SlideShare a Scribd company logo
1 of 55
Chapter 9: Box-Jenkins (ARIMA)
Methodology
ARIMA Models
• The Box-Jenkins methodology refers to a set of
procedures for identifying, fitting and checking
ARIMA models with time series.
•
• The AR in ARIMA refers to Autoregressive models
• The MA in ARIMA refers to Moving Average
models
• The I in ARIMA refers to the number of lags used
in differencing the data
Autoregressive Models
Yt = 0 + 1Yt-1 + 2Yt-2 … + pYt-p + et,
• where t = coefficients to be estimated and
p = number of lags
• The number of lags (p) used in the model is a
parameter and its value must be determined
by the user. An autoregressive model with a
lag of two will be denoted as AR(2).
•
Moving Average Models
• Yt =  + et - w1et-1 - w2et-2 - … wqet-q,
• where wt = coefficients to be estimated, and et
are the error terms
• The number of error terms used in the model, q,
is a parameter and its value must be determined
by the user. A moving average model with two
error terms will be denoted as MA(2).
•
ARMA models
• Combining AR and MA models, an ARMA(p,q)
model is as follows:
• Yt = 0 + 1Yt-1 + 2Yt-2 … + pYt-p + et, - w1et-1
- w2et-2 - … wqet-q,
Differences
• Differences of the time series may be used if it is not
stationary. In some cases, a difference of the
differences may be necessary before a stationary data
is obtained. We use the notation “d” to indicate the
number of times the time series is differenced to
obtain a stationary series.
•
• ARIMA Notation: ARIMA(p,d,q) = An ARIMA model
with the time series differenced d times as the
response variable with a p-order autoregressive model
mixed with q-order moving average model.
•
Model Identification
• We use ACF (Autocorrelation function) and
PACF (Partial Autocorrelation function) . ACF
measures the correlation between a time
series and its past values at different time
lags. (i.e.corr(yt,yt−k),k=1,2,...)
• PACF measures the autocorrelation between
Yt and Yt-k, when the effects of other time lags,
1, 2, .., k-1, are removed.
AR(1):Yt=0+ 1Yt-1+t
18.05.2023
8
18.05.2023
-1
1
0 k
-1
1
0 k



    
-1
1
0 k
-1
1
0 k










ACF PACF
AR(2):Yt=0+ 1Yt-1+ 2Yt-2 +t
18.05.2023
9
18.05.2023
-1
1
0 k
-1
1
0 k



    
-1
1
0 k
-1
1
0 k










ACF PACF


MA(1):Yt=+t- 1t-1
18.05.2023
10
18.05.2023
-1
1
0 k
-1
1
0 k

-1
1
0 k
-1
1
0 k










ACF PACF
MA(2):Yt=+t- 1t-1 - 2t-2
18.05.2023
11
18.05.2023
-1
1
0 k
-1
1
0 k
-1
1
0 k
-1
1
0 k

ACF PACF













ARMA(1,1):Yt= 0+ 1Yt-1 +t- 1t-1
18.05.2023
12
-1
1
0 k
-1
1
0 k
Auto Correlation Partial Auto Correlation









ARMA(1,1):Yt= 0+ 1Yt-1 +t- 1t-1
18.05.2023
13
18.05.2023
-1
1
0 k
-1
1
0 k
Auto Correlation Partial Auto Correlation
AR, MA or ARMA?
Autocorrelations Partial
Autocorrelations
MA(q) Cut off after the
order of q of the
process
Die out
AR(p) Die out Cut off after the
order of p of the
process
ARMA(p,q) Die out Die out
Model Building Strategy
• Step 1: Model identification
Plot the time series/ACF and examine whether it is
stationary. If not, try some transformation and or
differencing, until the data seems stationary. Compare ACF
and PACF of the time series data and identify the ARIMA
model to be used. To judge the significance of
autocorrelation and partial autocorrelation, the
corresponding sample values may be compared with ±2/ .
Use the principle of parsimony.
• Step 2: Model estimation
Use SPSS or other package to estimate the model
parameters. t-test may be used to judge whether a
parameter may be dropped from the model.
n
n
Model Building Strategy
• Step 3: Model checking
• The model will be considered adequate if the residuals
are random. The following three procedures may be used.
• Residual plots as in regression may be used,
• rk(e) must be within ±2/ of zero, and
• L-Q test may be used to test whether a group
autocorrelation of lags 1, 2,.. m, is significant.
•
• Step 4: Model forecasting
• SPSS generates forecasts for a given number of future
periods.
n
Model Selection Criteria
• Akaike Information Criterion (AIC) selects the best
model from a group of candidate models as the
one that minimizes
• Bayesian Information Criterion (BIC) selects the
best model e that minimizes
where σ2 residual variance
2 2
AIC=ln r
n
 
2 lnn
BIC=ln r
n
 
Example 1
-1
-0.5
0
0.5
1
0 2 4 6 8 10 12 14 16
lag
ACF for Y
+- 1.96/T^0.5
-1
-0.5
0
0.5
1
0 2 4 6 8 10 12 14 16
lag
PACF for Y
+- 1.96/T^0.5
Example 2
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0 5 10 15 20
lag
ACF for C1
+- 1.96/T^0.5
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3
0.4
0 5 10 15 20
lag
PACF for C1
+- 1.96/T^0.5
Example 3
18.05.2023
20
18.05.2023
-0.23 -0.2 -1.93 -0.97 0.1
0.63 -0.21 1.87 0.83 -0.62
0.48 0.91 -0.97 -0.33 2.27
-0.83 -0.36 0.46 0.91 -0.62
-0.03 0.48 2.12 -1.13 0.74
1.31 0.61 -2.11 2.22 -0.16
0.86 -1.38 0.7 0.8 1.34
-1.28 -0.04 0.69 -1.95 -1.83
0 0.9 -0.24 2.61 0.31
-0.63 1.79 0.34 0.59 1.13
0.08 -0.37 0.6 0.71 -0.87
-1.3 0.4 0.15 -0.84 1.45
1.48 -1.19 -0.02 -0.11 -1.95
-0.28 0.98 0.46 1.27 -0.51
-0.79 -1.51 -0.54 -0.8 -0.41
1.86 0.9 0.89 -0.76 0.49
0.07 -1.56 1.07 1.58 1.54
0.09 2.18 0.2 -0.38 -0.96
Example 3
18.05.2023
21
18.05.2023
Let’s look at ACF and PACF
Example 3
18.05.2023
22
18.05.2023
-3
-2
-1
0
1
2
3
1 9 17 25 33 41 49 57 65 73 81 89
Example 3
18.05.2023
23
18.05.2023
-1
1
0 k
-1
1
0 k

