  contains  many  copies  of  the  mitochondrial  genome),  lives  in  the  host’s bloodstream and can be a zoonosis, many of  these  characteristics  are  rather  like  that  of  Leishmania. The parasites are transmitted to humans  through  the  bite  of  a  tsetse  fly  of  the  genus  Glossinna and never exist outside a host.    Currently over 66 million people are exposed to the disease in 36 countries, there are  300,000 new cases a year, many with advanced stages of the disease and in the 1960s, the  prevalence o sleeping sickness had been reduced to less than 100 cases per 100,000 people  per annum, but following the independence of many countries and outbreaks of civil war,  the  changes  in  health  policies  have  led  to  a  significant  rise  in  the  number  of  cases  of  sleeping sickness, and this is worryingly on the increase.    There are two forms of the disease that are caused by two different species:      Trypanosoma gambiense ‐ named after the Gambia in West Africa, causes a chronic  infection lasting years, affects countries of Western and Central Africa.      Trypanosoma  brucei  rhodesiense  ‐  named  after  Rhodesia,  now  called  Zimbabwe,  causes acute illness lasting several weeks, affects Eastern and Southern Africa.  Gambia  Zimbabwe  Due to the large number of livestock affected, cattle farming in these areas is poor, which also affects the economy
  • 27. The initial clinical signs of trypanosomiasis are fever, weakness,  headache,  swollen  lymph  nodes  and  joint  pains,  followed  by  anaemia , heart problems and oedema. In advanced stages the  parasite invades the CNS. People can no longer concentrate and  exhibit mood changes, lethargy and increasing torpor (temporary  hibernation ‐ a state of decreased physiological activity, usually  characterized  by  a  reduced  body  temperature  and  rate  of  metabolism). Eventually this disease leads to coma and death.    Trypanosoma  predominantly  lives  as  a  free‐living  organism  in  the  bloodstream,  until  it  enters the CNS, where it causes the most serious symptoms. If untreated, the infection is  fatal and there is currently only one drug, discovered in 1932, called melarsopral, that is an  arsenic‐based, and therefore very toxic, drug with serious side effects. Of the small number  of  people  who  get  this  treatment,  approximately  1,000  die  every  year  from  arsenic  encephalopathy, which may manifest as seizures, mental status changes, and coma.    Like  most  protozoa,  Trypanosoma  exists  in  a   number  of  different  forms;  the  main  forms  being  slender  and  stumpy,  although  a  variety  are  illustrated by the diagram to the left. They are found  in the blood and are transmitted when an infected  tsetse  bites  a  human  host.  Only  the  stumpy  morphologies  survive  in  the  tsetse  midgut,  then  undergo a series of multiplication stages which end  with the parasite relocating to the salivary glands.  The infective stages are known as metacyclics (the  same terminology as with Leishmania).    Tsetse flies are quite big, their  bites  are  very  painful  and  cause large sores to form.  The Trypanosoma  flagellum looks  like a fin, sitting  on top of its body  Note the characteristic arrangement  of the microtubules in the flagella of  the Trypanosoma parasite and also  the kinetoplast at the anterior end of  the organism 
  • 28.  
  • 29. Once in the mammalian host, the Trypanosoma change into the long slender forms and  multiply by binary fission with a doubling time of about 6 hours; some change into the  stumpy forms that will go on to infect flies. A characteristic feature of chronic infection in  man  and  animals  is  the  occurrence  of  regular  fluctuations  in  the  numbers  of  parasites  present  in  the  blood,  this  observation  was  known  for  many  years  and  1910  an  Italian  scientist called Massaglia stated    “trypanolytic  crises  are  due  to  the  formation  of  anti‐bodies  in  the  blood.  A  few  parasites escape destruction because they become used or habituated to the action of  these antibodies. These are the parasites which cause the relapses”    This was a very prophetic statement, in the sense that the structure of antibodies was not  to be discovered until about 50 years later in the 1960s. He relied on development of lab  models  and  techniques  for  purifying  tryptases  (the  most  abundant  secretory  granule‐ derived serine proteases contained in mast cells that have recently been used as a marker  for mast cell activation) and electron microscopy.    In his investigations he Identified a thick surface coat, and  analysis of different clones of the parasites (obtained by  the organisms dividing by binary fission) showed that they  had  “biochemically”  different  clones  from  one  another.  Each  coat  was  different  enough  to  be  encode  by  a  different  gene  and  each  type  was  known  as  a  variant  antigen type. The surface molecule is known as variable  surface glycoprotein (VSG), and has a molecular weight of  61kDa,  they  exist  as  a  very  tightly  packed  monolayer  above  the  parasite’s  lipid  bilayer,  and  cover  the  entire  organism’s surface.    Massaglia looked at the peptide sequences of four different clones and saw that the amino  acid sequence was different at the beginning of the VSG, confirming that each VSG was  encoded by a different gene; about 10% of the biomass of the organism consists of the VSG  alone! At any one time in the blood of a mammal, the majority of blood stream forms are  slender and express only one type of VSG, but there are also a few stumpy non‐dividing  forms that co‐exist with them.    The  immune  system  of  the  host  recognises  the  dominant  VSG  in  the  population  of  Trypanosoma, over the next few days they then make the specific antibody and kill 99% of  the  pathogens;  the  ones  that  express  the  dominant  VSG,  by  complement  fixation  and  opsonisation. However, some pathogens in the population have a different VSG type that  the antibody is not designed to recognise, so these survive, grow up and reproduce by  binary fission to increase the population size. This process constantly repeats itself and is  responsible  for  the  fluctuating  parasite  levels  found  in  a  host  suffering  from  chronic  infection (see diagram on following page).     NB:  Antibodies  are  very  specific,  they  can  distinguish  between  proteins  with  a  single  different amino acid, or even a single enantiomer of an amino acid 
