SlideShare a Scribd company logo
1 of 42
Download to read offline
ANALISIS LERENG BATUAN
Metode kinematika
• "Kinematic" refers to the motion of bodies without
reference to the forces that cause them to move
(Goodman, 1989).
• Untuk mengetahui potensi jenis longsoran yang mungkin
terjadi pada suatu lereng
• Data yang digunakan kombinasi orientasi bidang
diskontinyu, muka lereng bersama sudut gesek dalam
• Analisis dilakukan menggunakan proyeksi stereografis
• Asumsi dasarnya kohesi = 0
(a) (b)
Rock faces formed by persistent discontinuities: (a) plane
failure formed by bedding planes in shale parallel to face
with continuous lengths over the full height of the slope on
Route 19 near Robbinsville, North Carolina; (b) wedge
failure formed by two intersecting planes in sedimentary
formation dipping out of the face on Route 60 near
Phoenix, Arizona. (Image by C. T. Chen.)
Pengukuran struktur batuan
• Kedudukan struktur batuan
(sesar, perlapisan, dan
kekar) dapat ditentukan
dengan menggunakan
kompas geologi.
• Untuk menyatakan
kedudukan struktur batuan,
maka harus dilakukan
pengukuran tentang jurus
(strike), kemiringan (dip), dan
arah kemiringan (dip
direction).
• Kedudukan struktur batuan
dapat dinyatakan dengan
strike/dip atau dip/dip
direction.
Strike
Dip Direction
Dip
Contoh
• Misalkan suatu kekar mempunyai strike
N 60o E dan dip 40o maka penulisan kedudukannya
adalah N60oE/40o.
• Jika suatu kekar mempunyai dip 70o dan dip direction nya
N30oE maka penulisan kedudukannya adalah 70o/030o.
• Penulisan dip direction selalu dalam tiga digit.
Penggambaran bidang diskontinu dan kutub (pole) diskontinu :
12
r. hariyanto
Penggambaran bidang & Kutub
• Perhatikan sebuah bidang
yang mempunyai kemiringan
50o dan arah kemiringan 130o.
• Langkah 1 : Kertas transparan
diletakkan di atas Equatorial
equal-area stereonet,
gambarkan lingkaran jaring
dan beri tanda titik utara dan
pusat jaring. Ukurkan arah
kemiringan 130o searah jarum
jam dari titik utara dan beri
tanda posisi ini pada lingkaran
jaring.
lanjutan
• Langkah 2 : Putar tanda arah
kemiringan ke arah utara sampai
berimpit dengan sumbu W – E.
Ukurkan kemiringan 50o dari lingkaran
luar ke arah pusat jaring. Dan gambar
busur lingkaran besar.
• Untuk menggambarkan kutub bidang,
ukurkan 50o dari pusat jaring ke arah
lingkaran luar jaring dan beri tanda
titik, yang merupakan kutub bidang
tersebut.
• Langkah 3 : Putarkan ke posisi
semula sehingga arah utara yang
ditandai pada langkah 1 berimpit
dengan arah utara jaring. Dengan
demikian, bidang dengan orientasi
kemiringan 50o dan arah kemiringan
130o telah tergambar.
Penentuan kedudukan umum
bidang-bidang diskontinu
• Setelah terbentuk garis-
garis kontur, maka akan
didapat kutub kontur,
yaitu daerah yang
menggambarkan
konsentrasi kutub bidang
tertinggi.
• Titik pusat kutub kontur
merupakan kutub
kedudukan umum bidang-
bidang diskontinu,
• Kedudukan umum bidang-
bidang diskontinu adalah
kebalikan dari cara
penentuan kutub bidang
diskontinu.
LATIHAN
Dua bidang mempunyai kemiringan 50o
dan 30o dan arah kemiringan 130o dan
250o, yang saling berpotongan, sehingga
perlu ditentukan arah (trend) dan
penunjaman (plunge) dari garis
perpotongannya
Langkah 1 : Satu bidang (50o/130o) telah
tergambarkan, dan penentuan lingkaran
besar bidang kedua ditentukan dengan
arah kemiringan 250o diputar sampai
berimpit dengan sumbu W – E. Dan
gambarkan lingkaran besar menurut
kemiringan 30o.
18
05/04/2021 r. hariyanto
Penentuan arah dan penunjaman garis perpotongan dua bidang
Langkah 2 : Titik perpotongan dua
lingkaran besar diputar sampai
berimpit dengan sumbu W – E jaring
dan plunge dari garis perpotongan
diukur sebesar 20,5o.
Langkah 3 : Kemudian gambar
tersebut dikembalikan ke kedudukan
semula sehingga tanda utara pada
gambar berimpit dengan titik utara
pada stereonet. Dan arah (trend) dari
garis perpotongan didapat sebesar
200,5o.
19
05/04/2021 r. hariyanto
Main types of block failures in slopes, and structural
geology conditions likely to cause these failures: (a) plane
failure in rock containing persistent joints dipping out of
the slope face, and striking parallel to the face; (b) wedge
failure on two intersecting discontinuities; (c) toppling
failure in strong rock containing discontinuities dipping
steeply into the face; and (d) circular failure in rock fill,
very weak rock or closely fractured rock with randomly
oriented discontinuities.
Figure 2.1: Stereographic projections of the requirements
for kinematically possible plane,wedge, and toppling
failures (from Hoek and Bray, 1981).
Identification of plane and wedge failures on a stereonet: (a) sliding
along the line of intersection of planes A and B (αi) is possible where
the plunge of this line is less than the dip of the slope face,
measured in the direction of sliding, that is ψi < ψf; (b) wedge failure
occurs along the line of intersection (dip direction αi) on slope with
