SlideShare a Scribd company logo
1 of 16
Orifice Calibration:
Two Phase Small Air
BY: JESSICA CATLIN, DYLAN HELM , AND YEN NGUYEN
Objective
 Orifice Flow Calibration
 Future Experiments
 Develop Model
 𝑄 = 𝑎(𝑖 − 𝑖 𝑜) 𝑏
 Flow Ranges (0-0.3 SCFM)
 a=0.0575, b=0.592
 Testing
Equipment
Gas Flow Meter Zero and Range Screws Control Valve
EHS&LP
 Air
 Leaks
 Water in Line
 Pressure Regulation
Data Model
 𝑄 𝑎 =
𝑉2−𝑉1
𝑡2−𝑡1
 𝑄𝑠 = (0.03531) ∗ 𝑄 𝑎 ∗ (
𝑇𝑠
𝑇
) ∗ (
𝑃
𝑃𝑠
)
 Constant is unit conversion from (L/min) to (SCFM)
 294.11= standard temperature (K)
 101.3= standard pressure (kPa)
Process Model
 𝑄 𝑎 = 𝐶 𝑜 𝐴 𝑜
2(∆𝑃)
𝜌(1−𝛽4)
 Horizontal pipe, steady state, inviscid, and incompressible
 𝑄𝑠 = 𝑎(𝑖 − 𝑖 𝑜) 𝑏
 Notice Standard Flow
Uncertainty
 Variables with uncertainty
 𝑉1, 𝑉2, 𝑡1, 𝑡2, 𝑃𝑎𝑡𝑚, 𝑃, 𝑇
𝜀 𝑄,95% =
𝑑𝑄
𝑑𝑉1
2
∗ 𝜀 𝑉1
2 +
𝑑𝑄
𝑑𝑉2
2
∗ 𝜀 𝑉2
2 +
𝑑𝑄
𝑑𝑡1
2
∗ 𝜀𝑡1
2 +
𝑑𝑄
𝑑𝑡2
2
∗ 𝜀𝑡2
2 +
𝑑𝑄
𝑑𝑃𝑎𝑡𝑚
2
∗ 𝜀 𝑃 𝑎𝑡𝑚
2 +
𝑑𝑄
𝑑𝑃
2
∗ 𝜀 𝑃
2 +
𝑑𝑄
𝑑𝑇
2
∗ 𝜀 𝑇
2
Expectations
 Square root model
 Unknown constant a is positive
 Unknown constant b is close to 0.5
 Average residual close to zero 0
0.5
1
1.5
2
2.5
3
3.5
0 2 4 6 8 10 12
Q
i-io
Expected Plot of Q vs. (i-io)
Experimental Plan
 Open necessary valves
 Set pressure regulators
 Adjust zero (𝑖 𝑜) and range
 Flow must be turned off for zero
 Attach the flow meter
 Set valve at random operating %
 Record the current (i)
Experimental Plan (cont.)
 Measure (𝑉2 − 𝑉1), T, and P
 1 minute interval
 Repeat fifteen times
 Plug data into spreadsheet
 Determine a and b using solver
 Plug model into NI LabVIEW
 Test the model
 9 trials
Data
Run Experimental Flow (Liters) Time (min) Actual Flow (L/min) Temperature (C) Pressure (kPa) Standard Flow (SCFM) Current (mA) i-io (mA) Modeled Flow Rate Q (ACFM) Squared Deviation
13 0.92 1 0.92 21.5 108.3 0.035 4 0.8 0.050 0.000246701
1 1.55 1 1.55 21 108.8 0.059 4.8 1.6 0.076 0.000294121
7 2.4 1 2.40 21.5 108.8 0.091 5.1 1.9 0.084 4.63685E-05
10 2.65 1 2.65 21.5 108.8 0.100 5.3 2.1 0.089 0.00012422
5 2.59 1 2.59 21.5 110.3 0.099 5.6 2.4 0.097 8.33137E-06
11 2.5 1 2.50 21.5 108.8 0.095 5.7 2.5 0.099 1.7948E-05
8 3.32 1 3.32 21.5 109.1 0.126 6 2.8 0.106 0.000412202
2 3.2 1 3.20 21.5 109.3 0.122 6.3 3.1 0.112 8.83274E-05
3 3.18 1 3.18 21.5 110.1 0.122 7.7 4.5 0.140 0.000331658
6 4.2 1 4.20 21.5 109.2 0.160 8.5 5.3 0.154 2.82703E-05
15 4.79 1 4.79 21.5 109.6 0.183 11 7.8 0.194 0.000126736
12 5.78 1 5.78 21.5 108.8 0.219 14.3 11.1 0.239 0.000406417
9 7.75 1 7.75 21.5 109 0.294 16.4 13.2 0.265 0.000850742
14 7.72 1 7.72 21.5 109.8 0.295 17.7 14.5 0.280 0.000225965