  • 30. glycoproteins  are  recognised  produces  the  fluctuating levels of parasites in the blood.    A  new  VSG  type  is  recognised  by  B  lymphocytes,  which engulf the parasite and display its antigens on  their  outer  membrane.  They  then  act  as  antigen‐ presenting cells in the lymph nodes and stimulate Th  cells  to  produce  specific  lymphokines  (types  of  cytokine) that enable B cell clonal expansion, where  the  B  cells  mature  into  plasma  cells  that  produce  antibodies.    Activated  B  cells  subsequently  produce  antibodies  which help to inhibit pathogens until phagocytes or  the  complement  system,  for  example,  clears  the  host of the pathogens.    The VSG switch still occurs in animals that cannot make antibodies, and if you move the  parasites between animal hosts faster than they can make new antibodies, the parasite still  switches  its  VSGs  regardless.  This  process  of  VSG  switching  even  occurs  in  vitro!  The  number of VSGs the trypanosome can make is probably in the region of 1,000!    The question that remains is how the trypanosomes manage this VSG switching...  A tell‐tale symptom of chronic Trypanosoma infection is a fluctuating  concentration of parasites in the host’s blood stream  The Immune Response    One in about 104 to 105 parasites express a heterotype VSG, but the rest express a single  homotype which is recognised by the immune system, causing an immune response to take  place. The antigens allow the parasites to be lysed via the complement system (see lecture  3 ‐ Leishmania), and also stimulates agglutination and phagocytosis.    Effectively  the  immune  system  allows  for  the  selection of the heterotypes, which then go on to  reproduce, and the repetition of this process as new 
  • 31. The Genetics of VSG switching in trypanosomes    A VSG gene encodes for a protein of approximately 500 amino acids long:  The first 20 to 30 amino acids constitute a signal peptide involved in the movement of the  new VSG across the parasite membrane. The next 360 amino acids vary in their structure  between different VSGs, contributing to the antigenic variation. The last 120 amino acids at  the C terminal are relatively similar in various VSGs, and is the site at which the protein is  anchored in the cell membrane. But in trypanosomes, the last 20 amino acids are clipped  off and replaced with an oligosaccharide structure that is linked to a phosphoglyceride  carrying  2  fatty  acids  which  penetrate  the  membrane  and  anchors  the  VSG.  This  oligosaccharide structure is the same in all VSGs.    The trypanosomes have an enzyme that clips off the link to these fatty acids, so only one  enzyme is needed to replace all the VSGs on the parasite surface.    Only one VSG is expressed at a time, when some VSG genes are expressed, an expression  link copy still remains stored in the genome. When a certain gene is expressed it is copied  and moved to the expression site, it is then replaced when another VSG type is required to  be made. In other words, the mRNA for the expressed VSG is transcribed from the copy of  the original gene that is located at the expression site. This expression site is always found  at the end of the chromosome, near the telomere.   “A  single  VSG  gene  out  of  the  total  repertoire  is  expressed  when  it  is  duplicated  and  translocated  to an expression site near a telomere.” The switch from one to another is  effected by the degradation of one such copy and replacement by a copy of another gene.  This is an unusual method of gene expression.    Imposed on this source of variation is the fact that some VSG genes are expressed without  being duplicated and translocated, because the genes are near the telomere anyway, about  half the genes studied are telomere linked. NB: A telomere is a region of repetitive bases at  the end of chromosomes, which protects the end of the chromosome from destruction.  
  • 32. Since about half the VSG genes that have been studied are telomere linked, and there are  hundreds of genes to encode for hundreds of different VSGs, there must be hundreds of  chromosomes present in their genome.    But, since the trypanosomes have a normal amount of DNA, they must have an array of  different sized chromosomes.          Mini chromosomes ~ 105 nucleotides        Small chromosomes ~ 2‐7x105 nucleotides                    Middle chromosomes ~ 2x106 nucleotides  Large chromosomes ~ >2x106 nucleotides    So, we accept that VSG genes are found on chromosomes of all sizes, but since a gene on a  large chromosome can also be expressed as a copy on a medium sized chromosome, it  suggests  that  translocation  can  take  place  between  chromosomes.  A  further  degree  of  variation  can  also  arise  from  recombination,  where  the  VSG  gene  is  generated  by  the  “joining” of segments of two different telomere linked genes which each code for part of  the resultant VSG.     This may help explain why telomeres are the sites of expression; they have highly repetitive  stretches of DNA such as short tandem repeats, and since such areas are highly likely to  undergo recombination, more variation can be generated.    Finally, a further new piece of information adds to reasons why only one VSG is expressed  at any one time.  There  is  a  special  place  within  the  trypanosome  nucleus  where  this  process  occurs,  and  where  all  the  necessary  molecules  required  for  expression  are  sequestered (separated and stored). This site is called the expression  site  body, and is  found in the nucleolus.    This was discovered by Miguel Navarro and Keith Gull in the University of Manchester a few  years ago. They also identified the enzyme which did the transcribing, and to their surprise  it was RNA polymerase I (Pol I) which is not usually employed for protein transcription! 
