SlideShare a Scribd company logo
1 of 45
Presented by
Pritam Bhadra
Pranamesh Chakraborty
Indian Institute of Technology, Kanpur
11 May 2013
Comparative study of algorithms of
Nonlinear Optimization
Methods of Nonlinear Optimization
The methods for nonlinear optimization are:
1. Conjugate gradient methods
a) Fletcher-Reeves
b) Polak- Ribiere
2. Powell’s conjugate direction method
3. Quasi-Newton methods
a) Davidon-Fletcher-Powell (DFP) method
b) Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
Functions used for comparison of algorithms
1. Booth function
2. Himmelblau function
3. Beale function
4. Ackley function
5. Goldstein function
6. Cross-in-tray function
7. Bukin function
8. Rosenbrock function
For each function(two-dimensional), local minima is obtained
from 6 initial points:
a) (0,0)
b) (1,1)
c) (3,3)
d) (5,5)
e) (-2,-2)
f) (-4,-4)
g) (-6,-6)
for 3 ranges of α (step-size)
 (0,10)
 (-5,20)
 (-50,50)
Booth function
2 2
( , ) ( 2 7) (2 5)f x y x y x y
Quadratic function of 2 variables
3d plot of Booth function
Booth function
Contour plot of Booth function
Booth function
 Exact same results for F-R and P-R since the function is quadratic
Initial
Point
Fletcher-Reeves Polak-Ribiere
α α
(0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50)
Final
Point
# of
function
evaluatio
ns
# of
iteratio
ns
Final
Point
# of
functio
n
evaluati
ons
# of
iteratio
ns
Final
Point
# of
function
evaluatio
ns
# of
iterations
Final
Point
# of
function
evaluatio
ns
# of
iterations
Final
Point
# of
functio
n
evaluat
ions
# of
iteratio
ns
Final
Point
# of
functio
n
evaluat
ions
# of
iteratio
ns
(0,0) (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (1,3) 20 2 (1,3) 15 2 (1,3) 15 2
(1,1) (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (1,3) 20 2 (1,3) 15 2 (1,3) 15 2
(3,3) (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (1,3) 20 2 (1,3) 15 2 (1,3) 15 2
(5,5) (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (1,3) 20 2 (1,3) 15 2 (1,3) 15 2
(-2,-2) (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (1,3) 20 2 (1,3) 15 2 (1,3) 15 2
(-4,-4) (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (1,3) 20 2 (1,3) 15 2 (1,3) 15 2
(-6,-6) (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (1,3) 20 2 (1,3) 15 2 (1,3) 15 2
 The algorithm converges in 2 steps as it is a 2-d quadratic problem
Booth function
Init
ial
Poi
nt
Davidon-Fletcher-Powell (DFP)
method
Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method Powell's conjugate direction method
α α α
(0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50)
Final
Point
# of
iterati
ons
Final
Point
# of
iterati
ons
Final
Point
# of
iterati
ons
Final
Point
# of
iterati
ons
Final
Point
# of
iterati
ons
Final
Point
# of
iterati
ons
Final
Point
# of
iterati
ons
Final
Point
# of
iterati
ons
Final
Point
# of
iterati
ons
(0,0
)
(1,3) 2,36 (1,3) 2,29 (1,3) 2,23 (1,3) 2,40 (1,3) 2,31 (1,3) 2,26
(3.4,1.
08)
(1,3) 1 (1,3) 1
(1,1
)
(1,3) 2,43 (1,3) 2,29 (1,3) 2,38 (1,3) 2,42 (1,3) 2,28 (1,3) 2,32
(2.6,1.
72)
(1,3) 1 (1,3) 1
(3,3
)
(1,3) 2,35 (1,3) 2,29 (1,3) 2,32 (1,3) 2,44 (1,3) 2,29 (1,3) 2,31 (1,3) 1 (1,3) 1
(5,5
)
(1,3) 2,32 (1,3) 2,27 (1,3) 2,22 (1,3) 2,37 (1,3) 2,28 (1,3) 2,24
Not
Worki
ng
reachi
ng to
an
(1,3) 2 (1,3) 2
(-
2,-
2)
(1,3) 2,44 (1,3) 2,28 (1,3) 2,39 (1,3) 2,35 (1,3) 2,28 (1,3) 2,31
arbitr
ary
point
and
oscill
ates
(1,3) 1 (1,3) 1
(-
4,-
4)
(1,3) 2,36 (1,3) 2,27 (1,3) 2,26 (1,3) 2,38 (1,3) 2,26 (1,3) 2,27
aroun
d the
point.
(1,3) 1 (1,3) 1
(-
6,-
6)
(1,3) (2,38) (1,3) 2,31 (1,3) 2,36 (1,3) 2,36 (1,3) 2,25 (1,3) 2,31 (1,3) 1 (1,3) 1
DFP and BFGS works very well for Booth functionPowell’s method works nice for proper range of
alpha. A bit large range of alpha can be taken as
there is only a few local minima of the function.
For range of alpha between 0 and 10 it did not work
because in some steps for ensuring the step to be
descent the value of alpha is coming out to be
negative.
Himmelblau function
2 2 2 2
( , ) ( 11) ( 7)f x y x y x y
3d plot of Himmelblau function
Himmelblau function
Contour plot of Himmelblau function
Himmelblau function
Initial
Point
Fletcher-Reeves Polak-Ribiere
α α
(0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50)
Final Point
# of
iterations
Final
Point
# of
iterations
Final Point
# of
iterations
Final Point
# of
iterations
Final Point
# of
iterations
Final Point
# of
iterations
(0,0) (3,2) 8 (3,2) 8 (3,2) 8 (3,2) 6 (3,2) 6 (3,2) 6
(1,1)
(-3.7793,
-3.2832)
28 (3,2) 13 (3,2) 13 (3,2) 7
(-3.7793,
-3.2832)
7
(-3.7793,
-3.2832)
7
(3,3) (3,2) 12 (3,2) 12 (3,2) 12 (3,2) 7 (3,2) 6 (3,2) 6
(5,5)
(-3.7793,
-3.2832)
12 (3,2) 11 (3,2) 11
(-3.7793,
-3.2832)
8 (3,2) 6 (3,2) 7
(-2,-2)
(-2.8051,
3.1313)
12 (3,2) 18 (3,2) 8
(-3.7793,
-3.2832)
12
(-2.8051,
3.1313)
8 (3,2) 7
(-4,-4)
(-2.8051,
3.1313)
11 (3,2) 17 (3,2) 50
(-2.8051,
3.1313)
12
(-2.8051,
3.1313)
7
(3.5844,-
1.8481)
7
(-6,-6)
(-3.7793,
-3.2832)
29 (3,2) 36
(-3.7793,
-3.2832)
5
(-2.8051,
3.1313)
18
(-3.7793,
-3.2832)
9
(-3.7793,
-3.2832)
5
 P-R works better than F-R (as per # of iterations)
.α has no significant effect on # of iterations.
Himmelblau function
Initial
Point
Davidon-Fletcher-Powell (DFP) method
Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method Powell's conjugate direction method
α α α
(0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50)
Final
Point
# of
iteration
s Final Point
# of
iterati
ons Final Point
# of
iterat
ions Final Point
# of
iterati
ons
Final
Point
# of
iteration
s
Final
Point
# of
iterati
ons
Final
Point
# of
iteratio
ns
Final
Point
# of
iterati
ons
Final
Point
# of
iteration
s
(0,0)
(3,2) 9 (3,2) 9 (3,2) 9 (3,2) 9 (3,2) 9 (3,2) 9 (3.02,
1.996)
1
(1,1)
(3,2) 7
(-3.7793, -
3.2832)
6 (3,2) 13 (3,2) 7
(-
3.7793,
-3.2832)
6 (3,2) 13 (3.00,
1.99)
1
(3,3)
(3,2) 6 (3,2) 6 (3,2) 6 (3,2) 6 (3,2) 6 (3,2)
6
not
workin
g
(3.01,
2.00)
1
(5,5)
(-3.7793,
-3.2832)
7 (3,2) 7 (3,2) 7
(-3.7793, -
3.2832)
7 (3,2) 7 (3,2) 7 (3.00,
2.00)
2
(-2,-2)
(-3.7793,
-3.2832)
6
(-3.7793, -
3.2832)
6 (3,2) 8
(-3.7793,
-3.2832)
6 (3,2) 11
(-2.8051
,3.1313)
12 (3.5844, -
1.8481)
2
(-4,-4)
(-2.8051,
3.1313)
7
(-
2.8051,3.1
313)
7
(3.5844,-
1.8481)
7
(-2.8051,
3.1313)
7
(-
2.8051,
3.1313)
7
(3.5844,-
1.8481)
16
(-3.7789, -
3.2832)
2
(-6,-6)
(3,2) 8 (3,2) 8
(-3.7793,
-3.2832)
5 (3,2) 8 (3,2) 8
(-3.7793,
-3.2832)
5
(-3.7789, -
3.2832)
2
For range of alpha -50 to 50 the algorithm may somehow help reach near local minim
still does not converge, rather it gets distracted to another arbitrary point. For range of
does not provide descent direction at each step.
For alpha -50,50 starting from(3,3) ..though there is local minima in the vicini
still it oscillates and does not converge
iteration
s
x
Beale function
2 2 2 3 2
( , ) (1.5 ) (2.25 ) (2.625 )f x y x xy x xy x xy
3d plot of Beale function
Beale function
Contour plot of Beale function
Beale function
Initial
Point
Fletcher-Reeves Polak-Ribiere
α α
(0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50)
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
(0,0) (3,0.5) 15
(3.0001,
0.5)
17
(2.9999,
0.5)
15 (3,0.5) 9 (3,0.5) 9 (3,0.5) 9
(1,1) (3,0.5) 14 (3,0.5) 14 (3,0.5) 11 (3,0.5) 17
(3.0001,
0.5)
16 (3,0.5) 11
(3,3) Infinite
(2.9999,
0.5)
11 Does not converge Does not converge (3,0.5) 10 Does not converge
(5,5) Infinite Infinite Does not converge Does not converge Infinite (3,0.5) 12
(-2,-2) Does not converge (3,0.5) 10 (3,0.5) 10 Does not converge
(3.0001,
0.5)
8
(3.0001,
0.5)
8
(-4,-4) Infinite Does not converge Does not converge (3,0.5) 10 (3,0.5) 10 (3,0.5) 22
(-6,-6) Infinite (3,0.5) 20 (3,0.5) 21 Infinite
(3.0001,
0.5)
38 Does not converge
Beale function
x1
x2
Beale function for (3,3) initial point and α=(0,10) for P-R method
Beale function