dip direction αf because dip directions of planes A and B (αA and αB)
lie outside included angle between αi and αf; (c) plane failure occurs
on plane A (dip direction αA) on slope with dip direction αf because
dip direction of planes A lies inside included angle between αi and αf.
Planar failure
In Figure 2.18a, a potentially unstable planar block is
formed by plane AA, which dips at a flatter angle than the
face (ψA < ψf) and is said to ‘daylight’ on the face.
However, sliding is not possible on plane BB which dips
steeper than the face (ψB > ψf) and does not daylight.
Similarly, discontinuity set CC dips into the face and
sliding cannot occur on these planes, although toppling is
possible.
ψA < ψf
The poles of the slope face and the discontinuity sets (symbol P) are plotted on the stereonet in Figure
2.18b, assuming that all the discontinuities strike parallel to the face. The position of these poles in
relation to the slope face shows that the poles of all planes that daylight and are potentially unstable lie
inside the pole of the slope face. This area is termed the daylight envelope and can be used to quickly
identify potentially unstable blocks.
The dip direction of the discontinuity sets will also influence stability. Plane sliding is not possible if the
dip direction of the discontinuity differs from the dip direction of the face by more than about 20°. That
is, the block of rock formed by the joints will have intact rock at one end that will have sufficient strength
to resist instability. On the stereonet, this restriction on the dip direction of the planes is shown by two
lines defining dip directions of (αf + 20°) and (αf − 20°). These two lines designate the lateral limits of
the daylight envelope in Figure 2.18b.
27
Example of a plane failure within a
slope consisting mostly of sandstone.
Wedge failure
Kinematics analysis of wedge failures (Figure 2.16b) can
be carried out in a similar manner to that of plane failures.
In this case, the pole of the line of intersection of the two
discontinuities is plotted on the stereonet and sliding is
possible if the pole daylights on the face, that is, (ψI < ψf).
The direction of sliding of kinematically permissible
wedges is less restrictive than that of plane failures
because two planes with a wide range of orientations form
release surfaces. A daylighting envelope for the line of
intersection, as shown in Figure 2.18b, is wider than the
envelope for plane failures. The wedge daylight envelope
is the locus of all poles representing lines of intersection
whose dip directions lie in the plane of the slope face.
Figure 1.6:
Example of a
wedge failure in
shale bedrock,
State Route 2,
West Virginia.
31
32
05/04/2021 r. hariyanto
Toppling failure
For a toppling failure to occur, the dip direction of the discontinuities dipping into the face must be within
about 20° of the dip direction of the face so that a series of slabs are formed parallel to the face. Also, the dip
of the planes must be steep enough for interlayer slip to occur. If the faces of the layers have a friction angle
ϕj, then slip will only occur if the direction of the applied compressive stress is at angle greater than ϕj with the
normal to the layers. The direction of the major principal stress is parallel to the slope face (dip angle ψf), so
interlayer slip and toppling failure will occur on planes with dip ψp when the following conditions are met
(Goodman and Bray, 1976):
These conditions on the dip and dip
direction of planes that can develop
toppling failures are defined in Figure
2.18b. The envelope defining the
orientation of these planes lies at the
opposite side of the stereonet from
the sliding envelopes.
Figure 2.2: (A) Kinematics of toppling failure; (B) stereographic projection of the requirement for
toppling failure, indicating that the normals (poles to discontinuities) should plot in the shaded zone
(Goodman, 1989).
A toppling failure is likely to result when steep discontinuities are parallel to the slope face and dip into it
(Hoek and Bray, 1981). According to Goodman (1989), a toppling failure involves inter-layer slip movement.
While describing requirements for the occurrence of a toppling failure, Goodman (1989) stated: “If layers
have an angle of friction Φj, slip will occur only if the direction of the applied compression makes an angle
greater than the friction angle with the normal to the layers. Thus, as shown in Figure 2.2, a pre-condition for
inter-layer slip is that the normals be inclined less steeply than a line inclined Φj above the plane of the slope.
If the dip of the layers is σ, then toppling failure with a slope inclined α degrees with the horizontal
can occur if (90 - σ) + Φj < α”.
Longsoran bidang, baji, guling
37
05/04/2021 r. hariyanto
Longsoran busur
Dalam satu
kawasan dapat
terbentuk
bermacam
potensi jenis
longsor
summary
TERIMA KASIH