  • 33. Parasitology Lecture 7  South American Trypanosomiasis (Chagas Disease)    The South American Trypanosoma cruzi parasite is transmitted by  the triatomine, or kissing, bug as the females feed off a human  host. However, the parasite is not transmitted in the saliva of the  insect, but in its faeces! When they feed, the bugs defecate on the  host, usually on the face (hence the name ‘kissing disease’), and  as the individual scratches the wound (or rubs their eyes) they  infect themselves with the contaminated faeces. An estimated 16  ‐18 million people are infected and 50,000 will die each year.    The parasite is found across the middle and southern Americas  particularly in poor, rural areas of Mexico, Central America, and  South America; very rarely, the disease has also originated in the  Southern United States.   As the host scratches and infects themselves, a swelling,  known as a cutaneous chagoma occurs on the skin. If the  infection  is  accidentally  rubbed  into  the  eye,  an  ocular  chagoma,  commonly  known  as  ‘Romaña’s  sign’  occurs,  which includes swelling of the eyelids on the side of the  face near the bite wound.    The  triatomine  bug  excretes  metacyclic  trypomastigotes  in  their  faeces,  which  is  the  infective stage of the parasite, on entering the host they lose their flagella and become  amastigotes, where they multiply intracellularly. As other cells are infected the infective  cycle continues, and this may cause clinical symptoms such as fever, fatigue, body aches,  headache,  rash,  loss  of  appetite,  diarrhoea,  and  vomiting.  The  signs  on  physical  examination can include mild enlargement of the liver or spleen and swollen glands. Some  intracellular amastigotes, however, transform into trypomastigotes, where they burst out  of the cells and enter the bloodstream to await an opportunity where it can be transformed  back to the vector; the triatomine bug. Animals can also act as intermediate hosts for the  parasite 
  • 34.  
  • 35. Although the early stage disease is not usually severe, chronic symptoms may develop after  10 to 30 or 40 years, which includes cardiac problems such as enlarged hearts and cardiac  arrest.  South  American  footballers  have  dropped  dead  on  the  pitch  to  an  apparently  unknown cause, later found to be due to trypanosomiasis. Other chronic symptoms include  dilation of the digestive tract (megacolon and megaesophagus), accompanied by severe  weight loss. Swallowing difficulties may be the first symptom of digestive disturbances and  may lead to malnutrition.  A C B D A: Many of trypanosome parasites are found in the tissues of infected individuals. B: an enlarged heart, a  light probe here shows just how thin the apex becomes on enlargement. C: A dilated colon, all muscle tone  has been lost and extensive swelling is present. D: a dilated colon has been cut open to expose the inside.  T.cruzi has a remarkable capacity to invade every nucleated cell it encounters, so it can  survive and replicate in many cells. As with many protozoans it lives (at least for part of its  life cycle) in a parasitophorus vacuole, but unlike other protozoans such as Leishmania,  engulfment  is  not  an  actin  mediated  phagocytic  event    and  the  membrane  of  the  parasitophorus vacuole is not derived form the plasma membrane of the host cell.    Instead,  the  parasitophorous  vacuole  is  derived  from  the  membranes  of  lysosomes.  Lysosomes  are  organelles  that  contain  digestive  enzymes  (acid  hydrolases).  They  digest  excess  or  worn‐out  organelles,  food  particles,  and  engulfed  pathogens  by  fusing  with  vacuoles and dispensing their enzymes, digesting the vacuole’s contents. 
  • 36. 1)  The parasite secretes oligopeptidase B molecules that bind G protein coupled  receptors on the host cell surface. This activates phospholipase C, which then  induces an increase in cellular calcium.    2)  The  parasite  secretes  Cruzipain,  which  cleaves  kininogen  into  kinins;  inflammatory  mediators  that  bind  to  cell  surface  kinin  receptors,  eventually  activate PLC and induce a rise in intracellular calcium.    Following  accumulation  of  lysosomes  under  the  parasite  attachment  site,  lysosome  membranes fuse and create a membrane of the parasitophorus vacuole. It is believed that  the parasite enters the cell by a combination of its own movement and the ‘pulling and  recovery’ of lysosomal membranes along microtubules that ‘drag’ the it in.    Most parasites do not want to allow lysosomal fusion, but T. cruzi actually requires it!  The function of a lysosome in an animal cell  The parasite attaches to varied molecules (matrix proteins or integrins) on a cell surface.  Both Transforming growth factor beta receptor II (TGFβRII) and Receptor Tyrosine Kinases  (RTKs) can act in this way, and they both these expressed on many cell types    This complementary binding triggers a rise intracellular calcium in host cell, causing an  accumulation of lysosomes under the site where the parasite attaches. T. cruzi effectively  ‘fools’ the host cell into thinking there is some damage to the cell membrane and triggers a   cellular wound repair process. The intracellular Ca2+ concentration is raised, and lysosomes  are then transported to the ‘wounded’ membrane along microtubules.    The parasite is thought to increase cellular calcium by a variety of processes, including:   
  • 37. B is the main method of entry into a cell, as described above, but A shows another way of entry, in which the parasite  first forms a plasma membrane around it, then recruits lysosomal membranes to replace the original coat.  A low pH triggers differentiation from the trypomastigote to the amastigotes and switches  on the production of Tc‐Tox; a molecule that disrupts the parasitophorus vacuole and frees  the parasite into the cytoplasm where it replicates. Tc‐Tox is very similar to the C9 molecule  that the host immune system uses to punch holes in cells (a member of the complement  system).  Comparison of different organisms’ mechanisms inside the host cell. Box ‘f’ refers to the trypomastigote  