Auto Correlation Partial Auto Correlation
ATR şirketi üretim hedefleri Öngörüsü
18.05.2023
24
18.05.2023
MA(1):Yt=+t+ 1t-1
1
5875
.
0
1513
.
0
ˆ


 t
Y 
ATR şirketi üretim hedefleri Öngörüsü
18.05.2023
25
18.05.2023
Relative change in each estimate less than 0.0010
Final Estimates of Parameters
Type Coef SE Coef T P
MA 1 0.5875 0.0864 6.80 0.000
Constant 0.15129 0.04022 3.76
0.000
Mean 0.15129 0.04022
Number of observations: 90
Residuals: SS = 74.4933 (backforecasts excluded)
MS = 0.8465 DF = 88
Modified Box-Pierce (Ljung-Box) Chi-Square statistic
Lag 12 24 36 48
Chi-Square 9.1 10.8 17.3 31.5
DF 10 22 34 46
P-Value 0.524 0.977 0.992 0.950
Forecasts from period 90
95% Limits
Period Forecast Lower Upper Actual
91 0.43350 -1.37018 2.23719
92 0.15129 -1.94064 2.24322
Example 3
18.05.2023
26
18.05.2023
Example 3
18.05.2023
27
18.05.2023
Obs. # Actual Forecast Error
1 -0.23 0.101969 -0.331969
2 0.63 0.346323 0.283677
3 0.48 -0.015371 0.495371
4 -0.83 -0.139741 -0.690259
5 -0.03 0.556819 -0.586819
.
.
.
.
.
.
.
.
.
.
.
.
86 -0.51 1.06829 -1.57829
87 -0.41 1.07854 -1.48854
88 0.49 1.02581 -0.53581
89 1.54 0.46608 1.07392
90 -0.96 -0.47964 -0.48036
91forecast
92Forecast
90
91 5875
.
0
1513
.
0
ˆ 


Y )
4804
.
0
(
5875
.
0
1513
.
0 

 4335
.
0

0.4335
0.1513
91
92 5875
.
0
1513
.
0
ˆ 


Y )
000
.
0
(
5875
.
0
1513
.
0 
 1513
.
0

0.4335 0.0000
Example
• The analyst for the ISC Corporation was asked to
develop forecasts for the closing prices of ISC stock.
• The stock has been languishing for some time with
little growth, and senior management wanted some
projections to discuss with the board of directors.
• The ISC stock prices are plotted in the following
slide.
Dr. Mohammed Alahmed
28
Example 4:Stock prices of ISC
18.05.2023
29
18.05.2023
235 200 250 270 275
320 290 225 240 205
115 220 125 275 265
355 400 295 225 245
190 275 250 285 170
320 185 355 250 175
275 370 280 310 270
205 255 370 220 225
295 285 250 320 340
240 250 290 215 190
355 300 225 260 250
175 225 270 190 300
285 285 180 295 195
Example 4: ISC
Index
ISC
60
54
48
42
36
30
24
18
12
6
1
400
350
300
250
200
150
100
Time Series Plot of ISC corporation Stock
Dr. Mohammed Alahmed
30
Example 4
• The plot of the stock prices suggests the series is
stationary.
• The stock prices vary about a fixed level of
approximately 250.
• Is the Box-Jenkins methodology appropriate for this
data series?
• The ACF and PACF for the stock price series are
reported in the following two slides.
Dr. Mohammed Alahmed
31
Example 4
Lag
Autocorrelation
20
18
16
14
12
10
8
6
4
2
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
Autocorrelation Function for ISC
(with 5% significance limits for the autocorrelations)
Dr. Mohammed Alahmed
32
Lag
Partial
Autocorrelation
20
18
16
14
12
10
8
6
4
2
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
Partial Autocorrelation Function for ISC
(with 5% significance limits for the partial autocorrelations)
Example 4
• The sample ACF alternate in sign and decline to zero
after lag 2.
• The sample PACF are similar are close to zero after
time lag 2.
• These are consistent with an AR(2) or ARIMA(2,0,0)
model
• AR(2) model is fit to the data.
• WE include a constant term to allow for a nonzero
level.
Dr. Mohammed Alahmed
33
Example 4
18.05.2023
34
18.05.2023 Pazarlıoğlu-Güneş
Looks like AR (2)
-1
1
0 k
-1
1
0 k











Example 4
• The estimated coefficient 2 is not significant (t=1.75) at
5% level but is significant at the 10 % level.
• The residual ACF and PACF are given in the following
two slides.
• The ACF and PACF are well within their two standard
error limits.
Dr. Mohammed Alahmed
35
Final Estimates of Parameters
Type Coef SE T P
AR 1 -0.3243 0.1246 -2.60 0.012
AR 2 0.2192 0.1251 1.75 0.085
Constant 284.903 6.573 43.34 0.000
Example 4
36
AR(2):Yt=0+ 1Yt-1+ 2Yt-2 +t
2
t
1
t
t Y
219
.
0
Y
324
.
0
9
.
284
Ŷ 
 


Example 4
Lag
Autocorrelation
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
ACF of Residuals for ISC
(with 5% significance limits for the autocorrelations)
Dr. Mohammed Alahmed
37
Lag
Partial
Autocorrelation
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
PACF of Residuals for ISC
(with 5% significance limits for the partial autocorrelations)
Forecast for Example 4
38
Obs. No Actual Forecast Error
1 235 248.416 -13.416
2 320 269.842 50.158
3 115 232.664 -117.664
4 355 317.771 37.229
5 190 195.006 -5.006
.
.
.
.
.
.
.
.
.
.
.
.
61 340 271.141 68.8586
62 190 223.987 -33.9866
63 250 297.837 -47.8371
64 300 245.496 54.5041
65 195 242.438 -47.4377
66Forecast
67Forecast
64
65
66 Y
219
.
0
Y
324
.
0
9
.
284
Ŷ 


