Optimal Charging of Accelerating
Superconducting Cavities
For Reflected Energy Minimization
Anirban (Krish)na Bhattacharyya
FREIA / HIGH ENERGY PHYSICS
Uppsala University
June 10, 2015
Outline
• ESS and MAX-lab
• FREIA @ Uppsala University capabilities and activities
• Reflected energy minimization
6/10/2015 Anirban Krishna Bhattacharyya 2
Large accelerator projects in Sweden
6/10/2015 Anirban Krishna Bhattacharyya 3
MAX IV
ESS
Large accelerator projects in Sweden
6/10/2015 Anirban Krishna Bhattacharyya 3
MAX IV
ESS
Two storage rings
3 and 1.5 GeV
Hard and soft X-ray/VUV
A 3 GeV linac
Undulators for 100 fs.
ESS
6/10/2015 Anirban Krishna Bhattacharyya 4
Courtesy Matts Lindroos (ESS)
Cavity Parameters
6/10/2015 Anirban Krishna Bhattacharyya 5
FREIA
6/10/2015 Anirban Krishna Bhattacharyya 6
6/10/2015 Anirban Krishna Bhattacharyya 7
FREIA
UU-ESS-IPNO-CERN &
Industry Collaboration
(Thales, Electrosys, DB Elettronica,
Siemens, NXP, ESRF, CERN)RF Source Development
(vacuum tube amplifier, solid-
state amplifier, SSA module &
combiner optimization)
High-power Spoke Cavity Testing
(tuning system, dynamic load, electron
emission, mechanical parameters and
multipacting)
Digital LLRF
Combined THz/X-ray
source
Future
• Acceptance testing of spoke
cryomodule
• Test of prototype spoke
cryomodule valve box
• Testing of crab cavities for
LHC upgrade
• ESS neutrino super beam.
FREIA
6/10/2015 Anirban Krishna Bhattacharyya 8
Spoke Cavity
(super - conducting)
Courtesy of P. Duthil
FREIA
6/10/2015 Anirban Krishna Bhattacharyya 9
Cryogens
FREIA
6/10/2015 Anirban Krishna Bhattacharyya 10
Spoke Cavity
(super - conducting)
Courtesy of P. Duthil
Horizontal Cryostat
FREIA
6/10/2015 Anirban Krishna Bhattacharyya 11
RF power /LLRF
CERN RF Station
FREIA
6/10/2015 Anirban Krishna Bhattacharyya 12
Bunker
Spoke Cavity
(super - conducting)
Courtesy of P. Duthil
Horizontal Cryostat
FREIA
6/10/2015 Anirban Krishna Bhattacharyya 13
30 mm 500 mm
output coupler connected to 3-1/8 inch coaxial line
7/16 inch input connector
FREIA
6/10/2015 Anirban Krishna Bhattacharyya 14
Step Charging
6/10/2015 Anirban Krishna Bhattacharyya 15
RF
Source
Circulator
Cavity
Load
Spoke Cavity
(super - conducting)
Courtesy of P. Duthil
Step Charging
6/10/2015 Anirban Krishna Bhattacharyya 15
RF
Source
Circulator
Cavity
Load
Charging time
Spoke Cavity
(super - conducting)
Courtesy of P. Duthil
Beam injection
Step Charging
6/10/2015 Anirban Krishna Bhattacharyya 15
RF
Source
Circulator Cavity
Load
Spoke Cavity
(super - conducting)
Courtesy of P. Duthil
Step Charging (Frequency domain)
6/10/2015 Anirban Krishna Bhattacharyya 16
(MHz)
Optimal Charging
6/10/2015 Anirban Krishna Bhattacharyya 17
• Instantaneous cavity voltage
Ib
Ig
Ir
Filling time
(Natural time
scale)
Loaded
Quality
factor
Generator
current
Loaded
cavity
impedance
(Nominal cavity voltage)
Optimal Charging
6/10/2015 Anirban Krishna Bhattacharyya 17
• Instantaneous cavity voltage
• Reflected current
Ib
Ig
Ir
Filling time
(Natural time
scale)
Loaded
Quality
factor
Generator
current
Loaded
cavity
impedance
External
Quality factor
Bare cavity
Quality factor
Optimal Charging
6/10/2015 Anirban Krishna Bhattacharyya 17
• Instantaneous cavity voltage
• Reflected current
• Reflected energy
Filling time Loaded Q Generator
current
Loaded
impedance
External Q Bare cavity Q
Optimal Charging
6/10/2015 Anirban Krishna Bhattacharyya 18
• Reflected energy, , is the effective Lagrangian
• The concept of minimum action,
Optimal charging profile
Find optimal
and such
that is
minimum.
