SlideShare a Scribd company logo
Oaxaca-Blinder type Decomposition Methods for Duration
Outcomes
Andres Garcia-Suaza
andres.garcia@urosario.edu.co
Universidad del Rosario (Colombia)
I Network Métodos Cuantitativos
AFADECO - U de A
Nov. 10, 2017
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 1 / 34
Decomposition Methods
Study dierence of distributional features between two populations:
Total dierence = Structure Eect + Composition Eect
Decomposition of the mean: Oaxaca (1973) and Blinder (1973) -OB-.
Extensions OB decomposition:
Variance and Inequality: Juhn et. al. (1992).
Quantile: Machado and Mata (2005), Melly (2005).
Distribution and its functionals: DiNardo et. al. (1996), Chernozhukov
et. al. (2013) -CFM-.
Non-linear models: Bauer and Sinning (2008).
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 2 / 34
Censored Data: Duration Outcomes
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 3 / 34
Censored Data: Duration Outcomes
Some examples in economics: Unemployment duration, employment
duration, rms lifetime, school dropout, ...
Previous methods no valid for censored data.
Decomposition of average hazard rate.
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 3 / 34
Oaxaca-Blinder type Decomposition Methods for Duration
Outcomes
Our goals
Propose decomposition methods for censored outcomes.
Mean decomposition.
Decomposition of other parameters through the estimation of the
whole outcome distribution.
Discuss the eect of neglecting the presence of censoring and the role
of the censoring mechanism assumptions.
Analyze factors explaining unemployment gender gaps using Spanish
data for 2004-2007.
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 4 / 34
Outline
1 Oaxaca-Blinder Decomposition under Censoring
2 Decomposition based on Model Specication
3 Monte Carlo Simulations
4 A Decomposition Exercise
5 Final Remarks
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 5 / 34
Outline
1 Oaxaca-Blinder Decomposition under Censoring
2 Decomposition based on Model Specication
3 Monte Carlo Simulations
4 A Decomposition Exercise
5 Final Remarks
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 6 / 34
OB Decomposition
Mean Dierence Decomposition
Suppose we are interested in the average dierence of an outcome Y
between two groups, denoted by ∈ {0, 1} (e.g. 0 men and 1 women).
∆µ
Y = µ
(1)
Y − µ
(0)
Y
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 7 / 34
OB Decomposition
Mean Dierence Decomposition
Suppose we are interested in the average dierence of an outcome Y
between two groups, denoted by ∈ {0, 1} (e.g. 0 men and 1 women).
Let X be a vector of characteristics of the population. The dierence can
be expressed in terms of the best linear predictor:
∆µ
Y = µ
(1)
Y − µ
(0)
Y
= βT
1
µ
(1)
X − βT
0
µ
(0)
X
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 7 / 34
OB Decomposition
Mean Dierence Decomposition
Suppose we are interested in the average dierence of an outcome Y
between two groups, denoted by ∈ {0, 1} (e.g. 0 men and 1 women).
Let X be a vector of characteristics of the population. The dierence can
be expressed in terms of the best linear predictor:
∆µ
Y = µ
(1)
Y − µ
(0)
Y
= βT
1
µ
(1)
X − βT
0
µ
(0)
X
where, βT µ
( )
X is the best linear predictor of µ
( )
Y , and
β = arg min
b∈Rk
E Y − bT
X | D =
2
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 7 / 34
OB Decomposition
Mean Dierence Decomposition
Suppose we are interested in the average dierence of an outcome Y
between two groups, denoted by ∈ {0, 1} (e.g. 0 men and 1 women).
Let X be a vector of characteristics of the population. The dierence can
be expressed in terms of the best linear predictor:
∆µ
Y = µ
(1)
Y − µ
(0)
Y
= βT
1
µ
(1)
X − βT
0
µ
(0)
X
Note that E βT X | D = = βT µ
( )
X , but it does not hold for the
conditional hazard!.
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 7 / 34
OB Decomposition
Mean Dierence Decomposition
Suppose we are interested in the average dierence of an outcome Y
between two groups, denoted by ∈ {0, 1} (e.g. 0 men and 1 women).