287.4
234.5
287.445 -0.0450
)
300
(
219
.
0
)
195
(
324
.
0
9
.
284 

 4
.
287

65
66
67 Y
219
.
0
Y
324
.
0
9
.
284
Ŷ 

 )
195
(
219
.
0
)
4
.
287
(
324
.
0
9
.
284 

 5
.
234

Example 5
Minutes
Number
of
Users
100
90
80
70
60
50
40
30
20
10
1
240
220
200
180
160
140
120
100
80
Time Series Plot of Number of Users
Dr. Mohammed Alahmed
39
Example 5
Lag
Autocorrelation
20
18
16
14
12
10
8
6
4
2
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
Autocorrelation Function for Number of Users
(with 5% significance limits for the autocorrelations)
Dr. Mohammed Alahmed
40
Lag
Partial
Autocorrelation
20
18
16
14
12
10
8
6
4
2
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
Partial Autocorrelation Function for Number of Users
(with 5% significance limits for the partial autocorrelations)
Example 5
• The gradual decline of ACF values indicates non-
stationary series.
• The first partial autocorrelation is very dominant and
close to 1, indicating non-stationarity.
• The time series plot clearly indicates non-stationarity.
• We take the first differences of the data and
reanalyze.
Dr. Mohammed Alahmed
41
Example 5
Minutes
first
difference
100
90
80
70
60
50
40
30
20
10
1
15
10
5
0
-5
-10
-15
Time Series Plot of first difference
Dr. Mohammed Alahmed
42
Example 5
Lag
Autocorrelation
20
18
16
14
12
10
8
6
4
2
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
Autocorrelation Function for first difference
(with 5% significance limits for the autocorrelations)
Dr. Mohammed Alahmed
43
Model identification
Lag
Partial
Autocorrelation
20
18
16
14
12
10
8
6
4
2
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
Partial Autocorrelation Function for first difference
(with 5% significance limits for the partial autocorrelations)
Dr. Mohammed Alahmed
44
• ACF shows a mixture of exponential decay and sine-wave pattern
• PACF shows three significant PACF values.
• This suggests an AR(3) model.
• This identifies an ARIMA(3,1,0).
Seasonality and ARIMA models
• The ARIMA models can be extended to handle seasonal
components of a data series.
• The general shorthand notation is
ARIMA (p, d, q)(P, D, Q)s
• Where s is the number of periods per season.
•
Dr. Mohammed Alahmed
45
Seasonality and ARIMA models
• The seasonal lags of the ACF and PACF plots show the
seasonal parts of an AR or MA model.
• Examples:
1. Seasonal MA model:
• ARIMA(0,0,0)(0,0,1)12
– will show a spike at lag 12 in the ACF but no other significant
spikes.
– The PACF will show exponential decay in the seasonal lags
i.e. at lags 12, 24, 36,…
2. Seasonal AR model:
• ARIMA(0,0,0)(1,0,0)12
– will show exponential decay in seasonal lags of the ACF.
– Single significant spike at lag 12 in the PACF.
Dr. Mohammed Alahmed
46
3000
2500
2000
1500
1000
500
0
1 12 23 34 45 56 67 78 89 100 111
Example 6:Sales
47
Auto correlation dies out after first lag.
But it is different than 0 at 12,24,36 lag
Series may not be stationary. Let’s take seasonal difference
12.12.2018
Dr
.M.HanifiVAN 48
12.12.2018
Dr
.M.HanifiVAN 49
12Yt Yt Yt12
Seasonal Difference
500
400
300
200
100
0
-100
-200
-300
1 12 23 34 45 56 67 78 89 100 111
12.12.2018
Dr
.M.HanifiVAN 50
Seasonal Difference
After seasonal difference, series looks like
stationary.
Coeffient at lag 12 is significantly different
than 0.
12.12.2018
Dr
.M.HanifiVAN 51
12.12.2018
41
Coeffients at lag 12 and 24 are significantly
different than 0.
Model look like seasonal MA(1)
-1
1
0 k
-1
1
0 k
Auto Correlation Partial Auto
Correlation
12.12.2018
53
• Model for ARIMA(p,d,q)(P,D,Q)12 will be
• ARIMA(0,0,0)(0,1,1)12 .
• We have D=1 as we take seasonal
difference
•Yt Yt12 t 1t12
• Yt Yt12 85.457t 0.8180t12
Forecast
12.12.2018
Dr
.M.HanifiVAN 55
Yt Yt12 85.457t 0.818t12
Ŷ116  Y104  85.457  0.818104
Ŷ116  227585.457  0.818(72.418)  2419.7
Ŷ117  Y105  85.457  0.818105
Ŷ116  2581.885.457 0.818(199.214) 2504.3

More Related Content

Similar to ARIMA.pptx

Linear models
Linear modelsLinear models
Linear modelsFAO
 
Partha Sengupta_structural analysis.pptx
Partha Sengupta_structural analysis.pptxPartha Sengupta_structural analysis.pptx
Partha Sengupta_structural analysis.pptxJimmyPhoenix2
 
ARIMA Model for analysis of time series data.ppt
ARIMA Model for analysis of time series data.pptARIMA Model for analysis of time series data.ppt
ARIMA Model for analysis of time series data.pptREFOTDEBuea
 
Byungchul Yea (Project)
Byungchul Yea (Project)Byungchul Yea (Project)
Byungchul Yea (Project)Byung Chul Yea
 
CHAPTER 7.pdfdjdjdjdjdjdjdjsjsjddhhdudsko
CHAPTER 7.pdfdjdjdjdjdjdjdjsjsjddhhdudskoCHAPTER 7.pdfdjdjdjdjdjdjdjsjsjddhhdudsko
CHAPTER 7.pdfdjdjdjdjdjdjdjsjsjddhhdudskoSydneyJaydeanKhanyil
 
Risk management Report
Risk management ReportRisk management Report
Risk management ReportNewGate India
 
Iaetsd position control of servo systems using pid
Iaetsd position control of servo systems using pidIaetsd position control of servo systems using pid
Iaetsd position control of servo systems using pidIaetsd Iaetsd
 