x1
x2
Beale function for (3,3) initial point and α=(-50,50) for F-R method
Beale function
Initial
Point
Davidon-Fletcher-Powell (DFP) method Broyden-Fletcher-Goldfarb-Shanno (BFGS) method Powell's conjugate direction method
α α α
(0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50)
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
(0,0)
(3,0.5) 8 (3,0.5) 8 (3,0.5) 8 (3,0.5) 8 (3,0.5) 8 (3,0.5) 8 (3,0.5)
4
(3,0.5)
4
(3,0.5)
3
(1,1)
(3,0.5) 10 (3,0.5) 9 (3,0.5) 9 (3,0.5) 9 (3,0.5) 13 (3,0.5) 15
(11,1) 2
(-
4.04,1.
21)
7
Conver
ging
very
slowly
(3,3)
NaN 100 (3,0.5) 10 NaN 100 NaN 100 (3,0.5) 10 varying 100
not
varying
(3,3)
__
(-
0.1198,
3.0003) 3
(5,5)
(3,0.5) 118 (3,0.5) 12 (3,0.5) 94
7.93,.8
6
50 (3,0.5) 12 (3,0.5) 40
not
varying
(5,5)
may be
get
stuck
to a
saddle
point(0
,5) 3
(-2,-
2)
NaN 100 (3,0.5) 10 (3,0.5) 8 varying 100 (3,0.5) 7 (3,0.5) 7 (3,0.5)
4
(3,0.5)
4
(-4,-
4)
(3,0.5) 117 (3,0.5) 10 (3,0.5) 15 (3,0.5) 10 (3,0.5) 10 (3,0.5) 12
(4.7703
,0.7383
) 1
(4.7188
,0.7384
) 4
(-6,-
6)
(20.66,
0.95)
50 (3,0.5) 21 NaN 100
(-
113.86,
1.0074)
8 (3,0.5) 21 varying 100
(6.842,.
832)
(6.79,0.
83)
3
For range of alpha between -50 to 50 alpha as well as x oscillates between large range probably because it gets distracted
too much in some iteration steps and converges very slowly sometimes.
Ackley function
2 2
0.2 0.5( ) 0.5(cos(2 ) cos(2 ))
( , ) 20 20x y x y
f x y e e e
3d plot of Ackley function
Ackley function
Contour plot of Ackley function
Ackley function
Initial
Point
Fletcher-Reeves Polak-Ribiere
α α
(0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50)
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
(0,0)
Infinite Infinite Infinite Infinite Infinite Infinite
(1,1)
(0.9685,
0.9685)
4
(-0.9685,
-0.9685)
3 (-57,-57) 2
(0.9685,
0.9685)
4
(-0.9685,
-0.9685)
3 (-57,-57) 2
(3,3)
(0.9685,
0.9685)
4
(-1.9745,
-1.9745
3 (-82,-82) 4
(0.9685,
0.9685)
4
(-1.9745,
-1.9745
3 (-82,-82) 4
(5,5)
(-0.9685,
-0.9685)
4
(-1.9745,
-1.9745
4 (83,83) 4
(-0.9685,
-0.9685)
4
(-1.9745,
-1.9745
4 (83,83) 4
(-2,-2)
(-0.9685,
-0.9685)
4
(-1.9745,
-1.9745
3 (83,83) 4
(-0.9685,
-0.9685)
4
(-1.9745,
-1.9745
3 (83,83) 4
(-4,-4)
(-0.9685,
-0.9685)
4
(1.9745,
1.9745)
4 (-83,-83) 4
(-0.9685,
-0.9685)
4
(1.9745,1
.9745)
4 (-83,-83) 4
(-6,-6)
(-0.9685,
-0.9685)
2
(-1.9745,
-1.9745
4 (-83,-83) 4
(-0.9685,
-0.9685)
2
(-1.9745,
-1.9745
4 (-83,-83) 4
At(0,0) gradient of f(x,y) in not defined and hence the result shows Infinite
α=(-50,50) gives local minima which are far away from the initial point.
P-R and F-R gives exactly same results for all α and all initial points.
Ackley function
Initia
l
Point
Davidon-Fletcher-Powell (DFP) method
Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method Powell's conjugate direction method
α α α
(0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50)
Final
Point
# of
iterati
ons
Final
Point
# of
iteratio
ns
Final
Point
# of
iteratio
ns
Final
Point
# of
iteratio
ns
Final
Point
# of
iteratio
ns
Final
Point
# of
iteration
s
Final
Point
# of
iteratio
ns
Final
Point
# of
iteratio
ns
Final
Point
# of
iterations
(0,0)
NaN 100 NaN 100 NaN 100 NaN 100 NaN 100 NaN 100
oscillati
ng
oscillati
ng
oscillatin
g
but it has
been
identifie
d that
(1,1)
(.96885,
.9685)
4
(-
.96885,
-.9685)
3
(-57,-
57)
2
(.96885,
.9685)
4
(-
.96885,-
.9685)
3
(-57,-
57)
2
oscillati
ng
oscillati
ng
oscillatin
g
it has
function
(3,3)
(.96885,
.9685)
4
(5.9887
,5.9887
)
4
(.96885,
.9685)
4
(.96885,
.9685)
4
(5.9887,
5.9887)
4
(.96885,
.9685)
4
oscillati
ng
oscillati
ng
oscillatin
g
value
zero
(5,5)
(49,49) 4 (0,0) 6
(-295,-
295)
4 (49,49) 4 (0,0) 6
(-274,-
274)
4
oscillati
ng
oscillati
ng
oscillatin
g
or nearly
zero
(-2,-
2)
(-
.96885,-
.9685)
4 (0,0) 6 (0,0) 5
(-
.96885,-
.9685)
3 (0,0) 6 (0,0) 5
oscillati
ng
oscillati
ng
oscillatin
g
at
several
points
(-4,-
4)
(.96885,
.9685)
4
(.96885
,.9685)
4
(.96885,
.9685)
4
(-17,-
17)
4
(.96885,
.9685)
4
(.96885,
.9685)
4
oscillati
ng
oscillati
ng
oscillatin
g
(-6,-
6)
(-
.96885,-
.9685)
3
(-
.96885,
-.9685)
4 (0,0) 6
(-
.96885,-
.9685)
2
(-
.96885,-
.9685)
4 (0,0) 5
oscillati
ng
varying varying
It can be perceived from Powell’s method that Ackley fn has local minima at
several points
But as the algorithm reaches that point algorithm does not stop, it just oscillates
around it and one can guess that it happens possibly due to large range of alpha
(the function has several local minima within a very short distance) and this
perception was validated when the algorithm reached to local or global
minimum points when we ran the algorithm for small range of alpha (-2,3)
starting from several starting points!
For alpha (-5,20) the value sometimes almost reaches the minima but
then bounce back to another point not close to the previous point
Ackley function
In Powell method for Ackley function for range of alpha (-2,3) it happily reached
A minima at (0,0) within 2 iterations though powell’s method did not work well
for large range of alpha
x
y
Ackley function
Goldstein-Price function
2 2 2 2 2 2
( , ) (1 ( 1) (19 14 3 14 6 3 ))(30 (2 3 ) (18 32 12 48 36 27 ))f x y x y x x y xy y x y x x y xy y
3d plot of Goldstein-Price function
Goldstein-Price function
Contour plot of Goldstein-Price function
Goldstein-Price function
Initial
Point
Fletcher-Reeves Polak-Ribiere
α α
(0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50)
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
(0,0)
Infinite (0,-1) 11 (0,-1) 25 Infinite (0,-1) 8 (0,-1) 9
(1,1)
Infinite (0,-1) 15 (0,-1) 19 Infinite (0,-1) 10 (0,-1) 26
(3,3)
Infinite Infinite (0,-1) 18 Infinite Infinite (0,-1) 34
(5,5)
Infinite Infinite (0,-1) 39 Infinite Infinite (0,-1) 22
(-2,-2)
Infinite Infinite (0,-1) 33 Infinite Infinite (0,-1) 10
(-4,-4)
Infinite Infinite (0,-1) 49 Infinite Infinite (0,-1) 11
(-6,-6)
Infinite Infinite
Does not
converge
Infinite Infinite
Does not
converge
 α=(-50,50) works better compared to other α ranges.
Changing α to(-100,100) results in convergence for (-6,-6) initial point also.
Goldstein-Price function
DFP and BFGS gives better result (less # of iterations) compared to F-R and P-R .
Initial
Point
Davidon-Fletcher-Powell (DFP) method
Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method
Powell's conjugate direction method
α α α
(0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50)
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iteratio
ns
Final
Point
# of
iterations
Final
Point
# of
iterations
(0,0) (0,-1) 12 (0,-1) 6 (0,-1) 5 (0,-1) 12 (0,-1) 6 (0,-1) 5
oscillatin
g
(0,-1) 1
(0,-
.999)
1
(1,1)
(1.8,0.
2)
12 (1.8,2) 6 (0,-1) 7
(1.8,0.
2)
12 (1.8,2) 6 (0,-1) 7 (2.986,1) 2 (0,-1) 4
(0.003,
-.99)
1
(3,3) NaN 100 NaN 100 (0,-1) 11 NaN 100 (0,-1) 17 (0,-1) 11
oscillatin
g
(0,-1) 2 (0,-1) 5
(5,5) NaN 100 NaN 100 (0,-1) 11 NaN 100 (0,-1) 17 (0,-1) 12 (0,-1) 3 (0,-1) 3
(-2,-
2)
(0,-1) 16 (0,-1) 32
(-.6,-
.4)
7 (0,-1) 16 (0,-1) 12
(-.6,-
.4)
7
(2.497,
.675)
4
(-.6,-
.4)
3 (0,-1) 4
(-4,-
4)
NaN 100
(-.6,-
.4)
22 (0,-1) 16 NaN 100 (0,-1) 14 (0,-1) 11
(2.9933
0.9896)
3 (0,-1) 3
oscillat
ing
(-6,-
6)
NaN 100 NaN 100 (0,-1) 10 NaN 100 (0,-1) 17 (0,-1) 10
(1.8434
0.2297)
3 (0,-1) 3*3 (0,-1) 3
Cross-in-tray function
2 2
0.1
100
( , ) 0.0001 sin( )sin( ) 1
x y
f x y x y e
3d plot of Cross-in -Tray function
Cross-in-tray function
Contour plot of Cross-in -Tray function
Cross-in-tray function
Initial
Point
Fletcher-Reeves Polak-Ribiere
α α
(0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50)
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
(0,0) Infinite Infinite Infinite Infinite Infinite Infinite
(1,1)
(1.3494,
1.3494)
2
(1.3494,
1.3494)
2
(1.3494,
1.3494)
2
(1.3494,
1.3494)
2
(1.3494,
1.3494)
2
(1.3494,
1.3494)
2
(3,3)
(1.3494,