Optimal Charging
6/10/2015 Anirban Krishna Bhattacharyya 18
• Reflected energy, , is the effective Lagrangian
• The concept of minimum action,
Optimal charging profile
Free parameter
Effect of Optimal filling
6/10/2015 Anirban Krishna Bhattacharyya 19
Step filling Optimal filling
Effect of Optimal filling
6/10/2015 Anirban Krishna Bhattacharyya 19
Step filling Optimal filling
No free lunch!!!
Effect of Optimal filling
6/10/2015 Anirban Krishna Bhattacharyya 19
Step filling Optimal filling
More power needed
Effect of charging time ( )
6/10/2015 Anirban Krishna Bhattacharyya 20
Peak generator powerReflected energy
Practical sources
6/10/2015 Anirban Krishna Bhattacharyya 21
Gain characteristics Efficiency characteristics
/ IOT / IOT
Practical sources
6/10/2015 Anirban Krishna Bhattacharyya 21
Efficiency characteristics
Klystron !!!!
/ IOT
W. Doherty, A new high efficiency power amplifier for modulated waves,
Radio Engineers, Proceedings of the Institute of 24 (9) (1936) 1163–1182.
doi:10.1109/JRPROC.1936.228468.
B. Kim, J. Kim, I. Kim, J. Cha, The doherty power amplifier, Microwave
Magazine, IEEE 7 (5) (2006) 42–50. doi:10.1109/MW-M.2006.247914.
R. Pengelly, N-way rf power amplifier with increased backoff power and
power added efficiency, wO Patent App. PCT/US2003/002,365 (Aug. 7
2003).
URL http://www.google.com/patents/WO2003065573A1?cl=en
P. Colantonio, F. Giannini, R. Giofr, L. Piazzon, The doherty power ampli
fier, INTERNATIONAL JOURNAL OF MICROWAVE AND OPTICAL
TECHNOLOGY 5 (6) (2010) 419–430.
G. Ahn, M. su Kim, H. chul Park, S. chan Jung, J. ho Van, H. Cho,
S. wook Kwon, J.-H. Jeong, K. hoon Lim, J. Y. Kim, S. C. Song, C.-S.
Park, Y. Yang, Design of a high-efficiency and high-power inverted doherty
amplifier, Microwave Theory and Techniques, IEEE Transactions on 55 (6)
(2007) 1105–1111. doi:10.1109/TMTT.2007.896807.
NXP Semiconductors, AN10967 BLF578 demo for 352 MHz 1kW CW
power, 2nd Edition, application note (November 2012).
D. Rees, D. Keffeler, W. Roybal, P. Tallerico, Characterization of a
Klystrode as a RF Source for High-Average-Power Accelerators, Conf.Proc.
C950501 (1995) 1521.
E. Montesinos, Tetrode power amplifiers, in: TIARA Workshop on RF
Power Generation for Accelerators, Uppsala University, A˙ ngstr¨om Laboratory,
2013.
N. Pupeter, Significant increase of efficiency of solid state amplifiers due
to improved ac/dc conversion and adaption of p1 point to actual operating
power, in: EnEfficient RF Sources, Cockcroft Institute, 2014.