Explicit model predictive control of fast dynamic system
Explicit model predictive control of fast dynamic systemExplicit model predictive control of fast dynamic system
Explicit model predictive control of fast dynamic systemeSAT Journals
 
Explicit model predictive control of fast dynamic system
Explicit model predictive control of fast dynamic systemExplicit model predictive control of fast dynamic system
Explicit model predictive control of fast dynamic systemeSAT Publishing House
 
Prof. Yosef Bernstein, Ariel-University
Prof. Yosef Bernstein, Ariel-UniversityProf. Yosef Bernstein, Ariel-University
Prof. Yosef Bernstein, Ariel-Universitychiportal
 
Applied Econometrics assignment3
Applied Econometrics assignment3Applied Econometrics assignment3
Applied Econometrics assignment3Chenguang Li
 

Similar to ARIMA.pptx (20)

Linear models
Linear modelsLinear models
Linear models
 
Partha Sengupta_structural analysis.pptx
Partha Sengupta_structural analysis.pptxPartha Sengupta_structural analysis.pptx
Partha Sengupta_structural analysis.pptx
 
Ab data
Ab dataAb data
Ab data
 
Seasonal ARIMA
Seasonal ARIMASeasonal ARIMA
Seasonal ARIMA
 
Ch04
Ch04Ch04
Ch04
 
ARIMA Model.ppt
ARIMA Model.pptARIMA Model.ppt
ARIMA Model.ppt
 
ARIMA Model for analysis of time series data.ppt
ARIMA Model for analysis of time series data.pptARIMA Model for analysis of time series data.ppt
ARIMA Model for analysis of time series data.ppt
 
ARIMA Model.ppt
ARIMA Model.pptARIMA Model.ppt
ARIMA Model.ppt
 
ACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docxACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docx
 
Byungchul Yea (Project)
Byungchul Yea (Project)Byungchul Yea (Project)
Byungchul Yea (Project)
 
Time series Analysis
Time series AnalysisTime series Analysis
Time series Analysis
 
CHAPTER 7.pdfdjdjdjdjdjdjdjsjsjddhhdudsko
CHAPTER 7.pdfdjdjdjdjdjdjdjsjsjddhhdudskoCHAPTER 7.pdfdjdjdjdjdjdjdjsjsjddhhdudsko
CHAPTER 7.pdfdjdjdjdjdjdjdjsjsjddhhdudsko
 
Risk management Report
Risk management ReportRisk management Report
Risk management Report
 
Energy saving policies final
Energy saving policies finalEnergy saving policies final
Energy saving policies final
 
Iaetsd position control of servo systems using pid
Iaetsd position control of servo systems using pidIaetsd position control of servo systems using pid
Iaetsd position control of servo systems using pid
 
Explicit model predictive control of fast dynamic system
Explicit model predictive control of fast dynamic systemExplicit model predictive control of fast dynamic system
Explicit model predictive control of fast dynamic system
 
Explicit model predictive control of fast dynamic system
Explicit model predictive control of fast dynamic systemExplicit model predictive control of fast dynamic system
Explicit model predictive control of fast dynamic system
 
Prof. Yosef Bernstein, Ariel-University
Prof. Yosef Bernstein, Ariel-UniversityProf. Yosef Bernstein, Ariel-University
Prof. Yosef Bernstein, Ariel-University
 
12. Linear models
12. Linear models12. Linear models
12. Linear models
 
Applied Econometrics assignment3
Applied Econometrics assignment3Applied Econometrics assignment3
Applied Econometrics assignment3
 

Recently uploaded

Digamma / CertiCon Company Presentation
Digamma / CertiCon Company  PresentationDigamma / CertiCon Company  Presentation
Digamma / CertiCon Company PresentationMihajloManjak
 
(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样
(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样
(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样gfghbihg
 
Beautiful Vip Call Girls Punjabi Bagh 9711199012 Call /Whatsapps
Beautiful Vip  Call Girls Punjabi Bagh 9711199012 Call /WhatsappsBeautiful Vip  Call Girls Punjabi Bagh 9711199012 Call /Whatsapps
Beautiful Vip Call Girls Punjabi Bagh 9711199012 Call /Whatsappssapnasaifi408
 
Innovating Manufacturing with CNC Technology
Innovating Manufacturing with CNC TechnologyInnovating Manufacturing with CNC Technology
Innovating Manufacturing with CNC Technologyquickpartslimitlessm
 
(办理学位证)墨尔本大学毕业证(Unimelb毕业证书)成绩单留信学历认证原版一模一样
(办理学位证)墨尔本大学毕业证(Unimelb毕业证书)成绩单留信学历认证原版一模一样(办理学位证)墨尔本大学毕业证(Unimelb毕业证书)成绩单留信学历认证原版一模一样
(办理学位证)墨尔本大学毕业证(Unimelb毕业证书)成绩单留信学历认证原版一模一样whjjkkk
 
2024 WRC Hyundai World Rally Team’s i20 N Rally1 Hybrid
2024 WRC Hyundai World Rally Team’s i20 N Rally1 Hybrid2024 WRC Hyundai World Rally Team’s i20 N Rally1 Hybrid
2024 WRC Hyundai World Rally Team’s i20 N Rally1 HybridHyundai Motor Group
 
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptxUNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptxDineshKumar4165
 
2024 TOP 10 most fuel-efficient vehicles according to the US agency
2024 TOP 10 most fuel-efficient vehicles according to the US agency2024 TOP 10 most fuel-efficient vehicles according to the US agency
2024 TOP 10 most fuel-efficient vehicles according to the US agencyHyundai Motor Group
 
如何办理(UQ毕业证书)昆士兰大学毕业证毕业证成绩单原版一比一
如何办理(UQ毕业证书)昆士兰大学毕业证毕业证成绩单原版一比一如何办理(UQ毕业证书)昆士兰大学毕业证毕业证成绩单原版一比一
如何办理(UQ毕业证书)昆士兰大学毕业证毕业证成绩单原版一比一hnfusn
 
call girls in G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in  G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in  G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
UNIT-1-VEHICLE STRUCTURE AND ENGINES.ppt
UNIT-1-VEHICLE STRUCTURE AND ENGINES.pptUNIT-1-VEHICLE STRUCTURE AND ENGINES.ppt
UNIT-1-VEHICLE STRUCTURE AND ENGINES.pptDineshKumar4165
 