  • 39. Parasitology Lecture 4  Invasion by Helminths (Parasitic Worms)  Platyhelminthes and Nematoda    Platyhelminthes (Flatworms) include tapeworms and planarians (non‐parasitic flatworms)    Trematoda is a class within the above phylum, containing blood flukes and schistosomes    Nematoda (Roundworms)      Caenorhabditis and Filariae are genera of the above phylum  Geohelminths are a group of soil‐transmitted parasites, that include hookworms such as          Ancylostoma duodenale  Necator americanus    In this lecture, we will deal with two different species that have very different morphologies    Schistosomiasis (or bilharzia)  A diseased caused by schistosomes that affects over 250 million people and is most commonly  found in Asia, Africa, and South America, especially in areas where the water contains numerous  freshwater snails, which may carry the parasite.        3 major species infect man:      2 major species infect animals:              Schistoma mansoni    Schistoma haematobium          Schistoma bovis (cattle)  Schistoma mattei (sheep)        Schistoma japonicum    It is a chronic debilitating disease and many infections are asymptomatic, with mild anaemia and  malnutrition being common in endemic areas. Acute schistosomiasis (Katayama's fever) may occur  weeks after the initial infection, especially by S. mansoni and S. Japonicum. Manifestations of the  disease include: abdominal pain, cough, diarrhoea, eosinophilia (extremely high eosinophil count),  fever, fatigue and hepatosplenomegaly (enlargement of both the liver and the spleen). Occasionally  central nervous system lesions occur: cerebral granulomatous disease may be caused by ectopic S.  japonicum eggs in the brain  S. haematobium  Terminal spine at the posterior end    Usually associated with urinary schistosomiasis.  Adults are usually found in venous plexuses  around the urinary bladder, they release eggs  that traverse the bladder wall and can cause  haematurea and fibrosis of the bladder  S. mansoni  Lateral spine at the side  S. japonicum  No spine present    Adults are usually found in the mesenteric or rectal veins and release  eggs which move to the lumen of the intestine and pass out in faeces.  The rest of the eggs are filtered at the periportal tracts of the liver,  and can sometimes cause liver fibrosis  (fibrosis is formation of excess fibrous connective tissue). 
  • 40. The Schistosome eggs hatch outside the human host in response to light and other factors, and the  miracidia that are released penetrate the tissue of freshwater snails and reproduce. The developed,  free‐swimming cercariae are released back into the water and they penetrate the skin of a human  host using enzymes from acetabular glands to aid their entry, upon which they lose their tails. After  about three days they manage to get into the circulation and migrate to the portal blood system via  the pulmonary circuit over the next week or so, and mature into adults, which takes about 49 days.  The males and females then pair up and remain in copulation for the rest of their lives. They migrate  to the superior mesenteric or inferior mesenteric veins, or to the venules surrounding the urinary  bladder, depending on which species they are (see above image for specific locations), the average  life span of an adult is about 5 years, and it can release up to 300 eggs a day. The eggs are released  back into the environment and find their way back to a body of freshwater, and the cycle repeats  itself. (The cercariae look like tadpoles, but swim in a completely different way.)    In about 50% of cases, the eggs become trapped in the body and are responsible for the symptoms  of schistosomiasis, the adults are not responsible for any symptoms of schistosomiasis!    During  normal  cercarial  penetration,  unicellular  glands  called  acetabular  glands  empty  their  contents onto a human host’s skin. The proteases in this secretion digests elastin, keratin, collagen,  gelatin  (solid  substance,  derived  from  the  collagen  inside  animals'  skin  and  mostly  bones),  fibronectin (high molecular weight extracellular matrix glycoproteins) and laminin (sheets of protein  that form the basement membrane of all internal organs)   
  • 41.   their  glycocalyx  is  shed  (via  microvilli),  and  a  new  double  unit  membrane  is  formed  from  membranous vesicles. The trigger for this change is a stepwise transfer in saline concentration. A  larval schistosome that has shed its tail becomes known as a schistosomulum.  “Swimmer’s  itch”  can  be  caused  by  some  schistosomes  from  another  species  (e.g.  birds).  They  attempt to penetrate a human’s skin, but do not secrete the right enzymes to aid penetration and  so they die in a host’s skin, causing an itchy rash (above images).    Cercariae are 125μm long and 25μm  in diameter, with a 200μm long tail.  They  are  covered  by  a  continuous  syncitial  tegument  (multinucleated  dermal  cells),  that  is  about  0.5μm  thick.  The  exterior  surface  consists  of  a  glycocalyx,  and  trilaminar  plasma and basement membranes. They have a primitive nervous system and primordial digestive  and reproductive systems (the earliest systems of that kind).  Scanning electron micrograph of an  early skin‐stage schistosomulum   Scanning electron micrograph of  a lung‐stage worm   Scanning electron micrograph of a late  skin‐stage schistosomulum  
  • 42. Schistosomes have oral and ventral suckers. They  may  lie  in  the  mesenteric  veins  for  months  on  end, and both males and exist in copulation from  this point in their life cycle until death.  ♀ ♂   You can estimate how heavily someone is infected by counting the number of parasite eggs in their  urine or faeces. Urine from heavily infected people is cloudy, and usually bloody. This disease was  identified in ancient Egypt, as “the aaa‐disease” and the identifying symptom was the discharging  phallus. In its later stages, schistosomiasis can cause massive liver fibrosis, leading to an expanded  abdomen, the prognosis for late liver fibrosis is not good.    Miracidium  The  intermediate  host  is  a  freshwater  snail,  the  schistosome  eggs  hatch  on  contact  with  freshwater, releasing Miracidium (200μm x 40μm).  Their  surface  is  covered  by  anucleate  epithelial  plates  that  are  covered  in  cili,  and  allow  the  organism to swim very fast. They can swim about  2mm/sec,  and  to  turn  it  angles  its  body  in  a  “rudder‐like” manner.    Salinity changes tell the organism when to slow  down  as  it  approaches  a  snail  and  following  penetration of the snail through either its mouth  or foot, the epithelial plates are shed. Inside the  digestive  gland  of  the  snail  the  organisms  differentiate  into  sporocysts  and  reproduce  asexually. Inside the sporocysts cercariae form, this process takes about 3 weeks in S. mansoni.  These cercariae  can remain viable for up to 48 hours outside a host in freshwater bodies.    These cercariae penetrate an unsuspecting human host, and the cycle begins again.  Schistosomes are flatworms; they are Trematodes.   Next we deal with Hookworms, which are Nematodes.    Refer back to lecture 1 for the differences between these,   but you should really know them by now! 
