This document provides an overview of optimization techniques. It defines optimization as identifying variable values that minimize or maximize an objective function subject to constraints. It then discusses various applications of optimization in finance, engineering, and data modeling. The document outlines different types of optimization problems and algorithms. It provides examples of unconstrained optimization algorithms like gradient descent, conjugate gradient, Newton's method, and BFGS. It also discusses the Nelder-Mead simplex algorithm for constrained optimization and compares the performance of these algorithms on sample problems.