1.3494)
2
(-1.3494,
-1.3494)
2
(-1.3494,
-1.3494)
2
(1.3494,
1.3494)
2
(-1.3494,
-1.3494)
2
(-1.3494,
-1.3494)
2
(5,5)
(4.4910,
4.4910)
2
(4.4910,
4.4910)
2
(4.4910,
4.4910)
2
(4.4910,
4.4910)
2
(4.4910,
4.4910)
2
(4.4910,
4.4910)
2
(-2,-2)
(-1.3494,
-1.3494)
2
(-1.3494,
-1.3494)
2
(1.3494,
1.3494)
2
(-1.3494,
-1.3494)
2
(-1.3494,
-1.3494)
2
(1.3494,
1.3494)
2
(-4,-4)
(-4.4910,
-4.4910)
2
(-4.4910,
-4.4910)
2
(-4.4910,
-4.4910)
2
(-4.4910,
-4.4910)
2
(-4.4910,
-4.4910)
2
(-4.4910,
-4.4910)
2
(-6,-6)
(-4.4910,
-4.4910)
2
(-1.3494,
-1.3494)
2
(-1.3494,
-1.3494)
2
(-4.4910,
-4.4910)
2
(-1.3494,
-1.3494)
2
(-1.3494,
-1.3494)
2
At(0,0) gradient of f(x,y) in not defined and hence the result shows Infinite
For α=(0,10), positive initial point gives positive local minima only which
is not the case for other α.
Cross-in-tray function
All methods give local minima closest to initial point.
Davidon-Fletcher-Powell (DFP) method Broyden-Fletcher-Goldfarb-Shanno (BFGS) method Powell's conjugate direction method
α α α
(0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50)
Final
Point
# of
iteration
s
Final
Point
# of
iteratio
ns
Final
Point
# of
iteratio
ns
Final
Point
# of
iterations
Final
Point
# of
iteration
s
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
NaN NaN NaN NaN
NaN NaN
oscillati
ng
(0,-1) 1 oscillati
ng
(1.3494,
1.3494)
2
(1.3494,
1.3494)
2
(1.3494,
1.3494)
2
(1.3494
,1.3494
)
2
(1.3494,
1.3494)
2
(1.3494
,1.3494
)
2 oscillati
ng
(0,-1) 4 oscillati
ng
(1.3494,
1.3494)
2
(-1.3494,-
1.3494)
2
(-1.3494,
-1.3494)
2
(1.3494
,1.3494
)
2
(-1.3494,
-1.3494)
2
(-
1.3494,
-
1.3494)
2
oscillati
ng
(0,-1) 2
oscillati
ng
(4.491,
4.491)
2
(4.491,
4.491)
2
(4.491,
4.491)
2
(4.491,
4.491)
2
(4.491,
4.491)
2
(4.491,
4.491)
2 oscillati
ng
(0,-1) 3 oscillati
ng
(-1.3494,
-1.3494)
2
(-1.3494,-
1.3494)
2
(1.3494,
1.3494)
2
(-
1.3494,
-
1.3494)
2
(-1.3494,
-1.3494)
2
(1.3494
,1.3494
)
2
oscillati
ng
(-.6,-.4) 3
oscillati
ng
(-4.491,
-4.491)
2
(-4.491,-
4.491)
2
(-4.491,-
4.491)
2
(-
4.491,-
4.491)
2
(-4.491,-
4.491)
2
(-
4.491,-
4.491)
2 oscillati
ng
(0,-1) 3 oscillati
ng
(-4.491,
-4.491)
2
(-1.3494,-
1.3494)
2
(-1.3494,-
1.3494)
2
(-
4.491,-
4.491)
2
(-
1.3494,-
1.3494)
2
(-
1.3494,
-
1.3494)
2
oscillati
ng
(0,-1) 3*3
oscillati
ng
Bukin function
2
( , ) 100 | 0.01 | 0.01| 10|f x y y x x
3d plot of Bukin function
Bukin function
3d plot of Bukin function
Bukin function
Initial
Point
Fletcher-Reeves Polak-Ribiere
α α
(0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50)
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
(0,0)
Infinite Infinite Infinite Infinite Infinite Infinite
(1,1)
Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge
(3,3)
Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge
(5,5)
Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge
(-2,-2)
Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge
(-4,-4)
Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge
(-6,-6)
Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge
Bukin function
x1
x2
Bukin’s function for (-2,-2) initial point and α=(-50,50) for F-R method
Bukin function
Initial
Point
Davidon-Fletcher-Powell (DFP) method Broyden-Fletcher-Goldfarb-Shanno (BFGS) method Powell's conjugate direction method
α α α
(0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50)
Final
Point
# of
iteration
s
Final
Point
# of
iteration
s
Final
Point
# of
iteration
s
Final
Point
# of
iteration
s
Final
Point
# of
iteration
s
Final
Point
# of
iteration
s
Final Point
# of
iterations
Final Point
# of
iterations
Final Point
# of
iterations
(0,0)
(-0.0162
0.0000) 1
(-0.0162
0.0000) 2
(-0.0162
0.0000) 1
(1,1)
(10,1) not
converging
properly 1
(10,1) not
converging
properly 1
varying or
oscillating
(3,3)
NOT
WORKI
NG
varying or
oscillating
varying
varying or
oscillating
(5,5)
varying or
oscillating
oscillating
varying or
oscillating
(-2,-2)
varying or
oscillating
(0,0)
1
varying or
oscillating
(-4,-4)
varying or
oscillating
converges
to(14.3248
2.0520)
but rhere
were some
points
having less
function
value 6
varying or
oscillating
(-6,-6)
varying or
oscillating
(-0.0162
0.0000)
1
varying or
oscillating
For Powell method alpha (-50,50) starting from (3,3) the ultimate point just oscillates fro
(-17.02,3) to (17.02,3)
x
y
Rosenbrock function
1
2 2 2
1
1
( ) {100( ) ( 1) }
n
i i i
i
f X x x x
Initial Point
Fletcher-Reeves Polak-Ribiere
α α
(0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50)
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
Final
Point
# of
iterations
(0,0,0,0,0,0
,0,0)
Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge
(1,1,1,1,1,1
,1,1)
(1,1,1,1,1
,1,1,1)
1
(1,1,1,1,1
,1,1,1)
1
(1,1,1,1,1
,1,1,1)
1
(1,1,1,1,1
,1,1,1)
1
(1,1,1,1,1
,1,1,1)
1
(1,1,1,1,1
,1,1,1)
1
(3,3,3,3,3,3
,3,3)
Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge
(5,5,5,5,5,5
,5,5)
Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge
(-2,-2,-2,-
2,-2,-2,-2,-
2)
Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge
(-4,-4,-4,-
4,-4,-4,-4,-
4)
Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge
(-6,-6,-6,-
6,-6,-6,-6,-
6)
Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge
The point (1,1,1,1,1,1,1,1) is itself a minimum point and hence it
converges for that initial point only
Rosenbrock (8 variable) function
Rosenbrock (8 variable) function
F-R very slowly converges 10 the minimum point.
F-R method for α=(0,10) and (-2, -2, -2, -2, -2, -2, -2, -2) initial point
Initial
Point
Davidon-Fletcher-Powell (DFP) method Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
α α
(0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50)
Final Point
# of
iterations
and # of
function
evaluation
s Final Point
# of
iterations
and # of
function
evaluations Final Point
# of
iterations
and # of
function
evaluations Final Point
# of
iterations
and # of
function
evaluation
s Final Point
# of
iterations
and # of
function
evaluation
s Final Point
# of
iterations
and # of
function
evaluations
(0,0,0,0,
0,0,0,0)
(1,1,1,1,1,
1,1,1)
59
(1,1,1,1,1,
1,1,1)
45
(1,1,1,1,1,
1,1,1)
45
(1,1,1,1,1,
1,1,1)
46
(1,1,1,1,1,
1,1,1)
45
(1,1,1,1,1,
1,1,1)
45
(1,1,1,1,
1,1,1,1)
(1,1,1,1,1,
1,1,1)
1
(1,1,1,1,1,
1,1,1)
1
(1,1,1,1,1,
1,1,1)
1
(1,1,1,1,1,
1,1,1)
1
(1,1,1,1,1,
1,1,1)
1
(1,1,1,1,1,
1,1,1)
1
(3,3,3,3,
3,3,3,3)
slowly
converging
(1,1,1,1,1,
1,1,1)
44
(1,1,1,1,1,
1,1,1)
39
(1,1,1,1,1,
1,1,1)
31
(1,1,1,1,1,
1,1,1)
34
(1,1,1,1,1,
1,1,1)
37
(5,5,5,5,
5,5,5,5)
not
converging
or very
slowly
converging
(1,1,1,1,1,
1,1,1)
44
(1,1,1,1,1,
1,1,1)
271
(1,1,1,1,1,
1,1,1)
75
(1,1,1,1,1,
1,1,1)
48
(1,1,1,1,1,
1,1,1)
72
(-2,-2,-
2,-2,-2,-
2,-2,-2)
slowly
converging
/oscillating
(1,1,1,1,1,
1,1,1)
69
(1,1,1,1,1,
1,1,1)
65
(1,1,1,1,1,
1,1,1)
52
(1,1,1,1,1,
1,1,1)
54
(1,1,1,1,1,
1,1,1)
51
(-4,-4,-
4,-4,-4,-
4,-4,-4)
slowly
converging
/oscillating
(1,1,1,1,1,
1,1,1)
slowly
converging
/oscillating
(1,1,1,1,1,
1,1,1)
64
(1,1,1,1,1,
1,1,1)
56
(1,1,1,1,1,
1,1,1)
41
(1,1,1,1,1,
1,1,1)
56
(-6,-6,-
6,-6,-6,-
6,-6,-6)
(1,1,1,1,1,
1,1,1)
30
(1,1,1,1,1,
1,1,1)
126
(1,1,1,1,1,
1,1,1)
182
(1,1,1,1,1,
1,1,1)
23
(1,1,1,1,1,
1,1,1)
37
(1,1,1,1,1,
1,1,1)
62
Rosenbrock(8 variable) function
Conclusions
 For quadratic problems, all methods gives satisfactory results.
Powell’s method is working satisfactorily for small (i.e.lower-dimensional)
problems [particularly for α=(-5,20)]
DFP-BFGS works very good for bad functions (e.g Goldstein Price
function) where F-R and P-R does not work well.
Suitability of DFP, BFGS for higher dimensional problems need to be
studied more.
Range of step size if chosen small and searches on both side of the given
point [α=(-5,20)], it works well for all problems.
Comparative study of algorithms of nonlinear optimization