Let X be a vector of characteristics of the population. The dierence can
be expressed in terms of the best linear predictor:
∆µ
Y = µ
(1)
Y − µ
(0)
Y
= βT
1
µ
(1)
X − βT
0
µ
(0)
X
Rearranging terms:
∆µ
Y = (β1 − β0)T
µ
(1)
X
Structure eect
+ βT
0
µ
(1)
X − µ
(0)
X
Composition eect
Identication
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 7 / 34
OB Decomposition
Estimation
Given a sample {Yi , Xi , Di }n
i=1
, OB decomposition can be estimated as:
¯∆µ
Y = ¯β1 − ¯β0
T
¯µ
(1)
X + ¯βT
0
¯µ
(1)
X − ¯µ
(0)
X
where,
¯µ
( )
X = n−1
n
i=1
Xi 1{Di = },
and
¯β = arg min
b∈Rk
n
i=1
Y − bT
X
2
1{Di = }
with n =
n
i=1
1{Di = }.
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 8 / 34
OB Decomposition under Censoring
Data Structure
Let Y a non-negative random variable denoting duration, e.g.,
unemployment duration.
X is a set of relevant covariates.
We observe Z = min (Y , C), and δ = 1{Y ≤C}.
Hence, instead of (Y , X, D, C), we observe (Z, X, D, δ).
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 9 / 34
OB Decomposition under Censoring
Consider the joint distribution of (Y , X, D), given by
F (y, x, ) = P (Y ≤ y, X ≤ x, D = )
Note that:
µ
( )
Y = ydF (y, ∞, ) and µ
( )
X = xdF (∞, x, )
with,
β = arg min
b∈Rk
y − bT
x
2
dF (y, x, ) .
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 10 / 34
OB Decomposition under Censoring
Consider the joint distribution of (Y , X, D), given by
F (y, x, ) = P (Y ≤ y, X ≤ x, D = )
Note that:
µ
( )
Y = ydF (y, ∞, ) and µ
( )
X = xdF (∞, x, )
with,
β = arg min
b∈Rk
y − bT
x
2
dF (y, x, ) .
Therefore, ¯∆µ
Y is the empirical analog of ∆µ
Y when F is replaced by its
sample version
¯F (y, x, ) = n−1
n
i=1
1{Yi ≤y,Xi ≤x,Di = }
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 10 / 34
OB Decomposition under Censoring
Identication of the Multivariate Distribution
Consider the following probability
P (y ≤ Y  y + h, X ∈ B | Y ≥ y, D = ) =
P (y ≤ Y ≤ y + h, X ∈ B, D = )
P (Y ≥ y, D = )
=
{X∈B}
F (y + h, dx, ) − F (y−, dx, )
1 − F (y−, ∞, )
Therefore, the cumulative hazard can be dened as
Λ (y, x, ) =
y
0
F (d ¯y, x, )
1 − F (¯y−, ∞, )
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 11 / 34
OB Decomposition under Censoring
Identication of the Multivariate Distribution
Consider the following probability
P (y ≤ Y  y + h, X ∈ B | Y ≥ y, D = ) =
P (y ≤ Y ≤ y + h, X ∈ B, D = )
P (Y ≥ y, D = )
=
{X∈B}
F (y + h, dx, ) − F (y−, dx, )
1 − F (y−, ∞, )
Therefore, the cumulative hazard can be dened as
Λ (y, x, ) =
y
0
F (d ¯y, x, )
1 − F (¯y−, ∞, )
F (y, x, ) = 1 − exp −ΛC
(y, x, )
¯y≤y
[1 − Λ ({¯y} , x, )]
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 11 / 34
Multivariate Kaplan-Meier Estimator
Identication of the Multivariate Distribution
Assumption 2
a. P (Y ≤ y, C ≤ c | D = ) = P (Y ≤ y | D = ) P (C ≤ c | D = ).
b. P (Y ≤ C | Y , X, D) = P (Y ≤ C | Y , D).
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 12 / 34
Multivariate Kaplan-Meier Estimator
Identication of the Multivariate Distribution
Assumption 2
a. P (Y ≤ y, C ≤ c | D = ) = P (Y ≤ y | D = ) P (C ≤ c | D = ).
b. P (Y ≤ C | Y , X, D) = P (Y ≤ C | Y , D).