  • 43. vector. Vaccination is therefore  an  attractive  possible  solution,  A: A freshwater snail is surrounded by miracidium. B: Bodies of fresh  water in less developed countries such as Africa, carry schistosomes  Parasitology Lecture 5  Schistosomiasis Vaccination    Schistosomiasis  is  very  difficult  A                                  B  to  control  in  areas  that  are  poorly  developed  on  political  and social levels. Because their  infrastructures  are  not  well  developed  it  is  difficult  to  introduce  medication  to  treat  the  infected,  or  to  introduce  molluscicides  to  kill  off  the  but  it  is  still  difficult  to  introduce  the  vaccine  into  these  areas  ‐  smallpox  has  been  eradicated in many countries, but still affects those where aid is less easy to acquire.     In order to find a vaccine for this disease, it is necessary to understand immunity. The  question  that  needs  addressing  is  how  can  schistosomes  live  in  the  blood  streams  for  extended periods of time without being attacked by the host immune system...  A                                                      B                                                       C  Recapping the schistosome life cycle: Cercariae (A) penetrate a human host, migrate to the portal blood system and  mature to schistosomes (B), where they stay in the venous blood supply. The male forms a gynecophoric canal that the  female lies in, and they produce many eggs a day that hatch outside the body into miracidium (C) (here: S. mansoni)  How do the schistosome parasites avoid the host’s immune response?    Various laboratory models can be used to investigate infection in order to see how the  animal and the parasite interact:  mice, rats, baboons, rhesus monkeys and cattle. When  infected  with  a  strain  of  S.  mansoni,  these  animals  do  show  evidence  of  immunity  to  various extents:            Rhesus monkeys show a strong immunity  Baboons have less resistance than rhesus monkeys  Rats manage to terminate the primary infection  Mice show a limited response and chronic infection ensues (results)    NB: S. mansoni does not usually affect animals such as wild rodents, and so this may have  an effect on the results shown in the above investigation.     
  • 44. Smithers & Terry worked with Rhesus monkeys infected with S. mansoni in the late ‘60s  and found that they were able to destroy cercariae worms from a second schistosomiasis  infection,  but  could  not  destroy  the  adults  that  had  already  established  in  the  first  infection. Immunity could either be stimulated with large numbers of irradiated cercariae  (so they would die before they became adults), or with transplanted adults from another  monkey. The conclusions drawn were that Immunity appeared to operate against the larval  stages  and  not  the  adult  stages,  but  could  be  stimulated  by  both.  This  is  known  as  concomitant  immunity. In the same way, some people have been known to develop a  resistance to a secondary cancer, but this defence has no effect on the established primary  tumour.    In 1977, it was discovered that all investigated blood‐dwelling organisms contain an outer  surface covering (tegument) that is unique in nature, consisting of fused cells surrounding  the  worm  with  a  single  continuous  double‐bilayer  membrane.  On  penetration  of  the  cercariae into the host skin, the outer glycocalyx is shed from their syncytial membrane,  and within 30 minutes the 2nd lipid bilayer is laid down. Membranous bodies that have a  double lipid bilayer are made in the perikarya in the sub‐tegumental cells; they fuse with  the cell surface to create the new membrane structures (microvilli with bulbous tips form  on the schistosome membrane due to this process).  The homogenates of adult worms were found to contain many of the molecules that were  found in the host species; antigens are shared, decreasing the antigenicity of the parasite   (its  capacity  to  induce  an  immune  response).  This  is  due  to  acquisition  of  the  host  molecules, rather than mimicry of them since when schistosome adults are incubated in a  red blood cell medium containing larvae, they acquire RBC antigens (A and B blood group  antigens) into their tegument via adhesion to their surfaces, allowing them to disguise  themselves as “self” and thus avoid detection by the immune system. 