More Related Content

What's hot

Presentation mathmatic 3
Presentation mathmatic 3Presentation mathmatic 3
Presentation mathmatic 3nashaat algrara
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian IntegrationReza Rahimi
 
선형대수 09. 벡터의 직교성과 투영
선형대수 09. 벡터의 직교성과 투영선형대수 09. 벡터의 직교성과 투영
선형대수 09. 벡터의 직교성과 투영AHRA CHO
 
PID control dynamics of a robotic arm manipulator with two degrees of freedom.
PID control dynamics of a robotic arm manipulator with two degrees of freedom.PID control dynamics of a robotic arm manipulator with two degrees of freedom.
PID control dynamics of a robotic arm manipulator with two degrees of freedom.popochis
 
Beta & Gamma Functions
Beta & Gamma FunctionsBeta & Gamma Functions
Beta & Gamma FunctionsDrDeepaChauhan
 
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's MethodFEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's MethodSuddhasheel GHOSH, PhD
 
Recent advances in modeling soil-structure interaction problems using OpenSees
Recent advances in modeling soil-structure interaction problems using OpenSeesRecent advances in modeling soil-structure interaction problems using OpenSees
Recent advances in modeling soil-structure interaction problems using OpenSeesopenseesdays
 
Analysis of portal frame by direct stiffness method
Analysis of  portal frame by direct stiffness methodAnalysis of  portal frame by direct stiffness method
Analysis of portal frame by direct stiffness methodkasirekha
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shahC.G.P.I.T
 
VAE 처음부터 알아보기
VAE 처음부터 알아보기VAE 처음부터 알아보기
VAE 처음부터 알아보기민석 김
 
Integration Formulas
Integration FormulasIntegration Formulas
Integration Formulashannagrauser1
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transformsKarnav Rana
 
Finite Element for Trusses in 2-D
Finite Element for Trusses in 2-DFinite Element for Trusses in 2-D
Finite Element for Trusses in 2-DMohammad Tawfik
 
Solution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_holeSolution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_holePraditaFirmansyah
 
Flower Pollination Algorithm (matlab code)
Flower Pollination Algorithm (matlab code)Flower Pollination Algorithm (matlab code)
Flower Pollination Algorithm (matlab code)Xin-She Yang
 

What's hot (20)

Presentation mathmatic 3
Presentation mathmatic 3Presentation mathmatic 3
Presentation mathmatic 3
 
Gaussian Integration
Gaussian IntegrationGaussian Integration
Gaussian Integration
 
Fourier series
Fourier series Fourier series
Fourier series
 
선형대수 09. 벡터의 직교성과 투영
선형대수 09. 벡터의 직교성과 투영선형대수 09. 벡터의 직교성과 투영
선형대수 09. 벡터의 직교성과 투영
 
PID control dynamics of a robotic arm manipulator with two degrees of freedom.
PID control dynamics of a robotic arm manipulator with two degrees of freedom.PID control dynamics of a robotic arm manipulator with two degrees of freedom.
PID control dynamics of a robotic arm manipulator with two degrees of freedom.
 
Beta & Gamma Functions
Beta & Gamma FunctionsBeta & Gamma Functions
Beta & Gamma Functions
 
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's MethodFEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
 
Recent advances in modeling soil-structure interaction problems using OpenSees
Recent advances in modeling soil-structure interaction problems using OpenSeesRecent advances in modeling soil-structure interaction problems using OpenSees
Recent advances in modeling soil-structure interaction problems using OpenSees
 
Lec17 sparse signal processing & applications
Lec17 sparse signal processing & applicationsLec17 sparse signal processing & applications
Lec17 sparse signal processing & applications
 
Analysis of portal frame by direct stiffness method
Analysis of  portal frame by direct stiffness methodAnalysis of  portal frame by direct stiffness method
Analysis of portal frame by direct stiffness method
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shah
 
VAE 처음부터 알아보기
VAE 처음부터 알아보기VAE 처음부터 알아보기
VAE 처음부터 알아보기
 
Euler and runge kutta method
Euler and runge kutta methodEuler and runge kutta method
Euler and runge kutta method
 
Integration Formulas
Integration FormulasIntegration Formulas
Integration Formulas
 
Simplex Algorithm
Simplex AlgorithmSimplex Algorithm
Simplex Algorithm
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Finite Element for Trusses in 2-D
Finite Element for Trusses in 2-DFinite Element for Trusses in 2-D
Finite Element for Trusses in 2-D
 
Solution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_holeSolution 2 3_8_bar_with_a_hole
Solution 2 3_8_bar_with_a_hole
 
2nd order ode applications
2nd order ode applications2nd order ode applications
2nd order ode applications
 
Flower Pollination Algorithm (matlab code)
Flower Pollination Algorithm (matlab code)Flower Pollination Algorithm (matlab code)
Flower Pollination Algorithm (matlab code)
 

Viewers also liked

Application of recursive perturbation approach for multimodal optimization
Application of recursive perturbation approach for multimodal optimizationApplication of recursive perturbation approach for multimodal optimization
Application of recursive perturbation approach for multimodal optimizationPranamesh Chakraborty
 
Revista Lanbide 2002
Revista Lanbide 2002Revista Lanbide 2002
Revista Lanbide 2002Leire Hetel
 
optim function
optim functionoptim function
optim functionSupri Amir
 
Quasi newton
Quasi newtonQuasi newton
Quasi newtontokumoto
 
A simplex nelder mead genetic algorithm for minimizing molecular potential en...
A simplex nelder mead genetic algorithm for minimizing molecular potential en...A simplex nelder mead genetic algorithm for minimizing molecular potential en...
A simplex nelder mead genetic algorithm for minimizing molecular potential en...Aboul Ella Hassanien
 
Optimization In R
Optimization In ROptimization In R
Optimization In Rsyou6162
 
Nelder Mead Search Algorithm
Nelder Mead Search AlgorithmNelder Mead Search Algorithm
Nelder Mead Search AlgorithmAshish Khetan
 
H2O World - GLM - Tomas Nykodym
H2O World - GLM - Tomas NykodymH2O World - GLM - Tomas Nykodym
H2O World - GLM - Tomas NykodymSri Ambati
 
Simulated annealing.ppt
Simulated annealing.pptSimulated annealing.ppt
Simulated annealing.pptKaal Nath
 
Nonlinear programming 2013
Nonlinear programming 2013Nonlinear programming 2013
Nonlinear programming 2013sharifz
 
Using Gradient Descent for Optimization and Learning
Using Gradient Descent for Optimization and LearningUsing Gradient Descent for Optimization and Learning
Using Gradient Descent for Optimization and LearningDr. Volkan OBAN
 
Optimization Methods in Finance
Optimization Methods in FinanceOptimization Methods in Finance
Optimization Methods in Financethilankm
 
Solving Poisson Equation using Conjugate Gradient Method and its implementation
Solving Poisson Equation using Conjugate Gradient Methodand its implementationSolving Poisson Equation using Conjugate Gradient Methodand its implementation
Solving Poisson Equation using Conjugate Gradient Method and its implementationJongsu "Liam" Kim
 
Simulated Annealing - A Optimisation Technique
Simulated Annealing - A Optimisation TechniqueSimulated Annealing - A Optimisation Technique
Simulated Annealing - A Optimisation TechniqueAUSTIN MOSES
 
Simulated Annealing
Simulated AnnealingSimulated Annealing
Simulated AnnealingJoy Dutta
 
NONLINEAR PROGRAMMING - Lecture 1 Introduction
NONLINEAR PROGRAMMING - Lecture 1 IntroductionNONLINEAR PROGRAMMING - Lecture 1 Introduction
NONLINEAR PROGRAMMING - Lecture 1 IntroductionOlympiad
 

Viewers also liked (20)

Application of recursive perturbation approach for multimodal optimization
Application of recursive perturbation approach for multimodal optimizationApplication of recursive perturbation approach for multimodal optimization
Application of recursive perturbation approach for multimodal optimization
 
Revista Lanbide 2002
Revista Lanbide 2002Revista Lanbide 2002
Revista Lanbide 2002
 
Cap 4 parte_elizabeth
Cap 4 parte_elizabethCap 4 parte_elizabeth
Cap 4 parte_elizabeth
 
Optimization tutorial
Optimization tutorialOptimization tutorial
Optimization tutorial
 
optim function
optim functionoptim function
optim function
 
Quasi newton
Quasi newtonQuasi newton
Quasi newton
 
A simplex nelder mead genetic algorithm for minimizing molecular potential en...
A simplex nelder mead genetic algorithm for minimizing molecular potential en...A simplex nelder mead genetic algorithm for minimizing molecular potential en...
A simplex nelder mead genetic algorithm for minimizing molecular potential en...
 