4 7.52 1 7.52 21.5 110.2 0.288 20.1 16.9 0.307 0.000329187
Sum of Squared Deviations 0.003537195
Solution:
a= 0.057506788
b= 0.59197892
Results
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0 5 10 15 20
Q
(i-io)
Q vs. (i-io)
Model
Experiment
Data Model Testing
Q modeled
(SCFM)
Q measured (L/min)
Pressure
(KPa)
Temperature (K)
Q measured
(SCFM)
Percent Error
(%)
0.073 4.290 108.8 294.5 0.084317629 -15.5
0.072 4.280 108.8 294.5 0.084121084 -16.8
0.075 4.350 108.8 294.5 0.085496896 -14.0
0.083 4.940 109.3 294.5 0.097539227 -17.5
0.109 6.000 108.8 294.5 0.117926754 -8.2
0.105 5.910 108.8 294.5 0.116157852 -10.6
0.169 9.150 108.8 294.5 0.179838299 -6.4
0.176 8.700 108.8 294.5 0.170993793 2.8
0.166 8.41 108.8 294.5 0.165294 0.4
Statistical Test Results
Taken from Google Images
Statistical Test: Two-tailed t-test
Null Hypothesis r̄ = 0
Alternative Hypothesis r̄ ≠ 0
Significance level α = 0.05 (95% confidence level )
Mean of Residuals (r̄)
Sample Standard
Deviation (sr)
Number of random samples
(N)
Test Statistics
(t)
0.061217 0.0577 15 0.0781
Data from Student's t-Distribution Table
Two-tails (P-value) 0.5 0.5 < p-value < 1.0 1
Degree of freedom (14) 0.692 0.0781 0
Discussion
2σ = 0.03
Propagation of Uncertainty
εV1 (L) εV2 (L) εt1 (min) εt2 (min) εPatm (kPA) εPgage (kPA) εT (ᵒC)
0.2 0.2 0.016666667 0.016666667 1 1 1
dQ/dV1 dQ/dV2 dQ/dt1 dQ/dt2 dQ/dPatm dQ/dPgage dQ/dT Error (95%)
-0.0379 0.0379 0.0348 -0.0348 0.00032 0.00032 -0.00012 0.00860
-0.0381 0.0381 0.0591 -0.0591 0.00054 0.00054 -0.0002 0.00872
-0.0381 0.0381 0.0913 -0.0913 0.00084 0.00084 -0.00031 0.00884
-0.0381 0.0381 0.1008 -0.1008 0.00093 0.00093 -0.00034 0.00888
-0.0386 0.0386 0.0999 -0.0999 0.00091 0.00091 -0.00034 0.00899
-0.0381 0.0381 0.0951 -0.0951 0.00087 0.00087 -0.00032 0.00885
-0.0382 0.0382 0.1267 -0.1267 0.00116 0.00116 -0.00043 0.00906
-0.0382 0.0382 0.1223 -0.1223 0.00112 0.00112 -0.00042 0.00905
-0.0385 0.0385 0.1225 -0.1225 0.00111 0.00111 -0.00042 0.00911
-0.0382 0.0382 0.1604 -0.1604 0.00147 0.00147 -0.00054 0.00932
-0.0383 0.0383 0.1836 -0.1836 0.00168 0.00168 -0.00062 0.00954
-0.0381 0.0381 0.2199 -0.2199 0.00202 0.00202 -0.00075 0.00985
-0.0381 0.0381 0.2954 -0.2954 0.00271 0.00271 -0.001 0.01075
-0.0384 0.0384 0.2965 -0.2965 0.00270 0.00270 -0.00101 0.01080
-0.0385 0.0385 0.2898 -0.2898 0.00263 0.00263 -0.00098 0.01074
Average Error (95%) 0.00941
Conclusion
 Unknown Errors
 Volume Measurements
 Longer Time Intervals
 Operating Limits
Orifice Calibration:
Two Phase Small Air
JESSICA CATLIN, DYLAN HELM, AND YEN NGUYEN
Questions?