定制多伦多大学毕业证(UofT毕业证)成绩单(学位证)原版一比一
定制多伦多大学毕业证(UofT毕业证)成绩单(学位证)原版一比一定制多伦多大学毕业证(UofT毕业证)成绩单(学位证)原版一比一
定制多伦多大学毕业证(UofT毕业证)成绩单(学位证)原版一比一meq5nzfnk
 
Russian Call Girls Delhi Indirapuram {9711199171} Aarvi Gupta ✌️Independent ...
Russian  Call Girls Delhi Indirapuram {9711199171} Aarvi Gupta ✌️Independent ...Russian  Call Girls Delhi Indirapuram {9711199171} Aarvi Gupta ✌️Independent ...
Russian Call Girls Delhi Indirapuram {9711199171} Aarvi Gupta ✌️Independent ...shivangimorya083
 
John Deere 300 3029 4039 4045 6059 6068 Engine Operation and Service Manual
John Deere 300 3029 4039 4045 6059 6068 Engine Operation and Service ManualJohn Deere 300 3029 4039 4045 6059 6068 Engine Operation and Service Manual
John Deere 300 3029 4039 4045 6059 6068 Engine Operation and Service ManualExcavator
 
如何办理(UC毕业证书)堪培拉大学毕业证毕业证成绩单原版一比一
如何办理(UC毕业证书)堪培拉大学毕业证毕业证成绩单原版一比一如何办理(UC毕业证书)堪培拉大学毕业证毕业证成绩单原版一比一
如何办理(UC毕业证书)堪培拉大学毕业证毕业证成绩单原版一比一fjjwgk
 
What Could Cause A VW Tiguan's Radiator Fan To Stop Working
What Could Cause A VW Tiguan's Radiator Fan To Stop WorkingWhat Could Cause A VW Tiguan's Radiator Fan To Stop Working
What Could Cause A VW Tiguan's Radiator Fan To Stop WorkingEscondido German Auto
 
Dubai Call Girls Size E6 (O525547819) Call Girls In Dubai
Dubai Call Girls  Size E6 (O525547819) Call Girls In DubaiDubai Call Girls  Size E6 (O525547819) Call Girls In Dubai
Dubai Call Girls Size E6 (O525547819) Call Girls In Dubaikojalkojal131
 
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证jjrehjwj11gg
 

Recently uploaded (20)

Digamma / CertiCon Company Presentation
Digamma / CertiCon Company  PresentationDigamma / CertiCon Company  Presentation
Digamma / CertiCon Company Presentation
 
(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样
(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样
(办理学位证)(Toledo毕业证)托莱多大学毕业证成绩单修改留信学历认证原版一模一样
 
Beautiful Vip Call Girls Punjabi Bagh 9711199012 Call /Whatsapps
Beautiful Vip  Call Girls Punjabi Bagh 9711199012 Call /WhatsappsBeautiful Vip  Call Girls Punjabi Bagh 9711199012 Call /Whatsapps
Beautiful Vip Call Girls Punjabi Bagh 9711199012 Call /Whatsapps
 
Innovating Manufacturing with CNC Technology
Innovating Manufacturing with CNC TechnologyInnovating Manufacturing with CNC Technology
Innovating Manufacturing with CNC Technology
 
(办理学位证)墨尔本大学毕业证(Unimelb毕业证书)成绩单留信学历认证原版一模一样
(办理学位证)墨尔本大学毕业证(Unimelb毕业证书)成绩单留信学历认证原版一模一样(办理学位证)墨尔本大学毕业证(Unimelb毕业证书)成绩单留信学历认证原版一模一样
(办理学位证)墨尔本大学毕业证(Unimelb毕业证书)成绩单留信学历认证原版一模一样
 
2024 WRC Hyundai World Rally Team’s i20 N Rally1 Hybrid
2024 WRC Hyundai World Rally Team’s i20 N Rally1 Hybrid2024 WRC Hyundai World Rally Team’s i20 N Rally1 Hybrid
2024 WRC Hyundai World Rally Team’s i20 N Rally1 Hybrid
 
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptxUNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
UNIT-V-ELECTRIC AND HYBRID VEHICLES.pptx
 
2024 TOP 10 most fuel-efficient vehicles according to the US agency
2024 TOP 10 most fuel-efficient vehicles according to the US agency2024 TOP 10 most fuel-efficient vehicles according to the US agency
2024 TOP 10 most fuel-efficient vehicles according to the US agency
 
如何办理(UQ毕业证书)昆士兰大学毕业证毕业证成绩单原版一比一
如何办理(UQ毕业证书)昆士兰大学毕业证毕业证成绩单原版一比一如何办理(UQ毕业证书)昆士兰大学毕业证毕业证成绩单原版一比一
如何办理(UQ毕业证书)昆士兰大学毕业证毕业证成绩单原版一比一
 
call girls in G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in  G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in  G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in G.T.B. Nagar (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
UNIT-1-VEHICLE STRUCTURE AND ENGINES.ppt
UNIT-1-VEHICLE STRUCTURE AND ENGINES.pptUNIT-1-VEHICLE STRUCTURE AND ENGINES.ppt
UNIT-1-VEHICLE STRUCTURE AND ENGINES.ppt
 
定制多伦多大学毕业证(UofT毕业证)成绩单(学位证)原版一比一
定制多伦多大学毕业证(UofT毕业证)成绩单(学位证)原版一比一定制多伦多大学毕业证(UofT毕业证)成绩单(学位证)原版一比一
定制多伦多大学毕业证(UofT毕业证)成绩单(学位证)原版一比一
 
Russian Call Girls Delhi Indirapuram {9711199171} Aarvi Gupta ✌️Independent ...
Russian  Call Girls Delhi Indirapuram {9711199171} Aarvi Gupta ✌️Independent ...Russian  Call Girls Delhi Indirapuram {9711199171} Aarvi Gupta ✌️Independent ...
Russian Call Girls Delhi Indirapuram {9711199171} Aarvi Gupta ✌️Independent ...
 