Optimization In R
Optimization In ROptimization In R
Optimization In R
 
Nelder Mead Search Algorithm
Nelder Mead Search AlgorithmNelder Mead Search Algorithm
Nelder Mead Search Algorithm
 
CV TKD
CV TKDCV TKD
CV TKD
 
H2O World - GLM - Tomas Nykodym
H2O World - GLM - Tomas NykodymH2O World - GLM - Tomas Nykodym
H2O World - GLM - Tomas Nykodym
 
Simulated annealing.ppt
Simulated annealing.pptSimulated annealing.ppt
Simulated annealing.ppt
 
Nonlinear programming 2013
Nonlinear programming 2013Nonlinear programming 2013
Nonlinear programming 2013
 
Using Gradient Descent for Optimization and Learning
Using Gradient Descent for Optimization and LearningUsing Gradient Descent for Optimization and Learning
Using Gradient Descent for Optimization and Learning
 
Optimization Methods in Finance
Optimization Methods in FinanceOptimization Methods in Finance
Optimization Methods in Finance
 
Solving Poisson Equation using Conjugate Gradient Method and its implementation
Solving Poisson Equation using Conjugate Gradient Methodand its implementationSolving Poisson Equation using Conjugate Gradient Methodand its implementation
Solving Poisson Equation using Conjugate Gradient Method and its implementation
 
Simulated Annealing - A Optimisation Technique
Simulated Annealing - A Optimisation TechniqueSimulated Annealing - A Optimisation Technique
Simulated Annealing - A Optimisation Technique
 
The Traitor?
The Traitor?The Traitor?
The Traitor?
 
Simulated Annealing
Simulated AnnealingSimulated Annealing
Simulated Annealing
 
NONLINEAR PROGRAMMING - Lecture 1 Introduction
NONLINEAR PROGRAMMING - Lecture 1 IntroductionNONLINEAR PROGRAMMING - Lecture 1 Introduction
NONLINEAR PROGRAMMING - Lecture 1 Introduction
 

Similar to Comparative study of algorithms of nonlinear optimization

Theory to consider an inaccurate testing and how to determine the prior proba...
Theory to consider an inaccurate testing and how to determine the prior proba...Theory to consider an inaccurate testing and how to determine the prior proba...
Theory to consider an inaccurate testing and how to determine the prior proba...Toshiyuki Shimono
 
ゲーム理論BASIC 演習52 -完全ベイジアン均衡-
ゲーム理論BASIC 演習52 -完全ベイジアン均衡-ゲーム理論BASIC 演習52 -完全ベイジアン均衡-
ゲーム理論BASIC 演習52 -完全ベイジアン均衡-ssusere0a682
 
RxJava In Baby Steps
RxJava In Baby StepsRxJava In Baby Steps
RxJava In Baby StepsAnnyce Davis
 
Lp presentations fnctions
Lp presentations fnctionsLp presentations fnctions
Lp presentations fnctionsrodylie
 
pot fracciones log etc.pdf
pot fracciones log etc.pdfpot fracciones log etc.pdf
pot fracciones log etc.pdfadelaleston
 
Douglas C. Montgomery, Sol_125240.pdf
Douglas C. Montgomery, Sol_125240.pdfDouglas C. Montgomery, Sol_125240.pdf
Douglas C. Montgomery, Sol_125240.pdfAshutoshKgupta
 
Useful javascript
Useful javascriptUseful javascript
Useful javascriptLei Kang
 
Introduction To Lisp
Introduction To LispIntroduction To Lisp
Introduction To Lispkyleburton
 
Frege - consequently functional programming for the JVM
Frege - consequently functional programming for the JVMFrege - consequently functional programming for the JVM
Frege - consequently functional programming for the JVMDierk König
 
From Javascript To Haskell
From Javascript To HaskellFrom Javascript To Haskell
From Javascript To Haskellujihisa
 
Storyboard math
Storyboard mathStoryboard math
Storyboard mathshandex
 
7-NFA to Minimized DFA.pptx
7-NFA to Minimized DFA.pptx7-NFA to Minimized DFA.pptx
7-NFA to Minimized DFA.pptxSLekshmiNair
 
The Ring programming language version 1.5.3 book - Part 69 of 184
The Ring programming language version 1.5.3 book - Part 69 of 184The Ring programming language version 1.5.3 book - Part 69 of 184
The Ring programming language version 1.5.3 book - Part 69 of 184Mahmoud Samir Fayed
 
Robotic Manipulator with Revolute and Prismatic Joints
Robotic Manipulator with Revolute and Prismatic JointsRobotic Manipulator with Revolute and Prismatic Joints
Robotic Manipulator with Revolute and Prismatic JointsTravis Heidrich
 
AIP Inverse Test
AIP Inverse TestAIP Inverse Test
AIP Inverse Testmcowart50
 

Similar to Comparative study of algorithms of nonlinear optimization (20)

Theory to consider an inaccurate testing and how to determine the prior proba...
Theory to consider an inaccurate testing and how to determine the prior proba...Theory to consider an inaccurate testing and how to determine the prior proba...
Theory to consider an inaccurate testing and how to determine the prior proba...
 
ゲーム理論BASIC 演習52 -完全ベイジアン均衡-
ゲーム理論BASIC 演習52 -完全ベイジアン均衡-ゲーム理論BASIC 演習52 -完全ベイジアン均衡-
ゲーム理論BASIC 演習52 -完全ベイジアン均衡-
 
RxJava In Baby Steps
RxJava In Baby StepsRxJava In Baby Steps
RxJava In Baby Steps
 
Lp presentations fnctions
Lp presentations fnctionsLp presentations fnctions
Lp presentations fnctions
 
pot fracciones log etc.pdf
pot fracciones log etc.pdfpot fracciones log etc.pdf
pot fracciones log etc.pdf
 
Douglas C. Montgomery, Sol_125240.pdf
Douglas C. Montgomery, Sol_125240.pdfDouglas C. Montgomery, Sol_125240.pdf
Douglas C. Montgomery, Sol_125240.pdf
 
เซต
เซตเซต
เซต
 
MATLAB ARRAYS
MATLAB ARRAYSMATLAB ARRAYS
MATLAB ARRAYS
 
Useful javascript
Useful javascriptUseful javascript
Useful javascript
 
Vine shortest example
Vine shortest exampleVine shortest example
Vine shortest example
 
Introduction To Lisp
Introduction To LispIntroduction To Lisp
Introduction To Lisp
 
LalitBDA2015V3
LalitBDA2015V3LalitBDA2015V3
LalitBDA2015V3
 
Frege - consequently functional programming for the JVM
Frege - consequently functional programming for the JVMFrege - consequently functional programming for the JVM
Frege - consequently functional programming for the JVM
 
From Javascript To Haskell
From Javascript To HaskellFrom Javascript To Haskell
From Javascript To Haskell
 
Storyboard math
Storyboard mathStoryboard math
Storyboard math
 
7-NFA to Minimized DFA.pptx
7-NFA to Minimized DFA.pptx7-NFA to Minimized DFA.pptx
7-NFA to Minimized DFA.pptx
 
The Ring programming language version 1.5.3 book - Part 69 of 184
The Ring programming language version 1.5.3 book - Part 69 of 184The Ring programming language version 1.5.3 book - Part 69 of 184
The Ring programming language version 1.5.3 book - Part 69 of 184
 
Python 1 liners
Python 1 linersPython 1 liners
Python 1 liners
 
Robotic Manipulator with Revolute and Prismatic Joints
Robotic Manipulator with Revolute and Prismatic JointsRobotic Manipulator with Revolute and Prismatic Joints
Robotic Manipulator with Revolute and Prismatic Joints
 
AIP Inverse Test
AIP Inverse TestAIP Inverse Test
AIP Inverse Test
 

More from Pranamesh Chakraborty

More from Pranamesh Chakraborty (11)

Leaning Tower Pisa
Leaning Tower PisaLeaning Tower Pisa
Leaning Tower Pisa
 
Hadoop, Map Reduce and Apache Pig tutorial
Hadoop, Map Reduce and Apache Pig tutorialHadoop, Map Reduce and Apache Pig tutorial
Hadoop, Map Reduce and Apache Pig tutorial
 
Classification of Soil
Classification of SoilClassification of Soil
Classification of Soil
 
Canal irrigation
Canal irrigationCanal irrigation
Canal irrigation
 
Rainfall measurement methods
Rainfall measurement methodsRainfall measurement methods
Rainfall measurement methods
 
Types of Irrigation
Types of IrrigationTypes of Irrigation
Types of Irrigation
 
Ig Nobel Prize
Ig Nobel PrizeIg Nobel Prize
Ig Nobel Prize
 
Critical Appraisal of Pavement Design of Ohio Department of Transportation (O...
Critical Appraisal of Pavement Design of Ohio Department of Transportation (O...Critical Appraisal of Pavement Design of Ohio Department of Transportation (O...
Critical Appraisal of Pavement Design of Ohio Department of Transportation (O...
 