Proposition 1
Under Assumption 2, the joint cumulative hazard function can be writen as:
Λ (y, x, ) =
y
0
H11 (d ¯y, x, )
1 − H (¯y−, )
where,
H11 (y, x, ) = P (Z ≤ y, X ≤ x, D = , δ = 1)
and,
H (y, ) = P (Z ≤ y, δ = 1)
Details
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 12 / 34
Multivariate Kaplan-Meier Estimator
Equivalently, ˆF can be written as:
ˆF (y, x, ) =
n
i=1
W
( )
i 1
Z
( )
i:n ≤y,X
( )
[i:n ]
≤x
where,
W
( )
i =
δ
( )
[i:n ]
n − R
( )
i + 1
i−1
j=1

1 −
δ
( )
[j:n ]
n − R
( )
j + 1


with Z
( )
i:n = Zj if R
( )
j = i, and for any {ξi }n
i=1
, ξ
( )
[i:n ] is the i-th
concomitant of Z
( )
i:n , i.e., ξ
( )
[i:n ] = ξj if Z
( )
i:n = Zj .
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 13 / 34
Multivariate Kaplan-Meier Estimator
Equivalently, ˆF can be written as:
ˆF (y, x, ) =
n
i=1
W
( )
i 1
Z
( )
i:n ≤y,X
( )
[i:n ]
≤x
where,
W
( )
i =
δ
( )
[i:n ]
n − R
( )
i + 1
i−1
j=1

1 −
δ
( )
[j:n ]
n − R
( )
j + 1


In absence of censoring: δ
( )
[i:n ] = 1 ∀i, and hence, W
( )
i = n−1
.
An example
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 13 / 34
(Censored) OB Decompisition -COB-
Pluging-in ˆF we have:
ˆ∆µ
Y = ˆβ1 − ˆβ0
T
ˆµ
(1)
X + ˆβT
0
ˆµ
(1)
X − ˆµ
(0)
X
where ˆµ
( )
X =
n
i=1
W
( )
i X
( )
[i:n ] and
ˆβ = arg min
b∈Rk
n
i=1
W
( )
i Z
( )
i:n − bT
X
( )
[i:n ]
2
Inference
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 14 / 34
(Censored) OB Decompisition -COB-
Some comments
Inference: asymptotic variance and bootstrap are suitable. Bootstrap
In absence of censoring, classical results are obtained.
Monte Carlo simulations show a fairly good performance.
What if mean is not informative?
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 15 / 34
Outline
1 Oaxaca-Blinder Decomposition under Censoring
2 Decomposition based on Model Specication
3 Monte Carlo Simulations
4 A Decomposition Exercise
5 Final Remarks
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 16 / 34
Counterfactual Distributions
A convenient form to write the marginal distribution of the outcome for
D = is given by:
F
( , )
Y (y) = E 1 Y
( )
i ≤y
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 17 / 34
Counterfactual Distributions
A convenient form to write the marginal distribution of the outcome for
D = is given by:
F
( , )
Y (y) = E 1 Y
( )
i ≤y
= E F( )
(y|x) | D =
= F( )
(y|x) dF( )
(x)
with F( ) (x) = P (X ≤ x | D = ).