  • 45. Experiment to show the acquisition of host blood group molecules    Schistosomes were taken at the ages of 1) three hours and 2) four days and incubated with  both anti‐schisto‐antibodies from an infected animal and anti‐host RBC antibodies  to give  four samples. The antibodies produced on the cell membranes were labelled with gold  particles so they would show up on an electron microgram. The type of protein that is  present  on  the  schistosomulum  membrane  can  therefore  be  identified.  (NB:  A  schistomulum is the immature form of a parasitic schistosome after it has entered the  blood vessels of its host.)  Young 3 hour schistosomulum + anti‐schisto ‐antibody. The schistosome antibody is  displayed on the membrane  4 day old schistosomulum + anti‐RBC‐antibody.  The test now confirms the presence of RBC  antibodies on the membrane  Young 3 hour schistosomulum + anti‐RBC‐ antibody. There are no RBC antibodies  detected on the cell membrane  4 day old schistosomulum + anti‐RBC‐ antibody. There are now no schisto  antibodies detected on the cell membrane  Where the young schistosomulum once showed the presence of schisto proteins on its cell  membrane, the more mature organism displays the host RBC proteins, and is therefore  disguised as “self” rather than “non‐self”  Concept If  you  were  to  infect  a  monkey  with  schistosomes,  the  schistosomes  would  coat  themselves with monkey antigens    If  you  were  to  infect  a  mouse  with  schistosomes,  the  schistosomes  would  coat  themselves with monkey antigens    If you then take a monkey and immunise it with mouse proteins, the monkey’s immune  system sees them as foreign bodies and makes antibodies that can be used in the case of  future exposure. This monkey can now make antibodies to mouse proteins and is called  an “anti‐mouse” monkey. 
  • 46. Eosinophils attacking a schistosome cell 1: a schistosome cell, 2: a schistosome after exposure to cytotoxic granules, 3: a necrotic mass   Experiment used to determine the presence of host antigens on the tegument of adult  Schistosoma mansoni  Since the monkey in experiment 4 had already been immunised, it was ready to mount an  attack on any mouse proteins that were deemed foreign. In all other cases, the parasite is  initially recognised as foreign, allowing long‐term immunity to be achieved, but then the  parasite acquires a “self” protein coat, allowing the adults to evade the immune system.    This led to the idea that the schistosomula could be artificially transformed to convey anti‐ larval immunity. In vitro killing assays were then carried out using the antibodies IgG and  IgE, and cells like eosinophils and macrophages. If the cells were incubated with an IgE that  was  specific  for  the  parasite  surface,  eosinophils  would  selectively  attack  them  with  cytotoxic granules. This is known as antibody dependent cell mediated cytotoxicity.  1                           2                            3   
  • 47. The prevalence of infection with Schistosoma haematobium in a population living in an  endemic area.    This graph shows a peak of infection intensity  of children roughly aged 6 to 15, but this is  followed  by  a  decrease  as  a  person  progresses into adulthood.    This could be due to adults spending less time  in the water as they age, since children are  more  likely  to  play  in  the  water  etc.,  or  it  could  be  that  children  are  susceptible  to  infection in early life, but over time immunity  builds up and renders the adults immune to  infection.      To investigate the resistance theory, re‐infection studies must be carried out    Praziquantel is a drug that is not licensed for use in the UK for human consumption, but is  available as a vetinary anthelmintic (drugs used to expel parasitic worms), or for certain  humans on a named‐patient basis. It clears up infection, making sure human subjects are  infection‐free  before  the  re‐infection  trials,  to  eliminate  the  variation  in  egg  numbers  counted in faeces and urine.    The  re‐infection  study  was  carried  out  in  Gambia  using  S.  haematobium.  Control  for  exposure was done through controlling the subjects’ exposure to water, and before the  study was carried out, the field staff moved into the village a year in advance so they could  get to know every individual in the village and their personal histories. Every person in the  village was then monitored during the study and the following factors were recorded:          Activity and time in water  Densities of snails (infected and uninfected) in the water at the time   Densities of cercariae in the water at the time     A massive statistical analysis was then carries out, which took all the data into account. The study took place along the Gambia River in the small villages of Madina, Samaco and Njarinjufa. The Gambia is the smallest country in Africa
  • 48. The adults in the study were found to be immune, and their immune parameters were thus  measured: parasite specific antibodies, eosinophils and other granulocytes.    A  strong  association  was  found  to  exist  between the types of antibody a person had  and  their  resistance  to  re‐infection.  The  population  was  divided  into  quintiles  (5  groups)  on  the  basis  of  their  IgG4  or  IgE  response;  those  in  the  highest  quintile  for  IgE were found to be 10 times less likely to  be re‐infected than the lower quintile, and  those in the highest quintile for IgG4 were  found to be 10 times more likely to be re‐ infected than the lowest quintile.    The  eggs  of  the  parasite  are  the  main  pathogenic  stage,  the  move  to  the  outside  environment  is  associated  with  the  release  of  enzymes  and  metabolic  products  which  stimulate  very  strong  eosinophil  and  macrophage  rich  granuloma  (which  are  T‐cell  dependent).  This  is  particularly  severe  when  the  eggs  are  washed  back  into  the  liver  because lots of leucocytes flood into the liver to try and contain the infection, but this leads  to granuloma formation and a reduced blood flow. I    In  S.  mansoni  infections,  this  results  in  alterations  in  blood  flow  leading  to  hepatosplenomegaly  as  more  RBCs  are  made  in  response  to  the  reduced  blood  flow,  leading to a high blood pressure, oesophageal varices, and eventually death if untreated.    In S. haematobium, damage to the bladder and urethra can result, leading to renal failure  January &  February   Pre‐study  chemotherapy    Exposure to   Re‐infection  Low  Medium  High  April & May   Check efficacy  of treatment  Rains arrive  2‐9 Year Olds  Some  Some ++  High  August to  November   Transmission ‐  water conduct  observations  10‐14 Year Olds  None  Some  Some/ ‐  April & May  Re‐infection  intensity  Adults  None  None  None  Specific IgE against WWH shows a significant inverse  correlation (p<0.05) with re‐infection 