SAFETY MEASURES FOR TABLE-TOP RUNWAY OF MANGALORE AIRPORT
SAFETY MEASURES FOR TABLE-TOP RUNWAY OF MANGALORE AIRPORTSAFETY MEASURES FOR TABLE-TOP RUNWAY OF MANGALORE AIRPORT
SAFETY MEASURES FOR TABLE-TOP RUNWAY OF MANGALORE AIRPORT
 
Schedule determination of a multiple route transit system
Schedule determination of a multiple  route transit systemSchedule determination of a multiple  route transit system
Schedule determination of a multiple route transit system
 
Canal Irrigation
Canal IrrigationCanal Irrigation
Canal Irrigation
 

Comparative study of algorithms of nonlinear optimization

  • 1. Presented by Pritam Bhadra Pranamesh Chakraborty Indian Institute of Technology, Kanpur 11 May 2013 Comparative study of algorithms of Nonlinear Optimization
  • 2. Methods of Nonlinear Optimization The methods for nonlinear optimization are: 1. Conjugate gradient methods a) Fletcher-Reeves b) Polak- Ribiere 2. Powell’s conjugate direction method 3. Quasi-Newton methods a) Davidon-Fletcher-Powell (DFP) method b) Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
  • 3. Functions used for comparison of algorithms 1. Booth function 2. Himmelblau function 3. Beale function 4. Ackley function 5. Goldstein function 6. Cross-in-tray function 7. Bukin function 8. Rosenbrock function
  • 4. For each function(two-dimensional), local minima is obtained from 6 initial points: a) (0,0) b) (1,1) c) (3,3) d) (5,5) e) (-2,-2) f) (-4,-4) g) (-6,-6) for 3 ranges of α (step-size)  (0,10)  (-5,20)  (-50,50)
  • 5. Booth function 2 2 ( , ) ( 2 7) (2 5)f x y x y x y Quadratic function of 2 variables 3d plot of Booth function
  • 6. Booth function Contour plot of Booth function
  • 7. Booth function  Exact same results for F-R and P-R since the function is quadratic Initial Point Fletcher-Reeves Polak-Ribiere α α (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) Final Point # of function evaluatio ns # of iteratio ns Final Point # of functio n evaluati ons # of iteratio ns Final Point # of function evaluatio ns # of iterations Final Point # of function evaluatio ns # of iterations Final Point # of functio n evaluat ions # of iteratio ns Final Point # of functio n evaluat ions # of iteratio ns (0,0) (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (1,1) (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (3,3) (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (5,5) (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (-2,-2) (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (-4,-4) (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (-6,-6) (1,3) 20 2 (1,3) 15 2 (1,3) 15 2 (1,3) 20 2 (1,3) 15 2 (1,3) 15 2  The algorithm converges in 2 steps as it is a 2-d quadratic problem
  • 8. Booth function Init ial Poi nt Davidon-Fletcher-Powell (DFP) method Broyden-Fletcher-Goldfarb-Shanno (BFGS) method Powell's conjugate direction method α α α (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) Final Point # of iterati ons Final Point # of iterati ons Final Point # of iterati ons Final Point # of iterati ons Final Point # of iterati ons Final Point # of iterati ons Final Point # of iterati ons Final Point # of iterati ons Final Point # of iterati ons (0,0 ) (1,3) 2,36 (1,3) 2,29 (1,3) 2,23 (1,3) 2,40 (1,3) 2,31 (1,3) 2,26 (3.4,1. 08) (1,3) 1 (1,3) 1 (1,1 ) (1,3) 2,43 (1,3) 2,29 (1,3) 2,38 (1,3) 2,42 (1,3) 2,28 (1,3) 2,32 (2.6,1. 72) (1,3) 1 (1,3) 1 (3,3 ) (1,3) 2,35 (1,3) 2,29 (1,3) 2,32 (1,3) 2,44 (1,3) 2,29 (1,3) 2,31 (1,3) 1 (1,3) 1 (5,5 ) (1,3) 2,32 (1,3) 2,27 (1,3) 2,22 (1,3) 2,37 (1,3) 2,28 (1,3) 2,24 Not Worki ng reachi ng to an (1,3) 2 (1,3) 2 (- 2,- 2) (1,3) 2,44 (1,3) 2,28 (1,3) 2,39 (1,3) 2,35 (1,3) 2,28 (1,3) 2,31 arbitr ary point and oscill ates (1,3) 1 (1,3) 1 (- 4,- 4) (1,3) 2,36 (1,3) 2,27 (1,3) 2,26 (1,3) 2,38 (1,3) 2,26 (1,3) 2,27 aroun d the point. (1,3) 1 (1,3) 1 (- 6,- 6) (1,3) (2,38) (1,3) 2,31 (1,3) 2,36 (1,3) 2,36 (1,3) 2,25 (1,3) 2,31 (1,3) 1 (1,3) 1 DFP and BFGS works very well for Booth functionPowell’s method works nice for proper range of alpha. A bit large range of alpha can be taken as there is only a few local minima of the function. For range of alpha between 0 and 10 it did not work because in some steps for ensuring the step to be descent the value of alpha is coming out to be negative.
  • 9. Himmelblau function 2 2 2 2 ( , ) ( 11) ( 7)f x y x y x y 3d plot of Himmelblau function
  • 10. Himmelblau function Contour plot of Himmelblau function
  • 11. Himmelblau function Initial Point Fletcher-Reeves Polak-Ribiere α α (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations (0,0) (3,2) 8 (3,2) 8 (3,2) 8 (3,2) 6 (3,2) 6 (3,2) 6 (1,1) (-3.7793, -3.2832) 28 (3,2) 13 (3,2) 13 (3,2) 7 (-3.7793, -3.2832) 7 (-3.7793, -3.2832) 7 (3,3) (3,2) 12 (3,2) 12 (3,2) 12 (3,2) 7 (3,2) 6 (3,2) 6 (5,5) (-3.7793, -3.2832) 12 (3,2) 11 (3,2) 11 (-3.7793, -3.2832) 8 (3,2) 6 (3,2) 7 (-2,-2) (-2.8051, 3.1313) 12 (3,2) 18 (3,2) 8 (-3.7793, -3.2832) 12 (-2.8051, 3.1313) 8 (3,2) 7 (-4,-4) (-2.8051, 3.1313) 11 (3,2) 17 (3,2) 50 (-2.8051, 3.1313) 12 (-2.8051, 3.1313) 7 (3.5844,- 1.8481) 7 (-6,-6) (-3.7793, -3.2832) 29 (3,2) 36 (-3.7793, -3.2832) 5 (-2.8051, 3.1313) 18 (-3.7793, -3.2832) 9 (-3.7793, -3.2832) 5  P-R works better than F-R (as per # of iterations) .α has no significant effect on # of iterations.
  • 12. Himmelblau function Initial Point Davidon-Fletcher-Powell (DFP) method Broyden-Fletcher-Goldfarb-Shanno (BFGS) method Powell's conjugate direction method α α α (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) Final Point # of iteration s Final Point # of iterati ons Final Point # of iterat ions Final Point # of iterati ons Final Point # of iteration s Final Point # of iterati ons Final Point # of iteratio ns Final Point # of iterati ons Final Point # of iteration s (0,0) (3,2) 9 (3,2) 9 (3,2) 9 (3,2) 9 (3,2) 9 (3,2) 9 (3.02, 1.996) 1 (1,1) (3,2) 7 (-3.7793, - 3.2832) 6 (3,2) 13 (3,2) 7 (- 3.7793, -3.2832) 6 (3,2) 13 (3.00, 1.99) 1 (3,3) (3,2) 6 (3,2) 6 (3,2) 6 (3,2) 6 (3,2) 6 (3,2) 6 not workin g (3.01, 2.00) 1 (5,5) (-3.7793, -3.2832) 7 (3,2) 7 (3,2) 7 (-3.7793, - 3.2832) 7 (3,2) 7 (3,2) 7 (3.00, 2.00) 2 (-2,-2) (-3.7793, -3.2832) 6 (-3.7793, - 3.2832) 6 (3,2) 8 (-3.7793, -3.2832) 6 (3,2) 11 (-2.8051 ,3.1313) 12 (3.5844, - 1.8481) 2 (-4,-4) (-2.8051, 3.1313) 7 (- 2.8051,3.1 313) 7 (3.5844,- 1.8481) 7 (-2.8051, 3.1313) 7 (- 2.8051, 3.1313) 7 (3.5844,- 1.8481) 16 (-3.7789, - 3.2832) 2 (-6,-6) (3,2) 8 (3,2) 8 (-3.7793, -3.2832) 5 (3,2) 8 (3,2) 8 (-3.7793, -3.2832) 5 (-3.7789, - 3.2832) 2 For range of alpha -50 to 50 the algorithm may somehow help reach near local minim still does not converge, rather it gets distracted to another arbitrary point. For range of does not provide descent direction at each step.
  • 13. For alpha -50,50 starting from(3,3) ..though there is local minima in the vicini still it oscillates and does not converge iteration s x
  • 14. Beale function 2 2 2 3 2 ( , ) (1.5 ) (2.25 ) (2.625 )f x y x xy x xy x xy 3d plot of Beale function
  • 15. Beale function Contour plot of Beale function
  • 16. Beale function Initial Point Fletcher-Reeves Polak-Ribiere α α (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations (0,0) (3,0.5) 15 (3.0001, 0.5) 17 (2.9999, 0.5) 15 (3,0.5) 9 (3,0.5) 9 (3,0.5) 9 (1,1) (3,0.5) 14 (3,0.5) 14 (3,0.5) 11 (3,0.5) 17 (3.0001, 0.5) 16 (3,0.5) 11 (3,3) Infinite (2.9999, 0.5) 11 Does not converge Does not converge (3,0.5) 10 Does not converge (5,5) Infinite Infinite Does not converge Does not converge Infinite (3,0.5) 12 (-2,-2) Does not converge (3,0.5) 10 (3,0.5) 10 Does not converge (3.0001, 0.5) 8 (3.0001, 0.5) 8 (-4,-4) Infinite Does not converge Does not converge (3,0.5) 10 (3,0.5) 10 (3,0.5) 22 (-6,-6) Infinite (3,0.5) 20 (3,0.5) 21 Infinite (3.0001, 0.5) 38 Does not converge