sauth delhi call girls in Connaught Place🔝 9953056974 🔝 escort Service
sauth delhi call girls in  Connaught Place🔝 9953056974 🔝 escort Servicesauth delhi call girls in  Connaught Place🔝 9953056974 🔝 escort Service
sauth delhi call girls in Connaught Place🔝 9953056974 🔝 escort Service
 
Call Girls In Kirti Nagar 📱 9999965857 🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICE
Call Girls In Kirti Nagar 📱  9999965857  🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICECall Girls In Kirti Nagar 📱  9999965857  🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICE
Call Girls In Kirti Nagar 📱 9999965857 🤩 Delhi 🫦 HOT AND SEXY VVIP 🍎 SERVICE
 
John Deere 300 3029 4039 4045 6059 6068 Engine Operation and Service Manual
John Deere 300 3029 4039 4045 6059 6068 Engine Operation and Service ManualJohn Deere 300 3029 4039 4045 6059 6068 Engine Operation and Service Manual
John Deere 300 3029 4039 4045 6059 6068 Engine Operation and Service Manual
 
如何办理(UC毕业证书)堪培拉大学毕业证毕业证成绩单原版一比一
如何办理(UC毕业证书)堪培拉大学毕业证毕业证成绩单原版一比一如何办理(UC毕业证书)堪培拉大学毕业证毕业证成绩单原版一比一
如何办理(UC毕业证书)堪培拉大学毕业证毕业证成绩单原版一比一
 
What Could Cause A VW Tiguan's Radiator Fan To Stop Working
What Could Cause A VW Tiguan's Radiator Fan To Stop WorkingWhat Could Cause A VW Tiguan's Radiator Fan To Stop Working
What Could Cause A VW Tiguan's Radiator Fan To Stop Working
 
Dubai Call Girls Size E6 (O525547819) Call Girls In Dubai
Dubai Call Girls  Size E6 (O525547819) Call Girls In DubaiDubai Call Girls  Size E6 (O525547819) Call Girls In Dubai
Dubai Call Girls Size E6 (O525547819) Call Girls In Dubai
 
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
原版工艺美国普林斯顿大学毕业证Princeton毕业证成绩单修改留信学历认证
 