  • 49. ← Oesophageal varices caused  by  hypertension  can  haemorrhage  spontaneously  and  can  therefore  be  fatal  if  not treated    A large infiltrate of leucocytes  to  the  liver  can  cause  autoimmune  liver  fibrosis  as  they  try  to  attack  the  foreign  bodies  (schistosome  eggs)  trapped there↓   ← Hepatosplenomegaly  due to schistosome infection  The miracidia inside schistosome eggs release histolytic secretions when trapped in the  host  tissues,  Th  cells  recognise  the  egg  antigens  and  release  lymphokines  (lymphocyte  cytokines) that cause inflammatory cells to aggregate, forming a granuloma, and leading to  hypersensitivity over long periods of time. The body eventually realises it’s doing more  harm  than  good  through  the  immune  response  and  so  switches  off  the  hyperactive  immunity, reducing the granuloma size and allowing the eggs to exit without too much  reaction (see below) 
  • 50. Lymphatic  filariasis  can  be  transmitted  by  two  main  species  of  filarial  nematodes:  Wuchereria bancrofti and Brugia malayi. It  causes  inflammatory  damage  to,  and  the  dysfunction  of  the  lymphatic  system,  causing  fluid  accumulation  which  leads  to  conditions  such  as  elephantiasis  (swollen  limbs), and hydrocoele. Filariasis also causes  filarial  fever,  lymphangitis  and  dermato‐ lymphangio‐adenitis  (inflamed  skin  and  lymph  nodes).  These  parasites  live  in  the  lymphatic  system  and  they  are  either  so  large, or cause so much damage, that the  fluid can’t drain.      Onchocerciasis (river blindness) is caused by  the microfilaria  of the parasite Onchocerca  volvulus.  Here,  the  adult  parasites  live  in  lymphatic  nodules  and  lay  microfalariae,  which  migrate  to  the  dermis  and  cause  itching  and  ageing  of  the  skin.  When  they  migrate to the cornea, they can also cause  river  blindness.  In  areas  where  this  is  endemic, the older generation often rely on  the guidance of children who can still see.    The  thread‐like  filarial  parasites  live  in  the  blood (C), and inside lymphatic vessels (D).  They live for 4‐6 years, producing millions of  microfilariae, which circulate in the blood.  A                               B  Hydrocoele testis (B) is common in regions where the  parasites are endemic, and can on rare occasions affect the  breast tissue in women (A)  Parasitology Lecture 9  Immunity to Filariasis                        The parasite is transmitted by the blackfly (Simulium), or a mosquito (Anopheles)  A                                B                C                                  D 
  • 52. Pathology is mainly due to the adult worm living in the lymphatics or sinuses of the lymph  node. Because the worms are very active, they thrash around a lot and cause dysfunction  of, and inflammatory damage to the lymph system. The thichening of vessel walls from this  damage causes incompetent lymph valves, and ultimately leads to the blockage of the  lymphatics, especially upon the death of the worm (from senility ‐ old age)    Elephantiasis is due to fluid accumulation, typically in the legs, but it  can  also  affect  the  arms.  Due  to  secondary  infections,  the  skin  eventually  becomes  cracked  where  bacteria  and  fungi  flourish,  a  severe fever is also a common symptom. Treatment for this involves  scrubbing the affected area to get rid of the bacteria and fungi that  cause the exacerbation.    Hydrocoele is the most common clinical manifestation. In endemic  areas 40 to 60%  of adult males are affected by this. It is caused  when  adult  worms  localise  in  scrotal  lymphatics  and  cause  fluid  accumulation.    Chyluria  is  often  due  to  hidden  internal  damage  to  the  kidneys and lymphatic system, resulting in an intermittent  discharge of lymph into the renal pelvis and subsequently  into  the  urine.  Chyle  is  a  milky  white  bodily  fluid  that  consists of lymph and emulsified fats or free fatty acids.  This gives urine of an affected individual the characteristic  appearance as seen to the left.    The glass on this chyluria sufferer’s bedside table does not  contain milk; it is a fresh urine sample!    Treatment    There is no vaccine available for this disease, the only ways to stop it are to interrupt its  transmission or control the morbidity. To interrupt its transmission one must eliminate the  microfilariae from the bloodstream with a single dose of a 2 drug regimen (albendazole  with diethylcarbamazine or ivermectin) once a year for four to six years. This, however, is  difficult to keep up for such a long period. Controlling its morbidity involves assisting the  lymph slow and preventing secondary infections by introducing forms of basic hygiene.  Morbidity refers to a diseased state, disability, or poor health due to any cause.    Onchocerciasis (river blindness)    The Onchocerca volvulus adults are 30 to 80 cm long and live in  nodules  in  the  human  skin.  They  live  for  about  12  years  and  produce many microfilariae (about 0.3μm long), which circulate in  the skin and cause pathology. Transmission is via the bite of an  infected black fly (Simulium), which breed in areas of fast‐flowing  water.  Across  Africa  they  are  distributed  across  some  areas  of  Venezuela, Brazil, Columbia and Equador. 