Practical sources
6/10/2015 Anirban Krishna Bhattacharyya 22
Source efficiency during filling
RF
Gain
Source
loss
Practical sources
6/10/2015 Anirban Krishna Bhattacharyya 23
Effect of Transit time factor
6/10/2015 Anirban Krishna Bhattacharyya 24
Variation Along Spoke LINAC
Effect of Transit time factor
6/10/2015 Anirban Krishna Bhattacharyya 25
Peak power Charging time
Beam injection time,
Effect of Transit time factor
6/10/2015 Anirban Krishna Bhattacharyya 26
ESS operation: 14 Hz pulse rate
140 J/sec saved
per cavity
Assuming 8000 hours of
operation 1.12 MWhrs
saved per cavity
10 J/pulse
Cryogenic considerations
• Losses on cavity surface
6/10/2015 Anirban Krishna Bhattacharyya 27
Surface field Cavity voltage
Cryogenic considerations
• Losses on cavity surface
• Ratio of energy loss
6/10/2015 Anirban Krishna Bhattacharyya 27
Surface field Cavity voltage
THANK YOU
6/10/2015 Anirban Krishna Bhattacharyya 28
ESS
6/10/2015 Anirban Krishna Bhattacharyya 39
Simulation Block Diagram
6/10/2015 Anirban Krishna Bhattacharyya 40
Ʃ
Power
Amplifier
Cavity AntennaRF Controller Ʃ
Open Loop Set point
(Driving voltage to
source)
Cavity Voltage
set point
ƩBeam
-
Tuner Loop
Cavity
Phase
Ʃ
Power Output
Phase
-
6/10/2015 Anirban Krishna Bhattacharyya 41
Source with and without saturation
Effect of charging time
6/10/2015 Anirban Krishna Bhattacharyya 42
Supplied energy
Equations
6/10/2015 Anirban Krishna Bhattacharyya 43

Optimal charging of accelerating superconducting cavities

  • 1.
    Optimal Charging ofAccelerating Superconducting Cavities For Reflected Energy Minimization Anirban (Krish)na Bhattacharyya FREIA / HIGH ENERGY PHYSICS Uppsala University June 10, 2015
  • 2.
    Outline • ESS andMAX-lab • FREIA @ Uppsala University capabilities and activities • Reflected energy minimization 6/10/2015 Anirban Krishna Bhattacharyya 2
  • 3.
    Large accelerator projectsin Sweden 6/10/2015 Anirban Krishna Bhattacharyya 3 MAX IV ESS
  • 4.
    Large accelerator projectsin Sweden 6/10/2015 Anirban Krishna Bhattacharyya 3 MAX IV ESS Two storage rings 3 and 1.5 GeV Hard and soft X-ray/VUV A 3 GeV linac Undulators for 100 fs.
  • 5.
    ESS 6/10/2015 Anirban KrishnaBhattacharyya 4 Courtesy Matts Lindroos (ESS)
  • 6.
    Cavity Parameters 6/10/2015 AnirbanKrishna Bhattacharyya 5
  • 7.
  • 8.
    6/10/2015 Anirban KrishnaBhattacharyya 7 FREIA UU-ESS-IPNO-CERN & Industry Collaboration (Thales, Electrosys, DB Elettronica, Siemens, NXP, ESRF, CERN)RF Source Development (vacuum tube amplifier, solid- state amplifier, SSA module & combiner optimization) High-power Spoke Cavity Testing (tuning system, dynamic load, electron emission, mechanical parameters and multipacting) Digital LLRF Combined THz/X-ray source Future • Acceptance testing of spoke cryomodule • Test of prototype spoke cryomodule valve box • Testing of crab cavities for LHC upgrade • ESS neutrino super beam.
  • 9.
    FREIA 6/10/2015 Anirban KrishnaBhattacharyya 8 Spoke Cavity (super - conducting) Courtesy of P. Duthil
  • 10.