ARIMA.pptx

  • 1. Chapter 9: Box-Jenkins (ARIMA) Methodology
  • 2. ARIMA Models • The Box-Jenkins methodology refers to a set of procedures for identifying, fitting and checking ARIMA models with time series. • • The AR in ARIMA refers to Autoregressive models • The MA in ARIMA refers to Moving Average models • The I in ARIMA refers to the number of lags used in differencing the data
  • 3. Autoregressive Models Yt = 0 + 1Yt-1 + 2Yt-2 … + pYt-p + et, • where t = coefficients to be estimated and p = number of lags • The number of lags (p) used in the model is a parameter and its value must be determined by the user. An autoregressive model with a lag of two will be denoted as AR(2). •
  • 4. Moving Average Models • Yt =  + et - w1et-1 - w2et-2 - … wqet-q, • where wt = coefficients to be estimated, and et are the error terms • The number of error terms used in the model, q, is a parameter and its value must be determined by the user. A moving average model with two error terms will be denoted as MA(2). •
  • 5. ARMA models • Combining AR and MA models, an ARMA(p,q) model is as follows: • Yt = 0 + 1Yt-1 + 2Yt-2 … + pYt-p + et, - w1et-1 - w2et-2 - … wqet-q,
  • 6. Differences • Differences of the time series may be used if it is not stationary. In some cases, a difference of the differences may be necessary before a stationary data is obtained. We use the notation “d” to indicate the number of times the time series is differenced to obtain a stationary series. • • ARIMA Notation: ARIMA(p,d,q) = An ARIMA model with the time series differenced d times as the response variable with a p-order autoregressive model mixed with q-order moving average model. •
  • 7. Model Identification • We use ACF (Autocorrelation function) and PACF (Partial Autocorrelation function) . ACF measures the correlation between a time series and its past values at different time lags. (i.e.corr(yt,yt−k),k=1,2,...) • PACF measures the autocorrelation between Yt and Yt-k, when the effects of other time lags, 1, 2, .., k-1, are removed.
  • 8. AR(1):Yt=0+ 1Yt-1+t 18.05.2023 8 18.05.2023 -1 1 0 k -1 1 0 k         -1 1 0 k -1 1 0 k           ACF PACF
  • 9. AR(2):Yt=0+ 1Yt-1+ 2Yt-2 +t 18.05.2023 9 18.05.2023 -1 1 0 k -1 1 0 k         -1 1 0 k -1 1 0 k           ACF PACF  
  • 10. MA(1):Yt=+t- 1t-1 18.05.2023 10 18.05.2023 -1 1 0 k -1 1 0 k  -1 1 0 k -1 1 0 k           ACF PACF
  • 11. MA(2):Yt=+t- 1t-1 - 2t-2 18.05.2023 11 18.05.2023 -1 1 0 k -1 1 0 k -1 1 0 k -1 1 0 k  ACF PACF             
  • 12. ARMA(1,1):Yt= 0+ 1Yt-1 +t- 1t-1 18.05.2023 12 -1 1 0 k -1 1 0 k Auto Correlation Partial Auto Correlation         
  • 13. ARMA(1,1):Yt= 0+ 1Yt-1 +t- 1t-1 18.05.2023 13 18.05.2023 -1 1 0 k -1 1 0 k Auto Correlation Partial Auto Correlation
  • 14. AR, MA or ARMA? Autocorrelations Partial Autocorrelations MA(q) Cut off after the order of q of the process Die out AR(p) Die out Cut off after the order of p of the process ARMA(p,q) Die out Die out
  • 15. Model Building Strategy • Step 1: Model identification Plot the time series/ACF and examine whether it is stationary. If not, try some transformation and or differencing, until the data seems stationary. Compare ACF and PACF of the time series data and identify the ARIMA model to be used. To judge the significance of autocorrelation and partial autocorrelation, the corresponding sample values may be compared with ±2/ . Use the principle of parsimony. • Step 2: Model estimation Use SPSS or other package to estimate the model parameters. t-test may be used to judge whether a parameter may be dropped from the model. n n
  • 16. Model Building Strategy • Step 3: Model checking • The model will be considered adequate if the residuals are random. The following three procedures may be used. • Residual plots as in regression may be used, • rk(e) must be within ±2/ of zero, and • L-Q test may be used to test whether a group autocorrelation of lags 1, 2,.. m, is significant. • • Step 4: Model forecasting • SPSS generates forecasts for a given number of future periods. n
  • 17. Model Selection Criteria • Akaike Information Criterion (AIC) selects the best model from a group of candidate models as the one that minimizes • Bayesian Information Criterion (BIC) selects the best model e that minimizes where σ2 residual variance 2 2 AIC=ln r n   2 lnn BIC=ln r n  
  • 18. Example 1 -1 -0.5 0 0.5 1 0 2 4 6 8 10 12 14 16 lag ACF for Y +- 1.96/T^0.5 -1 -0.5 0 0.5 1 0 2 4 6 8 10 12 14 16 lag PACF for Y +- 1.96/T^0.5
  • 19. Example 2 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0 5 10 15 20 lag ACF for C1 +- 1.96/T^0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0 5 10 15 20 lag PACF for C1 +- 1.96/T^0.5
  • 20. Example 3 18.05.2023 20 18.05.2023 -0.23 -0.2 -1.93 -0.97 0.1 0.63 -0.21 1.87 0.83 -0.62 0.48 0.91 -0.97 -0.33 2.27 -0.83 -0.36 0.46 0.91 -0.62 -0.03 0.48 2.12 -1.13 0.74 1.31 0.61 -2.11 2.22 -0.16 0.86 -1.38 0.7 0.8 1.34 -1.28 -0.04 0.69 -1.95 -1.83 0 0.9 -0.24 2.61 0.31 -0.63 1.79 0.34 0.59 1.13 0.08 -0.37 0.6 0.71 -0.87 -1.3 0.4 0.15 -0.84 1.45 1.48 -1.19 -0.02 -0.11 -1.95 -0.28 0.98 0.46 1.27 -0.51 -0.79 -1.51 -0.54 -0.8 -0.41 1.86 0.9 0.89 -0.76 0.49 0.07 -1.56 1.07 1.58 1.54 0.09 2.18 0.2 -0.38 -0.96
  • 23. Example 3 18.05.2023 23 18.05.2023 -1 1 0 k -1 1 0 k  Auto Correlation Partial Auto Correlation
  • 24. ATR şirketi üretim hedefleri Öngörüsü 18.05.2023 24 18.05.2023 MA(1):Yt=+t+ 1t-1 1 5875 . 0 1513 . 0 ˆ    t Y 
  • 25. ATR şirketi üretim hedefleri Öngörüsü 18.05.2023 25 18.05.2023 Relative change in each estimate less than 0.0010 Final Estimates of Parameters Type Coef SE Coef T P MA 1 0.5875 0.0864 6.80 0.000 Constant 0.15129 0.04022 3.76 0.000 Mean 0.15129 0.04022 Number of observations: 90 Residuals: SS = 74.4933 (backforecasts excluded) MS = 0.8465 DF = 88 Modified Box-Pierce (Ljung-Box) Chi-Square statistic Lag 12 24 36 48 Chi-Square 9.1 10.8 17.3 31.5 DF 10 22 34 46 P-Value 0.524 0.977 0.992 0.950 Forecasts from period 90 95% Limits Period Forecast Lower Upper Actual 91 0.43350 -1.37018 2.23719 92 0.15129 -1.94064 2.24322
  • 27. Example 3 18.05.2023 27 18.05.2023 Obs. # Actual Forecast Error 1 -0.23 0.101969 -0.331969 2 0.63 0.346323 0.283677 3 0.48 -0.015371 0.495371 4 -0.83 -0.139741 -0.690259 5 -0.03 0.556819 -0.586819 . . . . . . . . . . . . 86 -0.51 1.06829 -1.57829 87 -0.41 1.07854 -1.48854 88 0.49 1.02581 -0.53581 89 1.54 0.46608 1.07392 90 -0.96 -0.47964 -0.48036 91forecast 92Forecast 90 91 5875 . 0 1513 . 0 ˆ    Y ) 4804 . 0 ( 5875 . 0 1513 . 0    4335 . 0  0.4335 0.1513 91 92 5875 . 0 1513 . 0 ˆ    Y ) 000 . 0 ( 5875 . 0 1513 . 0   1513 . 0  0.4335 0.0000