More Related Content

What's hot

Right atrial pressure as back-pressure for venous return
Right atrial pressure as back-pressure for venous returnRight atrial pressure as back-pressure for venous return
Right atrial pressure as back-pressure for venous returnscanFOAM
 
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and...
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and...Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and...
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and...J. García - Verdugo
 
Process simulation introduction 2018
Process simulation introduction 2018Process simulation introduction 2018
Process simulation introduction 2018DJHPIDesign
 
Batch Reactors. Chemcad Dynamic Simulation
Batch Reactors. Chemcad Dynamic SimulationBatch Reactors. Chemcad Dynamic Simulation
Batch Reactors. Chemcad Dynamic SimulationDJHPIDesign
 
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Multiple Regression
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Multiple RegressionJavier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Multiple Regression
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Multiple RegressionJ. García - Verdugo
 
IRJET- Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...
IRJET-  	  Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...IRJET-  	  Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...
IRJET- Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...IRJET Journal
 
Confidence Composition (CoCo) for Dynamic Assurance of Learning-Enabled Auton...
Confidence Composition (CoCo) for Dynamic Assurance of Learning-Enabled Auton...Confidence Composition (CoCo) for Dynamic Assurance of Learning-Enabled Auton...
Confidence Composition (CoCo) for Dynamic Assurance of Learning-Enabled Auton...Ivan Ruchkin
 

What's hot (11)

Time Series proj final
Time Series proj finalTime Series proj final
Time Series proj final
 
Right atrial pressure as back-pressure for venous return
Right atrial pressure as back-pressure for venous returnRight atrial pressure as back-pressure for venous return
Right atrial pressure as back-pressure for venous return
 
Seepage new(2)
Seepage new(2)Seepage new(2)
Seepage new(2)
 
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and...
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and...Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and...
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Autocorrelation and...
 
Process simulation introduction 2018
Process simulation introduction 2018Process simulation introduction 2018
Process simulation introduction 2018
 
Batch Reactors. Chemcad Dynamic Simulation
Batch Reactors. Chemcad Dynamic SimulationBatch Reactors. Chemcad Dynamic Simulation
Batch Reactors. Chemcad Dynamic Simulation
 
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Multiple Regression
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Multiple RegressionJavier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Multiple Regression
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Multiple Regression
 
IRJET- Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...
IRJET-  	  Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...IRJET-  	  Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...
IRJET- Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...
 
Confidence Composition (CoCo) for Dynamic Assurance of Learning-Enabled Auton...
Confidence Composition (CoCo) for Dynamic Assurance of Learning-Enabled Auton...Confidence Composition (CoCo) for Dynamic Assurance of Learning-Enabled Auton...
Confidence Composition (CoCo) for Dynamic Assurance of Learning-Enabled Auton...
 
Ch04
Ch04Ch04
Ch04
 
Elin vanlierde sediment measurements
Elin vanlierde sediment measurementsElin vanlierde sediment measurements
Elin vanlierde sediment measurements
 

Viewers also liked

Ecología, educación y conciencia ambientalista
Ecología, educación y conciencia ambientalistaEcología, educación y conciencia ambientalista
Ecología, educación y conciencia ambientalistajoxela
 
Pressure drop model presentation april 19th
Pressure drop model presentation april 19thPressure drop model presentation april 19th
Pressure drop model presentation april 19thYen Nguyen
 
Somejit chakraborty presentation
Somejit chakraborty presentationSomejit chakraborty presentation
Somejit chakraborty presentationSomejit Chakraborty
 
Geometría molecular
Geometría molecularGeometría molecular
Geometría molecularAnalia Burgos
 
Ramadan 2016 corporate events
Ramadan 2016 corporate eventsRamadan 2016 corporate events
Ramadan 2016 corporate eventsHamada Mohsen
 