More Related Content

Similar to P5 - METODE KINEMATIKA.pdf

Similar to P5 - METODE KINEMATIKA.pdf (20)

A study-of-the-behaviour-of-overlying-strata-in-longwall-mining-and-its-appli...
A study-of-the-behaviour-of-overlying-strata-in-longwall-mining-and-its-appli...A study-of-the-behaviour-of-overlying-strata-in-longwall-mining-and-its-appli...
A study-of-the-behaviour-of-overlying-strata-in-longwall-mining-and-its-appli...
 
Deformasi batuan
Deformasi batuanDeformasi batuan
Deformasi batuan
 
FC
FCFC
FC
 
Final project for Geo-Engineering Techniques for Unstable Slopes
Final project for Geo-Engineering Techniques for Unstable SlopesFinal project for Geo-Engineering Techniques for Unstable Slopes
Final project for Geo-Engineering Techniques for Unstable Slopes
 
6.KESTABILAN pada LONGSOR BIDANG 2022.pdf
6.KESTABILAN pada LONGSOR BIDANG 2022.pdf6.KESTABILAN pada LONGSOR BIDANG 2022.pdf
6.KESTABILAN pada LONGSOR BIDANG 2022.pdf
 
geology_ppt.pptx
geology_ppt.pptxgeology_ppt.pptx
geology_ppt.pptx
 
Crystal imperfections
Crystal imperfectionsCrystal imperfections
Crystal imperfections
 
Structural Geology for Civil Engineering
Structural Geology for Civil EngineeringStructural Geology for Civil Engineering
Structural Geology for Civil Engineering
 
TSG_2016_Poster_7a
TSG_2016_Poster_7aTSG_2016_Poster_7a
TSG_2016_Poster_7a
 
Group-5-Report-EDITED.pptx
Group-5-Report-EDITED.pptxGroup-5-Report-EDITED.pptx
Group-5-Report-EDITED.pptx
 
Mt 610 phasetransformationsinsolids_iv
Mt 610 phasetransformationsinsolids_ivMt 610 phasetransformationsinsolids_iv
Mt 610 phasetransformationsinsolids_iv
 
Attitude of beds
Attitude of bedsAttitude of beds
Attitude of beds
 
Mm210(6)
Mm210(6)Mm210(6)
Mm210(6)
 
Deformation and kink bads
Deformation and kink badsDeformation and kink bads
Deformation and kink bads
 
Q922+de2+l09 v1
Q922+de2+l09 v1Q922+de2+l09 v1
Q922+de2+l09 v1
 
Final Year Dissertation
Final Year DissertationFinal Year Dissertation
Final Year Dissertation
 
Pelat pondasi
Pelat pondasiPelat pondasi
Pelat pondasi
 
Joints
JointsJoints
Joints
 
Chapter No. 04 - Angles and Directions.pptx
Chapter No. 04 - Angles and Directions.pptxChapter No. 04 - Angles and Directions.pptx
Chapter No. 04 - Angles and Directions.pptx
 
Mapping chapter
Mapping chapterMapping chapter
Mapping chapter
 

More from Belajar50

1.GEOTEKNIK_1_2022_genap.pdf
1.GEOTEKNIK_1_2022_genap.pdf1.GEOTEKNIK_1_2022_genap.pdf
1.GEOTEKNIK_1_2022_genap.pdfBelajar50
 