  • 17. Beale function x1 x2 Beale function for (3,3) initial point and α=(0,10) for P-R method
  • 18. Beale function x1 x2 Beale function for (3,3) initial point and α=(-50,50) for F-R method
  • 19. Beale function Initial Point Davidon-Fletcher-Powell (DFP) method Broyden-Fletcher-Goldfarb-Shanno (BFGS) method Powell's conjugate direction method α α α (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations (0,0) (3,0.5) 8 (3,0.5) 8 (3,0.5) 8 (3,0.5) 8 (3,0.5) 8 (3,0.5) 8 (3,0.5) 4 (3,0.5) 4 (3,0.5) 3 (1,1) (3,0.5) 10 (3,0.5) 9 (3,0.5) 9 (3,0.5) 9 (3,0.5) 13 (3,0.5) 15 (11,1) 2 (- 4.04,1. 21) 7 Conver ging very slowly (3,3) NaN 100 (3,0.5) 10 NaN 100 NaN 100 (3,0.5) 10 varying 100 not varying (3,3) __ (- 0.1198, 3.0003) 3 (5,5) (3,0.5) 118 (3,0.5) 12 (3,0.5) 94 7.93,.8 6 50 (3,0.5) 12 (3,0.5) 40 not varying (5,5) may be get stuck to a saddle point(0 ,5) 3 (-2,- 2) NaN 100 (3,0.5) 10 (3,0.5) 8 varying 100 (3,0.5) 7 (3,0.5) 7 (3,0.5) 4 (3,0.5) 4 (-4,- 4) (3,0.5) 117 (3,0.5) 10 (3,0.5) 15 (3,0.5) 10 (3,0.5) 10 (3,0.5) 12 (4.7703 ,0.7383 ) 1 (4.7188 ,0.7384 ) 4 (-6,- 6) (20.66, 0.95) 50 (3,0.5) 21 NaN 100 (- 113.86, 1.0074) 8 (3,0.5) 21 varying 100 (6.842,. 832) (6.79,0. 83) 3 For range of alpha between -50 to 50 alpha as well as x oscillates between large range probably because it gets distracted too much in some iteration steps and converges very slowly sometimes.
  • 20. Ackley function 2 2 0.2 0.5( ) 0.5(cos(2 ) cos(2 )) ( , ) 20 20x y x y f x y e e e 3d plot of Ackley function
  • 21. Ackley function Contour plot of Ackley function
  • 22. Ackley function Initial Point Fletcher-Reeves Polak-Ribiere α α (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations (0,0) Infinite Infinite Infinite Infinite Infinite Infinite (1,1) (0.9685, 0.9685) 4 (-0.9685, -0.9685) 3 (-57,-57) 2 (0.9685, 0.9685) 4 (-0.9685, -0.9685) 3 (-57,-57) 2 (3,3) (0.9685, 0.9685) 4 (-1.9745, -1.9745 3 (-82,-82) 4 (0.9685, 0.9685) 4 (-1.9745, -1.9745 3 (-82,-82) 4 (5,5) (-0.9685, -0.9685) 4 (-1.9745, -1.9745 4 (83,83) 4 (-0.9685, -0.9685) 4 (-1.9745, -1.9745 4 (83,83) 4 (-2,-2) (-0.9685, -0.9685) 4 (-1.9745, -1.9745 3 (83,83) 4 (-0.9685, -0.9685) 4 (-1.9745, -1.9745 3 (83,83) 4 (-4,-4) (-0.9685, -0.9685) 4 (1.9745, 1.9745) 4 (-83,-83) 4 (-0.9685, -0.9685) 4 (1.9745,1 .9745) 4 (-83,-83) 4 (-6,-6) (-0.9685, -0.9685) 2 (-1.9745, -1.9745 4 (-83,-83) 4 (-0.9685, -0.9685) 2 (-1.9745, -1.9745 4 (-83,-83) 4 At(0,0) gradient of f(x,y) in not defined and hence the result shows Infinite α=(-50,50) gives local minima which are far away from the initial point. P-R and F-R gives exactly same results for all α and all initial points.
  • 23. Ackley function Initia l Point Davidon-Fletcher-Powell (DFP) method Broyden-Fletcher-Goldfarb-Shanno (BFGS) method Powell's conjugate direction method α α α (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) Final Point # of iterati ons Final Point # of iteratio ns Final Point # of iteratio ns Final Point # of iteratio ns Final Point # of iteratio ns Final Point # of iteration s Final Point # of iteratio ns Final Point # of iteratio ns Final Point # of iterations (0,0) NaN 100 NaN 100 NaN 100 NaN 100 NaN 100 NaN 100 oscillati ng oscillati ng oscillatin g but it has been identifie d that (1,1) (.96885, .9685) 4 (- .96885, -.9685) 3 (-57,- 57) 2 (.96885, .9685) 4 (- .96885,- .9685) 3 (-57,- 57) 2 oscillati ng oscillati ng oscillatin g it has function (3,3) (.96885, .9685) 4 (5.9887 ,5.9887 ) 4 (.96885, .9685) 4 (.96885, .9685) 4 (5.9887, 5.9887) 4 (.96885, .9685) 4 oscillati ng oscillati ng oscillatin g value zero (5,5) (49,49) 4 (0,0) 6 (-295,- 295) 4 (49,49) 4 (0,0) 6 (-274,- 274) 4 oscillati ng oscillati ng oscillatin g or nearly zero (-2,- 2) (- .96885,- .9685) 4 (0,0) 6 (0,0) 5 (- .96885,- .9685) 3 (0,0) 6 (0,0) 5 oscillati ng oscillati ng oscillatin g at several points (-4,- 4) (.96885, .9685) 4 (.96885 ,.9685) 4 (.96885, .9685) 4 (-17,- 17) 4 (.96885, .9685) 4 (.96885, .9685) 4 oscillati ng oscillati ng oscillatin g (-6,- 6) (- .96885,- .9685) 3 (- .96885, -.9685) 4 (0,0) 6 (- .96885,- .9685) 2 (- .96885,- .9685) 4 (0,0) 5 oscillati ng varying varying
  • 24. It can be perceived from Powell’s method that Ackley fn has local minima at several points But as the algorithm reaches that point algorithm does not stop, it just oscillates around it and one can guess that it happens possibly due to large range of alpha (the function has several local minima within a very short distance) and this perception was validated when the algorithm reached to local or global minimum points when we ran the algorithm for small range of alpha (-2,3) starting from several starting points! For alpha (-5,20) the value sometimes almost reaches the minima but then bounce back to another point not close to the previous point Ackley function
  • 25. In Powell method for Ackley function for range of alpha (-2,3) it happily reached A minima at (0,0) within 2 iterations though powell’s method did not work well for large range of alpha x y Ackley function
  • 26. Goldstein-Price function 2 2 2 2 2 2 ( , ) (1 ( 1) (19 14 3 14 6 3 ))(30 (2 3 ) (18 32 12 48 36 27 ))f x y x y x x y xy y x y x x y xy y 3d plot of Goldstein-Price function
  • 27. Goldstein-Price function Contour plot of Goldstein-Price function
  • 28. Goldstein-Price function Initial Point Fletcher-Reeves Polak-Ribiere α α (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations (0,0) Infinite (0,-1) 11 (0,-1) 25 Infinite (0,-1) 8 (0,-1) 9 (1,1) Infinite (0,-1) 15 (0,-1) 19 Infinite (0,-1) 10 (0,-1) 26 (3,3) Infinite Infinite (0,-1) 18 Infinite Infinite (0,-1) 34 (5,5) Infinite Infinite (0,-1) 39 Infinite Infinite (0,-1) 22 (-2,-2) Infinite Infinite (0,-1) 33 Infinite Infinite (0,-1) 10 (-4,-4) Infinite Infinite (0,-1) 49 Infinite Infinite (0,-1) 11 (-6,-6) Infinite Infinite Does not converge Infinite Infinite Does not converge  α=(-50,50) works better compared to other α ranges. Changing α to(-100,100) results in convergence for (-6,-6) initial point also.
  • 29. Goldstein-Price function DFP and BFGS gives better result (less # of iterations) compared to F-R and P-R . Initial Point Davidon-Fletcher-Powell (DFP) method Broyden-Fletcher-Goldfarb-Shanno (BFGS) method Powell's conjugate direction method α α α (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iteratio ns Final Point # of iterations Final Point # of iterations (0,0) (0,-1) 12 (0,-1) 6 (0,-1) 5 (0,-1) 12 (0,-1) 6 (0,-1) 5 oscillatin g (0,-1) 1 (0,- .999) 1 (1,1) (1.8,0. 2) 12 (1.8,2) 6 (0,-1) 7 (1.8,0. 2) 12 (1.8,2) 6 (0,-1) 7 (2.986,1) 2 (0,-1) 4 (0.003, -.99) 1 (3,3) NaN 100 NaN 100 (0,-1) 11 NaN 100 (0,-1) 17 (0,-1) 11 oscillatin g (0,-1) 2 (0,-1) 5 (5,5) NaN 100 NaN 100 (0,-1) 11 NaN 100 (0,-1) 17 (0,-1) 12 (0,-1) 3 (0,-1) 3 (-2,- 2) (0,-1) 16 (0,-1) 32 (-.6,- .4) 7 (0,-1) 16 (0,-1) 12 (-.6,- .4) 7 (2.497, .675) 4 (-.6,- .4) 3 (0,-1) 4 (-4,- 4) NaN 100 (-.6,- .4) 22 (0,-1) 16 NaN 100 (0,-1) 14 (0,-1) 11 (2.9933 0.9896) 3 (0,-1) 3 oscillat ing (-6,- 6) NaN 100 NaN 100 (0,-1) 10 NaN 100 (0,-1) 17 (0,-1) 10 (1.8434 0.2297) 3 (0,-1) 3*3 (0,-1) 3
  • 30. Cross-in-tray function 2 2 0.1 100 ( , ) 0.0001 sin( )sin( ) 1 x y f x y x y e 3d plot of Cross-in -Tray function
  • 31. Cross-in-tray function Contour plot of Cross-in -Tray function