Mixing Dynamics Non-ideal CST final Mar 7th
Mixing Dynamics Non-ideal CST final Mar 7thMixing Dynamics Non-ideal CST final Mar 7th
Mixing Dynamics Non-ideal CST final Mar 7thYen Nguyen
 

Viewers also liked (10)

Test
TestTest
Test
 
Ingeniería Comercial
Ingeniería ComercialIngeniería Comercial
Ingeniería Comercial
 
Ecología, educación y conciencia ambientalista
Ecología, educación y conciencia ambientalistaEcología, educación y conciencia ambientalista
Ecología, educación y conciencia ambientalista
 
Pressure drop model presentation april 19th
Pressure drop model presentation april 19thPressure drop model presentation april 19th
Pressure drop model presentation april 19th
 
Somejit chakraborty presentation
Somejit chakraborty presentationSomejit chakraborty presentation
Somejit chakraborty presentation
 
Tarea 2
Tarea 2Tarea 2
Tarea 2
 
Geometría molecular
Geometría molecularGeometría molecular
Geometría molecular
 
Ramadan 2016 corporate events
Ramadan 2016 corporate eventsRamadan 2016 corporate events
Ramadan 2016 corporate events
 
Mixing Dynamics Non-ideal CST final Mar 7th
Mixing Dynamics Non-ideal CST final Mar 7thMixing Dynamics Non-ideal CST final Mar 7th
Mixing Dynamics Non-ideal CST final Mar 7th
 
Cheri's resume 2016-1B
Cheri's resume 2016-1BCheri's resume 2016-1B
Cheri's resume 2016-1B
 

Similar to Orifice Calibration Model for Two-Phase Small Air Flow

Cobb-douglas production function
Cobb-douglas production functionCobb-douglas production function
Cobb-douglas production functionSuniya Sheikh
 
Cobb-douglas production function
Cobb-douglas production functionCobb-douglas production function
Cobb-douglas production functionSuniya Sheikh
 
LSBB_NOK_bob1
LSBB_NOK_bob1LSBB_NOK_bob1
LSBB_NOK_bob1THWIN BOB
 
Douglas C. Montgomery - Design and Analysis of Experiments, solutions manual.pdf
Douglas C. Montgomery - Design and Analysis of Experiments, solutions manual.pdfDouglas C. Montgomery - Design and Analysis of Experiments, solutions manual.pdf
Douglas C. Montgomery - Design and Analysis of Experiments, solutions manual.pdfLeonardoPassos39
 
Solutions. Design and Analysis of Experiments. Montgomery
Solutions. Design and Analysis of Experiments. MontgomerySolutions. Design and Analysis of Experiments. Montgomery
Solutions. Design and Analysis of Experiments. MontgomeryByron CZ
 
Vu_HPSC2012_02.pptx
Vu_HPSC2012_02.pptxVu_HPSC2012_02.pptx
Vu_HPSC2012_02.pptxQucngV
 
Quality Control Chart
 Quality Control Chart Quality Control Chart
Quality Control ChartAshish Gupta
 
Statistical process control ppt @ doms
Statistical process control ppt @ doms Statistical process control ppt @ doms
Statistical process control ppt @ doms Babasab Patil
 
Design of experiment methodology
Design of experiment methodologyDesign of experiment methodology
Design of experiment methodologyCHUN-HAO KUNG
 
ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"Atin Kumar
 
Chap 9 A Process Capability & Spc Hk
Chap 9 A Process Capability & Spc HkChap 9 A Process Capability & Spc Hk
Chap 9 A Process Capability & Spc Hkajithsrc
 
LISUN Compact Goniophotometer LSG-1200A
LISUN Compact Goniophotometer LSG-1200ALISUN Compact Goniophotometer LSG-1200A
LISUN Compact Goniophotometer LSG-1200A世满 江
 
Compact Goniophotometer
Compact GoniophotometerCompact Goniophotometer
Compact GoniophotometerLisun Group
 
Motor speeed Erdi Karaçal Mechanical Engineer
Motor speeed  Erdi Karaçal Mechanical EngineerMotor speeed  Erdi Karaçal Mechanical Engineer
Motor speeed Erdi Karaçal Mechanical EngineerErdi Karaçal
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_JunMDO_Lab
 