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 17 / 34
Counterfactual Distributions
Dene the counterfactual outcome Y (i,j), which follows a distribution
function given by F
(i,j)
Y (y). Consider the counterfactual operator
distribution (Rothe -2010- and Chernozhuvok et. al. -2013-):
F
(i,j)
Y (y) = E F(i)
(y|x) | D = j
= F(i)
(y|x) dF(j)
(x)
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 18 / 34
Counterfactual Distributions
Dene the counterfactual outcome Y (i,j), which follows a distribution
function given by F
(i,j)
Y (y). Consider the counterfactual operator
distribution (Rothe -2010- and Chernozhuvok et. al. -2013-):
F
(i,j)
Y (y) = E F(i)
(y|x) | D = j
= F(i)
(y|x) dF(j)
(x)
Thus, if F
(i,j)
Y (y) is identiable, for any parameter θ F
(i,j)
Y we have:
∆θ
Y = θ F
(1,1)
Y − θ F
(0,0)
Y
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 18 / 34
Counterfactual Distributions
Dene the counterfactual outcome Y (i,j), which follows a distribution
function given by F
(i,j)
Y (y). Consider the counterfactual operator
distribution (Rothe -2010- and Chernozhuvok et. al. -2013-):
F
(i,j)
Y (y) = E F(i)
(y|x) | D = j
= F(i)
(y|x) dF(j)
(x)
Thus, if F
(i,j)
Y (y) is identiable, for any parameter θ F
(i,j)
Y we have:
∆θ
Y = θ F
(1,1)
Y − θ F
(0,1)
Y + θ F
(0,1)
Y − θ F
(0,0)
Y
= ∆θ
S + ∆θ
C
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 18 / 34
Counterfactual Distributions
Estimation
By replacing the multivariate empirical distribution of covariates, given by
¯F( )
(x) = n−1
n
i=1
1{Xi ≤x,Di = }
we have:
¯F
(i,j)
Y (y) = n−1
j
n
l=1
¯F(i)
(y|xl ) 1{Dl = }
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 19 / 34
Counterfactual Distributions
Estimation
By replacing the multivariate empirical distribution of covariates, given by
¯F( )
(x) = n−1
n
i=1
1{Xi ≤x,Di = }
we have:
¯F
(i,j)
Y (y) = n−1
j
n
l=1
¯F(i)
(y|xl ) 1{Dl = }
How identify and estimate F( ) (y|x) under censoring?
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 19 / 34
Conditional Distribution of Duration Outcomes
Identication and Estimation
F( ) (y|x) is identiable under Assumption 2, but weaker conditions are
needed. Censoring
Assumption 4 (Conditional independence)For each = {0, 1}, it is hold
that Y ( ) ⊥ C( ) | X( )
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 20 / 34
Conditional Distribution of Duration Outcomes
Identication and Estimation
F( ) (y|x) is identiable under Assumption 2, but weaker conditions are
needed. Censoring
Assumption 4 (Conditional independence)For each = {0, 1}, it is hold
that Y ( ) ⊥ C( ) | X( )
Classical methods, like distribution regression and quantile methods
can be misleading or cumbersome to compute.
Because of the link between hazards and distribution functions, it is
specied a model for the conditional hazard.
...but, parametric hazard models are very restrictive.
so, we use a semiparametric model.
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 20 / 34
Conditional Distribution of Duration Outcomes
Estimation
Assume that hazard function (Cox 1972, 1975) is given by:
λ( )
(y|x) = λ
( )
0
(y) exp βT
x
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 21 / 34
Conditional Distribution of Duration Outcomes
Estimation
Assume that hazard function (Cox 1972, 1975) is given by:
λ( )
(y|x) = λ
( )
0
(y) exp βT
x
Cox Model
Conditional distribution is
F( ) (y|x) = 1 − exp −
y
0
λ
( )
0
(¯y) d ¯y
exp(βT x)
β is estimated by Partial Maximum Likelihood estimation.
λ
( )
0
(y) does not need to be specied, and is estimated
nonparametrically (c.f. Kalbeisch and Prentice, 1973; and Breslow,
1974) Baseline estimators
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 21 / 34
Decomposition of other Distributional Features (CCOX)
ˆ∆θ
Y = θ ˆF
(1,1)
Y − θ ˆF
(0,1)
Y + θ ˆF
(0,1)
Y − θ ˆF
(0,0)
Y
where
ˆF
(i,j)
Y (y) = n−1
j
n
l=1
ˆF(i)
(y|xl ) 1{Dl = }
and
ˆF(i)
(y|x) = 1 − exp −
y
0
ˆλ
(i)
0
(¯y) d ¯y
exp(ˆβT
i x)
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 22 / 34
Decomposition of other Distributional Features (CCOX)
ˆ∆θ
Y = θ ˆF
(1,1)
Y − θ ˆF
(0,1)
Y + θ ˆF
(0,1)
Y − θ ˆF
(0,0)
Y
where
ˆF
(i,j)
Y (y) = n−1
j
n
l=1
ˆF(i)
(y|xl ) 1{Dl = }
and
ˆF(i)
(y|x) = 1 − exp −
y
0
ˆλ
(i)
0
(¯y) d ¯y
exp(ˆβT
i x)
Validity follows the arguments in Chernozhuvok et. al. (2013).