3. Penyelidikan Geoteknik-Rev1.pdf
3. Penyelidikan Geoteknik-Rev1.pdf3. Penyelidikan Geoteknik-Rev1.pdf
3. Penyelidikan Geoteknik-Rev1.pdfBelajar50
 
7.KESTABILAN pada LONGSOR BAJI.en.id (1).pdf
7.KESTABILAN pada LONGSOR BAJI.en.id (1).pdf7.KESTABILAN pada LONGSOR BAJI.en.id (1).pdf
7.KESTABILAN pada LONGSOR BAJI.en.id (1).pdfBelajar50
 
7.KESTABILAN pada LONGSOR BAJI.en.id.pdf
7.KESTABILAN pada LONGSOR BAJI.en.id.pdf7.KESTABILAN pada LONGSOR BAJI.en.id.pdf
7.KESTABILAN pada LONGSOR BAJI.en.id.pdfBelajar50
 
2 Batuan dan Tanah.pdf
2 Batuan dan Tanah.pdf2 Batuan dan Tanah.pdf
2 Batuan dan Tanah.pdfBelajar50
 
4 Dasar-dasar kemantapan lereng.pdf
4 Dasar-dasar kemantapan lereng.pdf4 Dasar-dasar kemantapan lereng.pdf
4 Dasar-dasar kemantapan lereng.pdfBelajar50
 

More from Belajar50 (6)

1.GEOTEKNIK_1_2022_genap.pdf
1.GEOTEKNIK_1_2022_genap.pdf1.GEOTEKNIK_1_2022_genap.pdf
1.GEOTEKNIK_1_2022_genap.pdf
 
3. Penyelidikan Geoteknik-Rev1.pdf
3. Penyelidikan Geoteknik-Rev1.pdf3. Penyelidikan Geoteknik-Rev1.pdf
3. Penyelidikan Geoteknik-Rev1.pdf
 
7.KESTABILAN pada LONGSOR BAJI.en.id (1).pdf
7.KESTABILAN pada LONGSOR BAJI.en.id (1).pdf7.KESTABILAN pada LONGSOR BAJI.en.id (1).pdf
7.KESTABILAN pada LONGSOR BAJI.en.id (1).pdf
 
7.KESTABILAN pada LONGSOR BAJI.en.id.pdf
7.KESTABILAN pada LONGSOR BAJI.en.id.pdf7.KESTABILAN pada LONGSOR BAJI.en.id.pdf
7.KESTABILAN pada LONGSOR BAJI.en.id.pdf
 
2 Batuan dan Tanah.pdf
2 Batuan dan Tanah.pdf2 Batuan dan Tanah.pdf
2 Batuan dan Tanah.pdf
 
4 Dasar-dasar kemantapan lereng.pdf
4 Dasar-dasar kemantapan lereng.pdf4 Dasar-dasar kemantapan lereng.pdf
4 Dasar-dasar kemantapan lereng.pdf
 

Recently uploaded

Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Ramkumar k
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptAfnanAhmad53
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxkalpana413121
 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementDr. Deepak Mudgal
 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxhublikarsn
 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsmeharikiros2
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxMustafa Ahmed
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfsumitt6_25730773
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...ronahami
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdfKamal Acharya
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 

Recently uploaded (20)

Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .ppt
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth Reinforcement
 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systems
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdf
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 