Statistical process control (spc)
Statistical process control (spc)Statistical process control (spc)
Statistical process control (spc)Dinah Faye Indino
 
A Novel Extended Adaptive Thresholding for Industrial Alarm Systems
A Novel Extended Adaptive Thresholding for Industrial Alarm SystemsA Novel Extended Adaptive Thresholding for Industrial Alarm Systems
A Novel Extended Adaptive Thresholding for Industrial Alarm SystemsKoorosh Aslansefat
 

Similar to Orifice Calibration Model for Two-Phase Small Air Flow (20)

Cobb-douglas production function
Cobb-douglas production functionCobb-douglas production function
Cobb-douglas production function
 
Cobb-douglas production function
Cobb-douglas production functionCobb-douglas production function
Cobb-douglas production function
 
LSBB_NOK_bob1
LSBB_NOK_bob1LSBB_NOK_bob1
LSBB_NOK_bob1
 
Douglas C. Montgomery - Design and Analysis of Experiments, solutions manual.pdf
Douglas C. Montgomery - Design and Analysis of Experiments, solutions manual.pdfDouglas C. Montgomery - Design and Analysis of Experiments, solutions manual.pdf
Douglas C. Montgomery - Design and Analysis of Experiments, solutions manual.pdf
 
Solutions. Design and Analysis of Experiments. Montgomery
Solutions. Design and Analysis of Experiments. MontgomerySolutions. Design and Analysis of Experiments. Montgomery
Solutions. Design and Analysis of Experiments. Montgomery
 
ARIMA.pptx
ARIMA.pptxARIMA.pptx
ARIMA.pptx
 
Facility Location
Facility Location Facility Location
Facility Location
 
Vu_HPSC2012_02.pptx
Vu_HPSC2012_02.pptxVu_HPSC2012_02.pptx
Vu_HPSC2012_02.pptx
 
Quality Control Chart
 Quality Control Chart Quality Control Chart
Quality Control Chart
 
Statistical process control ppt @ doms
Statistical process control ppt @ doms Statistical process control ppt @ doms
Statistical process control ppt @ doms
 
Design of experiment methodology
Design of experiment methodologyDesign of experiment methodology
Design of experiment methodology
 
ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"
 
Chap 9 A Process Capability & Spc Hk
Chap 9 A Process Capability & Spc HkChap 9 A Process Capability & Spc Hk
Chap 9 A Process Capability & Spc Hk
 
LISUN Compact Goniophotometer LSG-1200A
LISUN Compact Goniophotometer LSG-1200ALISUN Compact Goniophotometer LSG-1200A
LISUN Compact Goniophotometer LSG-1200A
 
Compact Goniophotometer
Compact GoniophotometerCompact Goniophotometer
Compact Goniophotometer
 
Ab data
Ab dataAb data
Ab data
 
Motor speeed Erdi Karaçal Mechanical Engineer
Motor speeed  Erdi Karaçal Mechanical EngineerMotor speeed  Erdi Karaçal Mechanical Engineer
Motor speeed Erdi Karaçal Mechanical Engineer
 
ATE_MAO_2010_Jun
ATE_MAO_2010_JunATE_MAO_2010_Jun
ATE_MAO_2010_Jun
 
Statistical process control (spc)
Statistical process control (spc)Statistical process control (spc)
Statistical process control (spc)
 
A Novel Extended Adaptive Thresholding for Industrial Alarm Systems
A Novel Extended Adaptive Thresholding for Industrial Alarm SystemsA Novel Extended Adaptive Thresholding for Industrial Alarm Systems
A Novel Extended Adaptive Thresholding for Industrial Alarm Systems
 