    FREIA 6/10/2015 Anirban KrishnaBhattacharyya 9 Cryogens
  • 11.
    FREIA 6/10/2015 Anirban KrishnaBhattacharyya 10 Spoke Cavity (super - conducting) Courtesy of P. Duthil Horizontal Cryostat
  • 12.
    FREIA 6/10/2015 Anirban KrishnaBhattacharyya 11 RF power /LLRF CERN RF Station
  • 13.
    FREIA 6/10/2015 Anirban KrishnaBhattacharyya 12 Bunker Spoke Cavity (super - conducting) Courtesy of P. Duthil Horizontal Cryostat
  • 14.
    FREIA 6/10/2015 Anirban KrishnaBhattacharyya 13 30 mm 500 mm output coupler connected to 3-1/8 inch coaxial line 7/16 inch input connector
  • 15.
  • 16.
    Step Charging 6/10/2015 AnirbanKrishna Bhattacharyya 15 RF Source Circulator Cavity Load Spoke Cavity (super - conducting) Courtesy of P. Duthil
  • 17.
    Step Charging 6/10/2015 AnirbanKrishna Bhattacharyya 15 RF Source Circulator Cavity Load Charging time Spoke Cavity (super - conducting) Courtesy of P. Duthil Beam injection
  • 18.
    Step Charging 6/10/2015 AnirbanKrishna Bhattacharyya 15 RF Source Circulator Cavity Load Spoke Cavity (super - conducting) Courtesy of P. Duthil
  • 19.
    Step Charging (Frequencydomain) 6/10/2015 Anirban Krishna Bhattacharyya 16 (MHz)
  • 20.
    Optimal Charging 6/10/2015 AnirbanKrishna Bhattacharyya 17 • Instantaneous cavity voltage Ib Ig Ir Filling time (Natural time scale) Loaded Quality factor Generator current Loaded cavity impedance (Nominal cavity voltage)
  • 21.
    Optimal Charging 6/10/2015 AnirbanKrishna Bhattacharyya 17 • Instantaneous cavity voltage • Reflected current Ib Ig Ir Filling time (Natural time scale) Loaded Quality factor Generator current Loaded cavity impedance External Quality factor Bare cavity Quality factor
  • 22.
    Optimal Charging 6/10/2015 AnirbanKrishna Bhattacharyya 17 • Instantaneous cavity voltage • Reflected current • Reflected energy Filling time Loaded Q Generator current Loaded impedance External Q Bare cavity Q
  • 23.
    Optimal Charging 6/10/2015 AnirbanKrishna Bhattacharyya 18 • Reflected energy, , is the effective Lagrangian • The concept of minimum action, Optimal charging profile Find optimal and such that is minimum.
  • 24.
    Optimal Charging 6/10/2015 AnirbanKrishna Bhattacharyya 18 • Reflected energy, , is the effective Lagrangian • The concept of minimum action, Optimal charging profile Free parameter
  • 25.
    Effect of Optimalfilling 6/10/2015 Anirban Krishna Bhattacharyya 19 Step filling Optimal filling
  • 26.
    Effect of Optimalfilling 6/10/2015 Anirban Krishna Bhattacharyya 19 Step filling Optimal filling No free lunch!!!
  • 27.
    Effect of Optimalfilling 6/10/2015 Anirban Krishna Bhattacharyya 19 Step filling Optimal filling More power needed
  • 28.
    Effect of chargingtime ( ) 6/10/2015 Anirban Krishna Bhattacharyya 20 Peak generator powerReflected energy
  • 29.
    Practical sources 6/10/2015 AnirbanKrishna Bhattacharyya 21 Gain characteristics Efficiency characteristics / IOT / IOT
  • 30.