P5 - METODE KINEMATIKA.pdf

  • 2.
  • 3.
  • 4. Metode kinematika • "Kinematic" refers to the motion of bodies without reference to the forces that cause them to move (Goodman, 1989). • Untuk mengetahui potensi jenis longsoran yang mungkin terjadi pada suatu lereng • Data yang digunakan kombinasi orientasi bidang diskontinyu, muka lereng bersama sudut gesek dalam • Analisis dilakukan menggunakan proyeksi stereografis • Asumsi dasarnya kohesi = 0
  • 5. (a) (b) Rock faces formed by persistent discontinuities: (a) plane failure formed by bedding planes in shale parallel to face with continuous lengths over the full height of the slope on Route 19 near Robbinsville, North Carolina; (b) wedge failure formed by two intersecting planes in sedimentary formation dipping out of the face on Route 60 near Phoenix, Arizona. (Image by C. T. Chen.)
  • 6. Pengukuran struktur batuan • Kedudukan struktur batuan (sesar, perlapisan, dan kekar) dapat ditentukan dengan menggunakan kompas geologi. • Untuk menyatakan kedudukan struktur batuan, maka harus dilakukan pengukuran tentang jurus (strike), kemiringan (dip), dan arah kemiringan (dip direction). • Kedudukan struktur batuan dapat dinyatakan dengan strike/dip atau dip/dip direction. Strike Dip Direction Dip
  • 7.
  • 8.
  • 9.
  • 10.
  • 11. Contoh • Misalkan suatu kekar mempunyai strike N 60o E dan dip 40o maka penulisan kedudukannya adalah N60oE/40o. • Jika suatu kekar mempunyai dip 70o dan dip direction nya N30oE maka penulisan kedudukannya adalah 70o/030o. • Penulisan dip direction selalu dalam tiga digit.
  • 12. Penggambaran bidang diskontinu dan kutub (pole) diskontinu : 12 r. hariyanto
  • 13. Penggambaran bidang & Kutub • Perhatikan sebuah bidang yang mempunyai kemiringan 50o dan arah kemiringan 130o. • Langkah 1 : Kertas transparan diletakkan di atas Equatorial equal-area stereonet, gambarkan lingkaran jaring dan beri tanda titik utara dan pusat jaring. Ukurkan arah kemiringan 130o searah jarum jam dari titik utara dan beri tanda posisi ini pada lingkaran jaring.
  • 14. lanjutan • Langkah 2 : Putar tanda arah kemiringan ke arah utara sampai berimpit dengan sumbu W – E. Ukurkan kemiringan 50o dari lingkaran luar ke arah pusat jaring. Dan gambar busur lingkaran besar. • Untuk menggambarkan kutub bidang, ukurkan 50o dari pusat jaring ke arah lingkaran luar jaring dan beri tanda titik, yang merupakan kutub bidang tersebut. • Langkah 3 : Putarkan ke posisi semula sehingga arah utara yang ditandai pada langkah 1 berimpit dengan arah utara jaring. Dengan demikian, bidang dengan orientasi kemiringan 50o dan arah kemiringan 130o telah tergambar.
  • 15.
  • 16. Penentuan kedudukan umum bidang-bidang diskontinu • Setelah terbentuk garis- garis kontur, maka akan didapat kutub kontur, yaitu daerah yang menggambarkan konsentrasi kutub bidang tertinggi. • Titik pusat kutub kontur merupakan kutub kedudukan umum bidang- bidang diskontinu, • Kedudukan umum bidang- bidang diskontinu adalah kebalikan dari cara penentuan kutub bidang diskontinu.
  • 18. Dua bidang mempunyai kemiringan 50o dan 30o dan arah kemiringan 130o dan 250o, yang saling berpotongan, sehingga perlu ditentukan arah (trend) dan penunjaman (plunge) dari garis perpotongannya Langkah 1 : Satu bidang (50o/130o) telah tergambarkan, dan penentuan lingkaran besar bidang kedua ditentukan dengan arah kemiringan 250o diputar sampai berimpit dengan sumbu W – E. Dan gambarkan lingkaran besar menurut kemiringan 30o. 18 05/04/2021 r. hariyanto Penentuan arah dan penunjaman garis perpotongan dua bidang
  • 19. Langkah 2 : Titik perpotongan dua lingkaran besar diputar sampai berimpit dengan sumbu W – E jaring dan plunge dari garis perpotongan diukur sebesar 20,5o. Langkah 3 : Kemudian gambar tersebut dikembalikan ke kedudukan semula sehingga tanda utara pada gambar berimpit dengan titik utara pada stereonet. Dan arah (trend) dari garis perpotongan didapat sebesar 200,5o. 19 05/04/2021 r. hariyanto
  • 20. Main types of block failures in slopes, and structural geology conditions likely to cause these failures: (a) plane failure in rock containing persistent joints dipping out of the slope face, and striking parallel to the face; (b) wedge failure on two intersecting discontinuities; (c) toppling failure in strong rock containing discontinuities dipping steeply into the face; and (d) circular failure in rock fill, very weak rock or closely fractured rock with randomly oriented discontinuities.
  • 21. Figure 2.1: Stereographic projections of the requirements for kinematically possible plane,wedge, and toppling failures (from Hoek and Bray, 1981).