Orifice Calibration Model for Two-Phase Small Air Flow

  • 1. Orifice Calibration: Two Phase Small Air BY: JESSICA CATLIN, DYLAN HELM , AND YEN NGUYEN
  • 2. Objective  Orifice Flow Calibration  Future Experiments  Develop Model  𝑄 = 𝑎(𝑖 − 𝑖 𝑜) 𝑏  Flow Ranges (0-0.3 SCFM)  a=0.0575, b=0.592  Testing
  • 3. Equipment Gas Flow Meter Zero and Range Screws Control Valve
  • 4. EHS&LP  Air  Leaks  Water in Line  Pressure Regulation
  • 5. Data Model  𝑄 𝑎 = 𝑉2−𝑉1 𝑡2−𝑡1  𝑄𝑠 = (0.03531) ∗ 𝑄 𝑎 ∗ ( 𝑇𝑠 𝑇 ) ∗ ( 𝑃 𝑃𝑠 )  Constant is unit conversion from (L/min) to (SCFM)  294.11= standard temperature (K)  101.3= standard pressure (kPa)
  • 6. Process Model  𝑄 𝑎 = 𝐶 𝑜 𝐴 𝑜 2(∆𝑃) 𝜌(1−𝛽4)  Horizontal pipe, steady state, inviscid, and incompressible  𝑄𝑠 = 𝑎(𝑖 − 𝑖 𝑜) 𝑏  Notice Standard Flow
  • 7. Uncertainty  Variables with uncertainty  𝑉1, 𝑉2, 𝑡1, 𝑡2, 𝑃𝑎𝑡𝑚, 𝑃, 𝑇 𝜀 𝑄,95% = 𝑑𝑄 𝑑𝑉1 2 ∗ 𝜀 𝑉1 2 + 𝑑𝑄 𝑑𝑉2 2 ∗ 𝜀 𝑉2 2 + 𝑑𝑄 𝑑𝑡1 2 ∗ 𝜀𝑡1 2 + 𝑑𝑄 𝑑𝑡2 2 ∗ 𝜀𝑡2 2 + 𝑑𝑄 𝑑𝑃𝑎𝑡𝑚 2 ∗ 𝜀 𝑃 𝑎𝑡𝑚 2 + 𝑑𝑄 𝑑𝑃 2 ∗ 𝜀 𝑃 2 + 𝑑𝑄 𝑑𝑇 2 ∗ 𝜀 𝑇 2
  • 8. Expectations  Square root model  Unknown constant a is positive  Unknown constant b is close to 0.5  Average residual close to zero 0 0.5 1 1.5 2 2.5 3 3.5 0 2 4 6 8 10 12 Q i-io Expected Plot of Q vs. (i-io)
  • 9. Experimental Plan  Open necessary valves  Set pressure regulators  Adjust zero (𝑖 𝑜) and range  Flow must be turned off for zero  Attach the flow meter  Set valve at random operating %  Record the current (i)
  • 10. Experimental Plan (cont.)  Measure (𝑉2 − 𝑉1), T, and P  1 minute interval  Repeat fifteen times  Plug data into spreadsheet  Determine a and b using solver  Plug model into NI LabVIEW  Test the model  9 trials
  • 11. Data Run Experimental Flow (Liters) Time (min) Actual Flow (L/min) Temperature (C) Pressure (kPa) Standard Flow (SCFM) Current (mA) i-io (mA) Modeled Flow Rate Q (ACFM) Squared Deviation 13 0.92 1 0.92 21.5 108.3 0.035 4 0.8 0.050 0.000246701 1 1.55 1 1.55 21 108.8 0.059 4.8 1.6 0.076 0.000294121 7 2.4 1 2.40 21.5 108.8 0.091 5.1 1.9 0.084 4.63685E-05 10 2.65 1 2.65 21.5 108.8 0.100 5.3 2.1 0.089 0.00012422 5 2.59 1 2.59 21.5 110.3 0.099 5.6 2.4 0.097 8.33137E-06 11 2.5 1 2.50 21.5 108.8 0.095 5.7 2.5 0.099 1.7948E-05 8 3.32 1 3.32 21.5 109.1 0.126 6 2.8 0.106 0.000412202 2 3.2 1 3.20 21.5 109.3 0.122 6.3 3.1 0.112 8.83274E-05 3 3.18 1 3.18 21.5 110.1 0.122 7.7 4.5 0.140 0.000331658 6 4.2 1 4.20 21.5 109.2 0.160 8.5 5.3 0.154 2.82703E-05 15 4.79 1 4.79 21.5 109.6 0.183 11 7.8 0.194 0.000126736 12 5.78 1 5.78 21.5 108.8 0.219 14.3 11.1 0.239 0.000406417 9 7.75 1 7.75 21.5 109 0.294 16.4 13.2 0.265 0.000850742 14 7.72 1 7.72 21.5 109.8 0.295 17.7 14.5 0.280 0.000225965 4 7.52 1 7.52 21.5 110.2 0.288 20.1 16.9 0.307 0.000329187 Sum of Squared Deviations 0.003537195 Solution: a= 0.057506788 b= 0.59197892