  • 28. Example • The analyst for the ISC Corporation was asked to develop forecasts for the closing prices of ISC stock. • The stock has been languishing for some time with little growth, and senior management wanted some projections to discuss with the board of directors. • The ISC stock prices are plotted in the following slide. Dr. Mohammed Alahmed 28
  • 29. Example 4:Stock prices of ISC 18.05.2023 29 18.05.2023 235 200 250 270 275 320 290 225 240 205 115 220 125 275 265 355 400 295 225 245 190 275 250 285 170 320 185 355 250 175 275 370 280 310 270 205 255 370 220 225 295 285 250 320 340 240 250 290 215 190 355 300 225 260 250 175 225 270 190 300 285 285 180 295 195
  • 30. Example 4: ISC Index ISC 60 54 48 42 36 30 24 18 12 6 1 400 350 300 250 200 150 100 Time Series Plot of ISC corporation Stock Dr. Mohammed Alahmed 30
  • 31. Example 4 • The plot of the stock prices suggests the series is stationary. • The stock prices vary about a fixed level of approximately 250. • Is the Box-Jenkins methodology appropriate for this data series? • The ACF and PACF for the stock price series are reported in the following two slides. Dr. Mohammed Alahmed 31
  • 32. Example 4 Lag Autocorrelation 20 18 16 14 12 10 8 6 4 2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 Autocorrelation Function for ISC (with 5% significance limits for the autocorrelations) Dr. Mohammed Alahmed 32 Lag Partial Autocorrelation 20 18 16 14 12 10 8 6 4 2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 Partial Autocorrelation Function for ISC (with 5% significance limits for the partial autocorrelations)
  • 33. Example 4 • The sample ACF alternate in sign and decline to zero after lag 2. • The sample PACF are similar are close to zero after time lag 2. • These are consistent with an AR(2) or ARIMA(2,0,0) model • AR(2) model is fit to the data. • WE include a constant term to allow for a nonzero level. Dr. Mohammed Alahmed 33
  • 34. Example 4 18.05.2023 34 18.05.2023 Pazarlıoğlu-Güneş Looks like AR (2) -1 1 0 k -1 1 0 k           
  • 35. Example 4 • The estimated coefficient 2 is not significant (t=1.75) at 5% level but is significant at the 10 % level. • The residual ACF and PACF are given in the following two slides. • The ACF and PACF are well within their two standard error limits. Dr. Mohammed Alahmed 35 Final Estimates of Parameters Type Coef SE T P AR 1 -0.3243 0.1246 -2.60 0.012 AR 2 0.2192 0.1251 1.75 0.085 Constant 284.903 6.573 43.34 0.000
  • 36. Example 4 36 AR(2):Yt=0+ 1Yt-1+ 2Yt-2 +t 2 t 1 t t Y 219 . 0 Y 324 . 0 9 . 284 Ŷ     
  • 37. Example 4 Lag Autocorrelation 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 ACF of Residuals for ISC (with 5% significance limits for the autocorrelations) Dr. Mohammed Alahmed 37 Lag Partial Autocorrelation 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 PACF of Residuals for ISC (with 5% significance limits for the partial autocorrelations)
  • 38. Forecast for Example 4 38 Obs. No Actual Forecast Error 1 235 248.416 -13.416 2 320 269.842 50.158 3 115 232.664 -117.664 4 355 317.771 37.229 5 190 195.006 -5.006 . . . . . . . . . . . . 61 340 271.141 68.8586 62 190 223.987 -33.9866 63 250 297.837 -47.8371 64 300 245.496 54.5041 65 195 242.438 -47.4377 66Forecast 67Forecast 64 65 66 Y 219 . 0 Y 324 . 0 9 . 284 Ŷ    287.4 234.5 287.445 -0.0450 ) 300 ( 219 . 0 ) 195 ( 324 . 0 9 . 284    4 . 287  65 66 67 Y 219 . 0 Y 324 . 0 9 . 284 Ŷ    ) 195 ( 219 . 0 ) 4 . 287 ( 324 . 0 9 . 284    5 . 234 
  • 40. Example 5 Lag Autocorrelation 20 18 16 14 12 10 8 6 4 2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 Autocorrelation Function for Number of Users (with 5% significance limits for the autocorrelations) Dr. Mohammed Alahmed 40 Lag Partial Autocorrelation 20 18 16 14 12 10 8 6 4 2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 Partial Autocorrelation Function for Number of Users (with 5% significance limits for the partial autocorrelations)
  • 41. Example 5 • The gradual decline of ACF values indicates non- stationary series. • The first partial autocorrelation is very dominant and close to 1, indicating non-stationarity. • The time series plot clearly indicates non-stationarity. • We take the first differences of the data and reanalyze. Dr. Mohammed Alahmed 41
  • 43. Example 5 Lag Autocorrelation 20 18 16 14 12 10 8 6 4 2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 Autocorrelation Function for first difference (with 5% significance limits for the autocorrelations) Dr. Mohammed Alahmed 43
  • 44. Model identification Lag Partial Autocorrelation 20 18 16 14 12 10 8 6 4 2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 Partial Autocorrelation Function for first difference (with 5% significance limits for the partial autocorrelations) Dr. Mohammed Alahmed 44 • ACF shows a mixture of exponential decay and sine-wave pattern • PACF shows three significant PACF values. • This suggests an AR(3) model. • This identifies an ARIMA(3,1,0).
  • 45. Seasonality and ARIMA models • The ARIMA models can be extended to handle seasonal components of a data series. • The general shorthand notation is ARIMA (p, d, q)(P, D, Q)s • Where s is the number of periods per season. • Dr. Mohammed Alahmed 45
  • 46. Seasonality and ARIMA models • The seasonal lags of the ACF and PACF plots show the seasonal parts of an AR or MA model. • Examples: 1. Seasonal MA model: • ARIMA(0,0,0)(0,0,1)12 – will show a spike at lag 12 in the ACF but no other significant spikes. – The PACF will show exponential decay in the seasonal lags i.e. at lags 12, 24, 36,… 2. Seasonal AR model: • ARIMA(0,0,0)(1,0,0)12 – will show exponential decay in seasonal lags of the ACF. – Single significant spike at lag 12 in the PACF. Dr. Mohammed Alahmed 46
  • 47. 3000 2500 2000 1500 1000 500 0 1 12 23 34 45 56 67 78 89 100 111 Example 6:Sales 47
  • 48. Auto correlation dies out after first lag. But it is different than 0 at 12,24,36 lag Series may not be stationary. Let’s take seasonal difference 12.12.2018 Dr .M.HanifiVAN 48
  • 49. 12.12.2018 Dr .M.HanifiVAN 49 12Yt Yt Yt12 Seasonal Difference
  • 50. 500 400 300 200 100 0 -100 -200 -300 1 12 23 34 45 56 67 78 89 100 111 12.12.2018 Dr .M.HanifiVAN 50 Seasonal Difference After seasonal difference, series looks like stationary.
  • 51. Coeffient at lag 12 is significantly different than 0. 12.12.2018 Dr .M.HanifiVAN 51
  • 52. 12.12.2018 41 Coeffients at lag 12 and 24 are significantly different than 0. Model look like seasonal MA(1)
  • 53. -1 1 0 k -1 1 0 k Auto Correlation Partial Auto Correlation 12.12.2018 53
  • 54. • Model for ARIMA(p,d,q)(P,D,Q)12 will be • ARIMA(0,0,0)(0,1,1)12 . • We have D=1 as we take seasonal difference •Yt Yt12 t 1t12 • Yt Yt12 85.457t 0.8180t12
  • 55. Forecast 12.12.2018 Dr .M.HanifiVAN 55 Yt Yt12 85.457t 0.818t12 Ŷ116  Y104  85.457  0.818104 Ŷ116  227585.457  0.818(72.418)  2419.7 Ŷ117  Y105  85.457  0.818105 Ŷ116  2581.885.457 0.818(199.214) 2504.3