  • 22. Identification of plane and wedge failures on a stereonet: (a) sliding along the line of intersection of planes A and B (αi) is possible where the plunge of this line is less than the dip of the slope face, measured in the direction of sliding, that is ψi < ψf; (b) wedge failure occurs along the line of intersection (dip direction αi) on slope with dip direction αf because dip directions of planes A and B (αA and αB) lie outside included angle between αi and αf; (c) plane failure occurs on plane A (dip direction αA) on slope with dip direction αf because dip direction of planes A lies inside included angle between αi and αf.
  • 23. Planar failure In Figure 2.18a, a potentially unstable planar block is formed by plane AA, which dips at a flatter angle than the face (ψA < ψf) and is said to ‘daylight’ on the face. However, sliding is not possible on plane BB which dips steeper than the face (ψB > ψf) and does not daylight. Similarly, discontinuity set CC dips into the face and sliding cannot occur on these planes, although toppling is possible. ψA < ψf
  • 24.
  • 25. The poles of the slope face and the discontinuity sets (symbol P) are plotted on the stereonet in Figure 2.18b, assuming that all the discontinuities strike parallel to the face. The position of these poles in relation to the slope face shows that the poles of all planes that daylight and are potentially unstable lie inside the pole of the slope face. This area is termed the daylight envelope and can be used to quickly identify potentially unstable blocks. The dip direction of the discontinuity sets will also influence stability. Plane sliding is not possible if the dip direction of the discontinuity differs from the dip direction of the face by more than about 20°. That is, the block of rock formed by the joints will have intact rock at one end that will have sufficient strength to resist instability. On the stereonet, this restriction on the dip direction of the planes is shown by two lines defining dip directions of (αf + 20°) and (αf − 20°). These two lines designate the lateral limits of the daylight envelope in Figure 2.18b.
  • 26.
  • 27. 27 Example of a plane failure within a slope consisting mostly of sandstone.
  • 28. Wedge failure Kinematics analysis of wedge failures (Figure 2.16b) can be carried out in a similar manner to that of plane failures. In this case, the pole of the line of intersection of the two discontinuities is plotted on the stereonet and sliding is possible if the pole daylights on the face, that is, (ψI < ψf). The direction of sliding of kinematically permissible wedges is less restrictive than that of plane failures because two planes with a wide range of orientations form release surfaces. A daylighting envelope for the line of intersection, as shown in Figure 2.18b, is wider than the envelope for plane failures. The wedge daylight envelope is the locus of all poles representing lines of intersection whose dip directions lie in the plane of the slope face.
  • 29. Figure 1.6: Example of a wedge failure in shale bedrock, State Route 2, West Virginia.
  • 30.
  • 31. 31
  • 33. Toppling failure For a toppling failure to occur, the dip direction of the discontinuities dipping into the face must be within about 20° of the dip direction of the face so that a series of slabs are formed parallel to the face. Also, the dip of the planes must be steep enough for interlayer slip to occur. If the faces of the layers have a friction angle ϕj, then slip will only occur if the direction of the applied compressive stress is at angle greater than ϕj with the normal to the layers. The direction of the major principal stress is parallel to the slope face (dip angle ψf), so interlayer slip and toppling failure will occur on planes with dip ψp when the following conditions are met (Goodman and Bray, 1976): These conditions on the dip and dip direction of planes that can develop toppling failures are defined in Figure 2.18b. The envelope defining the orientation of these planes lies at the opposite side of the stereonet from the sliding envelopes.
  • 34. Figure 2.2: (A) Kinematics of toppling failure; (B) stereographic projection of the requirement for toppling failure, indicating that the normals (poles to discontinuities) should plot in the shaded zone (Goodman, 1989). A toppling failure is likely to result when steep discontinuities are parallel to the slope face and dip into it (Hoek and Bray, 1981). According to Goodman (1989), a toppling failure involves inter-layer slip movement. While describing requirements for the occurrence of a toppling failure, Goodman (1989) stated: “If layers have an angle of friction Φj, slip will occur only if the direction of the applied compression makes an angle greater than the friction angle with the normal to the layers. Thus, as shown in Figure 2.2, a pre-condition for inter-layer slip is that the normals be inclined less steeply than a line inclined Φj above the plane of the slope. If the dip of the layers is σ, then toppling failure with a slope inclined α degrees with the horizontal can occur if (90 - σ) + Φj < α”.
  • 35.
  • 36.
  • 37. Longsoran bidang, baji, guling 37 05/04/2021 r. hariyanto
  • 39.