  • 12. Results 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 5 10 15 20 Q (i-io) Q vs. (i-io) Model Experiment Data Model Testing Q modeled (SCFM) Q measured (L/min) Pressure (KPa) Temperature (K) Q measured (SCFM) Percent Error (%) 0.073 4.290 108.8 294.5 0.084317629 -15.5 0.072 4.280 108.8 294.5 0.084121084 -16.8 0.075 4.350 108.8 294.5 0.085496896 -14.0 0.083 4.940 109.3 294.5 0.097539227 -17.5 0.109 6.000 108.8 294.5 0.117926754 -8.2 0.105 5.910 108.8 294.5 0.116157852 -10.6 0.169 9.150 108.8 294.5 0.179838299 -6.4 0.176 8.700 108.8 294.5 0.170993793 2.8 0.166 8.41 108.8 294.5 0.165294 0.4
  • 13. Statistical Test Results Taken from Google Images Statistical Test: Two-tailed t-test Null Hypothesis r̄ = 0 Alternative Hypothesis r̄ ≠ 0 Significance level α = 0.05 (95% confidence level ) Mean of Residuals (r̄) Sample Standard Deviation (sr) Number of random samples (N) Test Statistics (t) 0.061217 0.0577 15 0.0781 Data from Student's t-Distribution Table Two-tails (P-value) 0.5 0.5 < p-value < 1.0 1 Degree of freedom (14) 0.692 0.0781 0
  • 14. Discussion 2σ = 0.03 Propagation of Uncertainty εV1 (L) εV2 (L) εt1 (min) εt2 (min) εPatm (kPA) εPgage (kPA) εT (ᵒC) 0.2 0.2 0.016666667 0.016666667 1 1 1 dQ/dV1 dQ/dV2 dQ/dt1 dQ/dt2 dQ/dPatm dQ/dPgage dQ/dT Error (95%) -0.0379 0.0379 0.0348 -0.0348 0.00032 0.00032 -0.00012 0.00860 -0.0381 0.0381 0.0591 -0.0591 0.00054 0.00054 -0.0002 0.00872 -0.0381 0.0381 0.0913 -0.0913 0.00084 0.00084 -0.00031 0.00884 -0.0381 0.0381 0.1008 -0.1008 0.00093 0.00093 -0.00034 0.00888 -0.0386 0.0386 0.0999 -0.0999 0.00091 0.00091 -0.00034 0.00899 -0.0381 0.0381 0.0951 -0.0951 0.00087 0.00087 -0.00032 0.00885 -0.0382 0.0382 0.1267 -0.1267 0.00116 0.00116 -0.00043 0.00906 -0.0382 0.0382 0.1223 -0.1223 0.00112 0.00112 -0.00042 0.00905 -0.0385 0.0385 0.1225 -0.1225 0.00111 0.00111 -0.00042 0.00911 -0.0382 0.0382 0.1604 -0.1604 0.00147 0.00147 -0.00054 0.00932 -0.0383 0.0383 0.1836 -0.1836 0.00168 0.00168 -0.00062 0.00954 -0.0381 0.0381 0.2199 -0.2199 0.00202 0.00202 -0.00075 0.00985 -0.0381 0.0381 0.2954 -0.2954 0.00271 0.00271 -0.001 0.01075 -0.0384 0.0384 0.2965 -0.2965 0.00270 0.00270 -0.00101 0.01080 -0.0385 0.0385 0.2898 -0.2898 0.00263 0.00263 -0.00098 0.01074 Average Error (95%) 0.00941
  • 15. Conclusion  Unknown Errors  Volume Measurements  Longer Time Intervals  Operating Limits
  • 16. Orifice Calibration: Two Phase Small Air JESSICA CATLIN, DYLAN HELM, AND YEN NGUYEN Questions?