  • 53. The nodules lie in the subcutaneous tissue, about 1 to 5 cm in diameter. An infected person  may  have  several  hundred  at  various  locations  of  their  bodies,  such  as  the  skull,  ribs,  elbows, hips, thighs and knees. Just one tiny nodule contains many adult parasites, but  remember it is not the adults that cause the real problems!  Palpation of a nodule (A), and an idea of the number of parasites contained within (B)  A                                           B  Eye manifestations are caused when the microfilariae migrate to the eye, where they die  causing  a  profound  inflammatory  response  and  scarring  where  the  cornea  is  left  very  opaque (see p.1). Onchocerciasis is the second leading cause of blindness of infectious  origin, leaving 18 million people infected, 800,000 visually impaired and 270,000 blind.    Skin manifestations    These  are  less  widely  reported  than  river  blindness,  involving chronic dermatitis and intense itching due to  the  dying  microfilariae  that  cause  a  subcutaneous  inflammatory  response  causing  the  skin  to  itch  and  become  swollen  and  chronically  thickened,  known  as  “lizard  skin”.  The  skin  also  becomes  lax  due  to  the  destruction of elastic fibres, and may lose pigmentation,  commonly known as “leopard skin”.     Often  people  have  to  resort  to  scratching  themselves  with rocks to alleviate this maddening itch.    Control of the parasites is through the drug ivermectin to kill the worms, and through the  spraying of the black fly breeding grounds with larvicides to break the transmission cycle.    Immunology   For further information on immunology, see back sheet entitled “Basic Immunology”    There is a fascinating host‐parasite interaction in this case; the infected human is exposed  to multiple life cycle stages, each interacting with different parts of the immune system.  The following data focuses on lymphatic filariasis, but onchocerciasis also shares common  immunological features... 
  • 54. Filariasis  is  a  spectral  disease.  Multiple  infection  from  a  mosquito  vector  can  lead  to  immunity,  tolerance  or  an  inappropriate  immune  response  and  an  immunology  is  important in the understanding of these groups:         Immunity ‐ no symptoms and no microfilaraemia infection  Tolerance ‐ no symptoms, but an present microfilaraemia infection   The category which most individuals fall under      Inappropriate immune response ‐ symptoms include adenolymphangitis  (inflammation of the lymph nodes and vessels) and periodic fever. Chronic disease  includes oedema and chyluria, and elephantiasis may also result.    In order to understand filarial immunity, comparisons must be drawn between the three  main  groups:  endemic  normals  (EN),  microfilaraemics  (MF)  and  those  suffering  from  chronic  pathology  (CP).  Humoral  responses  include  antibody  isotopes  and  antigenic  epitopes, while cellular responses include a proliferative response with CD4+ T cells:            Th1 cells (type 1) secrete IFN‐γ (interferon gamma)  Th2 cells (type 2) secrete IL‐4, 5, 9 and 13  T‐reg (regulatory) secrete IL‐10 and TGF‐β (transforming growth factor beta)    The  immune  response  cabn  be  determined  by  the  secreted  cytokine  (Immunoglobulin)  levels, as seen in the previous lecture (Leishmania Prophylaxis)    IgG1  IgG2  IgG3  IgG4  IgE  Endemic Normal  13  2  4  25  12  Microfilaraemic  32  3  6  761  9  Elephantiasis  75  40  36  222  43  Low levels of all Igs    Large IgG4 amounts    Large amounts of all  Human filariasis: Levels of antigen specific isotypes of IgG (μm/ml) and of IgE (ng/ml) antibodies  measured against adult B. malayi somatic extract  From the above table it is clear that endemic normals tend to have higher lower antibody  responses,  while  the  elephantiasis  patients  have  the  highest.  Those  that  asymptomatic  have high IgG4 and lower IgE levels. Endemic normals and sufferers of elephantiasis have a  lower IgG4:IgE ratio. IgG4 has been proposed as a blocking antibody, therefore the IgG4:IgE  ratio may be important when considering immunity.    High  IgG4  levels  may  reduce  some  pathology,  but  this  is  undesirable  if  the  effector  mechanism is via some form of IgE‐mediated ADCC (Antibody‐Dependent Cell‐mediated  Cytotoxicity) where the effector mechanism is not known.     
  • 55. Hyporesponsiveness  is  specific  to  the  filarial  antigen; it can be seen that in individuals with  microfilariae  infection  (Mf+),  the  responsiveness  of  the  T  cells  to  the  filarial  antigen  is  greatly  reduced,  whereas  if  an  irrelevant  antigen,  such  as  that  of  streptococcus) is introduced into an individual  with  microfilariae  infection,  there  is  no  change in the T cell response.  Here,  human  PBMCs  (peripheral  blood  mononuclear  cells)  in  Mf+  individuals  have  reduced IFN‐γ levels, but intact IL‐4 levels.     This shows that the Th1 arm of the immune  response  is  turned  off  in  the  case  of  microfilaraemics,  while  the  Th2  response  remains in tact. This is hyporesponsiveness of  the  Th1  cells,  but  drug  treatment  with  diethylcarbamazine  (DEC)  partially  restores  the responsiveness of the human PMBCs, as  shown in the following graphs:    Summary of data so far:   The largest population are asymptomatic microfilaraemics with reduced T cell responses  but  with  high  IL‐4,  IL‐10,  TGF‐β  and    low  IFN‐γ  levels.  diethylcarbamazine  treatment  restores both T‐cell responsiveness and IFN‐γ production. Endemic normals and those  suffering from elephantiasis tend to have low worm numbers and greater IFN‐γ  levels.