  • 32. Cross-in-tray function Initial Point Fletcher-Reeves Polak-Ribiere α α (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations (0,0) Infinite Infinite Infinite Infinite Infinite Infinite (1,1) (1.3494, 1.3494) 2 (1.3494, 1.3494) 2 (1.3494, 1.3494) 2 (1.3494, 1.3494) 2 (1.3494, 1.3494) 2 (1.3494, 1.3494) 2 (3,3) (1.3494, 1.3494) 2 (-1.3494, -1.3494) 2 (-1.3494, -1.3494) 2 (1.3494, 1.3494) 2 (-1.3494, -1.3494) 2 (-1.3494, -1.3494) 2 (5,5) (4.4910, 4.4910) 2 (4.4910, 4.4910) 2 (4.4910, 4.4910) 2 (4.4910, 4.4910) 2 (4.4910, 4.4910) 2 (4.4910, 4.4910) 2 (-2,-2) (-1.3494, -1.3494) 2 (-1.3494, -1.3494) 2 (1.3494, 1.3494) 2 (-1.3494, -1.3494) 2 (-1.3494, -1.3494) 2 (1.3494, 1.3494) 2 (-4,-4) (-4.4910, -4.4910) 2 (-4.4910, -4.4910) 2 (-4.4910, -4.4910) 2 (-4.4910, -4.4910) 2 (-4.4910, -4.4910) 2 (-4.4910, -4.4910) 2 (-6,-6) (-4.4910, -4.4910) 2 (-1.3494, -1.3494) 2 (-1.3494, -1.3494) 2 (-4.4910, -4.4910) 2 (-1.3494, -1.3494) 2 (-1.3494, -1.3494) 2 At(0,0) gradient of f(x,y) in not defined and hence the result shows Infinite For α=(0,10), positive initial point gives positive local minima only which is not the case for other α.
  • 33. Cross-in-tray function All methods give local minima closest to initial point. Davidon-Fletcher-Powell (DFP) method Broyden-Fletcher-Goldfarb-Shanno (BFGS) method Powell's conjugate direction method α α α (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) Final Point # of iteration s Final Point # of iteratio ns Final Point # of iteratio ns Final Point # of iterations Final Point # of iteration s Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations NaN NaN NaN NaN NaN NaN oscillati ng (0,-1) 1 oscillati ng (1.3494, 1.3494) 2 (1.3494, 1.3494) 2 (1.3494, 1.3494) 2 (1.3494 ,1.3494 ) 2 (1.3494, 1.3494) 2 (1.3494 ,1.3494 ) 2 oscillati ng (0,-1) 4 oscillati ng (1.3494, 1.3494) 2 (-1.3494,- 1.3494) 2 (-1.3494, -1.3494) 2 (1.3494 ,1.3494 ) 2 (-1.3494, -1.3494) 2 (- 1.3494, - 1.3494) 2 oscillati ng (0,-1) 2 oscillati ng (4.491, 4.491) 2 (4.491, 4.491) 2 (4.491, 4.491) 2 (4.491, 4.491) 2 (4.491, 4.491) 2 (4.491, 4.491) 2 oscillati ng (0,-1) 3 oscillati ng (-1.3494, -1.3494) 2 (-1.3494,- 1.3494) 2 (1.3494, 1.3494) 2 (- 1.3494, - 1.3494) 2 (-1.3494, -1.3494) 2 (1.3494 ,1.3494 ) 2 oscillati ng (-.6,-.4) 3 oscillati ng (-4.491, -4.491) 2 (-4.491,- 4.491) 2 (-4.491,- 4.491) 2 (- 4.491,- 4.491) 2 (-4.491,- 4.491) 2 (- 4.491,- 4.491) 2 oscillati ng (0,-1) 3 oscillati ng (-4.491, -4.491) 2 (-1.3494,- 1.3494) 2 (-1.3494,- 1.3494) 2 (- 4.491,- 4.491) 2 (- 1.3494,- 1.3494) 2 (- 1.3494, - 1.3494) 2 oscillati ng (0,-1) 3*3 oscillati ng
  • 34. Bukin function 2 ( , ) 100 | 0.01 | 0.01| 10|f x y y x x 3d plot of Bukin function
  • 35. Bukin function 3d plot of Bukin function
  • 36. Bukin function Initial Point Fletcher-Reeves Polak-Ribiere α α (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations (0,0) Infinite Infinite Infinite Infinite Infinite Infinite (1,1) Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge (3,3) Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge (5,5) Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge (-2,-2) Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge (-4,-4) Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge (-6,-6) Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge
  • 37. Bukin function x1 x2 Bukin’s function for (-2,-2) initial point and α=(-50,50) for F-R method
  • 38. Bukin function Initial Point Davidon-Fletcher-Powell (DFP) method Broyden-Fletcher-Goldfarb-Shanno (BFGS) method Powell's conjugate direction method α α α (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) Final Point # of iteration s Final Point # of iteration s Final Point # of iteration s Final Point # of iteration s Final Point # of iteration s Final Point # of iteration s Final Point # of iterations Final Point # of iterations Final Point # of iterations (0,0) (-0.0162 0.0000) 1 (-0.0162 0.0000) 2 (-0.0162 0.0000) 1 (1,1) (10,1) not converging properly 1 (10,1) not converging properly 1 varying or oscillating (3,3) NOT WORKI NG varying or oscillating varying varying or oscillating (5,5) varying or oscillating oscillating varying or oscillating (-2,-2) varying or oscillating (0,0) 1 varying or oscillating (-4,-4) varying or oscillating converges to(14.3248 2.0520) but rhere were some points having less function value 6 varying or oscillating (-6,-6) varying or oscillating (-0.0162 0.0000) 1 varying or oscillating
  • 39. For Powell method alpha (-50,50) starting from (3,3) the ultimate point just oscillates fro (-17.02,3) to (17.02,3) x y
  • 40. Rosenbrock function 1 2 2 2 1 1 ( ) {100( ) ( 1) } n i i i i f X x x x
  • 41. Initial Point Fletcher-Reeves Polak-Ribiere α α (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations Final Point # of iterations (0,0,0,0,0,0 ,0,0) Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge (1,1,1,1,1,1 ,1,1) (1,1,1,1,1 ,1,1,1) 1 (1,1,1,1,1 ,1,1,1) 1 (1,1,1,1,1 ,1,1,1) 1 (1,1,1,1,1 ,1,1,1) 1 (1,1,1,1,1 ,1,1,1) 1 (1,1,1,1,1 ,1,1,1) 1 (3,3,3,3,3,3 ,3,3) Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge (5,5,5,5,5,5 ,5,5) Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge (-2,-2,-2,- 2,-2,-2,-2,- 2) Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge (-4,-4,-4,- 4,-4,-4,-4,- 4) Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge (-6,-6,-6,- 6,-6,-6,-6,- 6) Does not converge Does not converge Does not converge Does not converge Does not converge Does not converge The point (1,1,1,1,1,1,1,1) is itself a minimum point and hence it converges for that initial point only Rosenbrock (8 variable) function
  • 42. Rosenbrock (8 variable) function F-R very slowly converges 10 the minimum point. F-R method for α=(0,10) and (-2, -2, -2, -2, -2, -2, -2, -2) initial point
  • 43. Initial Point Davidon-Fletcher-Powell (DFP) method Broyden-Fletcher-Goldfarb-Shanno (BFGS) method α α (0,10) (-5,20) (-50,50) (0,10) (-5,20) (-50,50) Final Point # of iterations and # of function evaluation s Final Point # of iterations and # of function evaluations Final Point # of iterations and # of function evaluations Final Point # of iterations and # of function evaluation s Final Point # of iterations and # of function evaluation s Final Point # of iterations and # of function evaluations (0,0,0,0, 0,0,0,0) (1,1,1,1,1, 1,1,1) 59 (1,1,1,1,1, 1,1,1) 45 (1,1,1,1,1, 1,1,1) 45 (1,1,1,1,1, 1,1,1) 46 (1,1,1,1,1, 1,1,1) 45 (1,1,1,1,1, 1,1,1) 45 (1,1,1,1, 1,1,1,1) (1,1,1,1,1, 1,1,1) 1 (1,1,1,1,1, 1,1,1) 1 (1,1,1,1,1, 1,1,1) 1 (1,1,1,1,1, 1,1,1) 1 (1,1,1,1,1, 1,1,1) 1 (1,1,1,1,1, 1,1,1) 1 (3,3,3,3, 3,3,3,3) slowly converging (1,1,1,1,1, 1,1,1) 44 (1,1,1,1,1, 1,1,1) 39 (1,1,1,1,1, 1,1,1) 31 (1,1,1,1,1, 1,1,1) 34 (1,1,1,1,1, 1,1,1) 37 (5,5,5,5, 5,5,5,5) not converging or very slowly converging (1,1,1,1,1, 1,1,1) 44 (1,1,1,1,1, 1,1,1) 271 (1,1,1,1,1, 1,1,1) 75 (1,1,1,1,1, 1,1,1) 48 (1,1,1,1,1, 1,1,1) 72 (-2,-2,- 2,-2,-2,- 2,-2,-2) slowly converging /oscillating (1,1,1,1,1, 1,1,1) 69 (1,1,1,1,1, 1,1,1) 65 (1,1,1,1,1, 1,1,1) 52 (1,1,1,1,1, 1,1,1) 54 (1,1,1,1,1, 1,1,1) 51 (-4,-4,- 4,-4,-4,- 4,-4,-4) slowly converging /oscillating (1,1,1,1,1, 1,1,1) slowly converging /oscillating (1,1,1,1,1, 1,1,1) 64 (1,1,1,1,1, 1,1,1) 56 (1,1,1,1,1, 1,1,1) 41 (1,1,1,1,1, 1,1,1) 56 (-6,-6,- 6,-6,-6,- 6,-6,-6) (1,1,1,1,1, 1,1,1) 30 (1,1,1,1,1, 1,1,1) 126 (1,1,1,1,1, 1,1,1) 182 (1,1,1,1,1, 1,1,1) 23 (1,1,1,1,1, 1,1,1) 37 (1,1,1,1,1, 1,1,1) 62 Rosenbrock(8 variable) function
  • 44. Conclusions  For quadratic problems, all methods gives satisfactory results. Powell’s method is working satisfactorily for small (i.e.lower-dimensional) problems [particularly for α=(-5,20)] DFP-BFGS works very good for bad functions (e.g Goldstein Price function) where F-R and P-R does not work well. Suitability of DFP, BFGS for higher dimensional problems need to be studied more. Range of step size if chosen small and searches on both side of the given point [α=(-5,20)], it works well for all problems.