    Practical sources 6/10/2015 AnirbanKrishna Bhattacharyya 21 Efficiency characteristics Klystron !!!! / IOT W. Doherty, A new high efficiency power amplifier for modulated waves, Radio Engineers, Proceedings of the Institute of 24 (9) (1936) 1163–1182. doi:10.1109/JRPROC.1936.228468. B. Kim, J. Kim, I. Kim, J. Cha, The doherty power amplifier, Microwave Magazine, IEEE 7 (5) (2006) 42–50. doi:10.1109/MW-M.2006.247914. R. Pengelly, N-way rf power amplifier with increased backoff power and power added efficiency, wO Patent App. PCT/US2003/002,365 (Aug. 7 2003). URL http://www.google.com/patents/WO2003065573A1?cl=en P. Colantonio, F. Giannini, R. Giofr, L. Piazzon, The doherty power ampli fier, INTERNATIONAL JOURNAL OF MICROWAVE AND OPTICAL TECHNOLOGY 5 (6) (2010) 419–430. G. Ahn, M. su Kim, H. chul Park, S. chan Jung, J. ho Van, H. Cho, S. wook Kwon, J.-H. Jeong, K. hoon Lim, J. Y. Kim, S. C. Song, C.-S. Park, Y. Yang, Design of a high-efficiency and high-power inverted doherty amplifier, Microwave Theory and Techniques, IEEE Transactions on 55 (6) (2007) 1105–1111. doi:10.1109/TMTT.2007.896807. NXP Semiconductors, AN10967 BLF578 demo for 352 MHz 1kW CW power, 2nd Edition, application note (November 2012). D. Rees, D. Keffeler, W. Roybal, P. Tallerico, Characterization of a Klystrode as a RF Source for High-Average-Power Accelerators, Conf.Proc. C950501 (1995) 1521. E. Montesinos, Tetrode power amplifiers, in: TIARA Workshop on RF Power Generation for Accelerators, Uppsala University, A˙ ngstr¨om Laboratory, 2013. N. Pupeter, Significant increase of efficiency of solid state amplifiers due to improved ac/dc conversion and adaption of p1 point to actual operating power, in: EnEfficient RF Sources, Cockcroft Institute, 2014.
  • 31.
    Practical sources 6/10/2015 AnirbanKrishna Bhattacharyya 22 Source efficiency during filling RF Gain Source loss
  • 32.
    Practical sources 6/10/2015 AnirbanKrishna Bhattacharyya 23
  • 33.
    Effect of Transittime factor 6/10/2015 Anirban Krishna Bhattacharyya 24 Variation Along Spoke LINAC
  • 34.
    Effect of Transittime factor 6/10/2015 Anirban Krishna Bhattacharyya 25 Peak power Charging time Beam injection time,
  • 35.
    Effect of Transittime factor 6/10/2015 Anirban Krishna Bhattacharyya 26 ESS operation: 14 Hz pulse rate 140 J/sec saved per cavity Assuming 8000 hours of operation 1.12 MWhrs saved per cavity 10 J/pulse
  • 36.
    Cryogenic considerations • Losseson cavity surface 6/10/2015 Anirban Krishna Bhattacharyya 27 Surface field Cavity voltage
  • 37.
    Cryogenic considerations • Losseson cavity surface • Ratio of energy loss 6/10/2015 Anirban Krishna Bhattacharyya 27 Surface field Cavity voltage
  • 38.
    THANK YOU 6/10/2015 AnirbanKrishna Bhattacharyya 28
  • 39.
  • 40.
    Simulation Block Diagram 6/10/2015Anirban Krishna Bhattacharyya 40 Ʃ Power Amplifier Cavity AntennaRF Controller Ʃ Open Loop Set point (Driving voltage to source) Cavity Voltage set point ƩBeam - Tuner Loop Cavity Phase Ʃ Power Output Phase -
  • 41.
    6/10/2015 Anirban KrishnaBhattacharyya 41 Source with and without saturation
  • 42.
    Effect of chargingtime 6/10/2015 Anirban Krishna Bhattacharyya 42 Supplied energy
  • 43.