Inference can be performed based on bootstrapping techniques.
Asymptotics
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 22 / 34
Outline
1 Oaxaca-Blinder Decomposition under Censoring
2 Decomposition based on Model Specication
3 Monte Carlo Simulations
4 A Decomposition Exercise
5 Final Remarks
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 23 / 34
Monte Carlo Simulations
Issues to evaluate:
Compare proposed methods with classical methods for no-censored
data.
Performance under dierent censoring mechanims and distributional
assumptions.
Inference on decomposition components based on bootstrapping.
Parameters for the simulations:
Sample sizes: 50, 500, 2500.
Replications: 1000.
Censorship levels: various levels depending on the exercises.
Simulation procedure:
Draw (Y , X, C), and then compute Z = min (Y , C) and δ = 1{Y ≤C}.
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 24 / 34
COB Decomposition
Montecarlo Exercises
Composition eect Structure Eect
y-axis measures the average of the absolute deviations across 1000 draws.
DGP
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 25 / 34
Censoring Mechanism
Montecarlo Exercises
Y ⊥ C Y ⊥ C|X
y-axis measures the maximum distance: MD=max
y
| ˜FY (y)− ˆFY (y)|. Values are multiplied by 1000 to facilitate
comparisons. Simulated times follow Weibull distribution and baseline quantities computed by Breslow estimator.
DGP
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 26 / 34
Outline
1 Oaxaca-Blinder Decomposition under Censoring
2 Decomposition based on Model Specication
3 Monte Carlo Simulations
4 A Decomposition Exercise
5 Final Remarks
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 27 / 34
Unemployment Duration Gender Gaps
Spain 2004-2007
Spain had experienced one of the highest unemployment rates among
OECD countries during the period 1995-2005: 14% in Spain, 5% in
the US and 6.8% the average OECD.
Also, more pronounced dierences between gender are observed: 9 p.p
in Spain and 0.04 p.p. in the US.
Existing studies:
Dierences in unemployment rates (Niemi, 1974; Jhonson, 1983;
Azmat et. al., 2006).
Dierence in the exit rate and the average hazard rate (Eusamio, 2004;
Ortega, 2008; Baussola et. al., 2015).
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 28 / 34
A Decomposition Exercise
Gender Unemployment Duration Gap in Spain: 2004-2007
Data: Survey of Income and Living Conditions 2004-2007.
Contain information about occupational status monthly.
Individual characteristics: age, educational level, tenure, marital status,
household structure (household head and unemployed members) and
region.
Population: workers older than 25 starting unemployment spell during
2004-2007.
Target parameters: Average unemployment duration, the probability of
being long term unemployed (12 and 24 months) and the Gini
coecient.
Two dimensions of duration: duration until exit from unemployment
and duration until getting a job.
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 29 / 34
Unemployment Duration in Spain: 2004-2007
Distributional Parameters of Duration to Exit from Unemployment
Mean LTU(12) LTU(24) Gini
Kaplan-Meier
Women 11.090 0.410 0.145 0.496
Men 7.804 0.237 0.065 0.542
CCOX
Women 11.160 0.396 0.145 0.508
Men 7.767 0.235 0.067 0.544
Only Uncensored
Women 7.456 0.292 0.045 0.446
Men 5.466 0.153 0.014 0.485
Authors' calculations.
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 30 / 34
Decomposition Unemployment Duration Gender Gaps
Decomposition Distributional Statistics of Duration to Exit from
Unemployment
Total Composition Structure
COB Mean Dierence 3.285 0.386 2.899
CI 90% [2.067 , 4.442] [-0.478 , 2.425] [0.408 , 4.219]
CCOX
Mean Dierence 3.392 0.537 2.855
CI 90% [2.098 , 4.491] [-0.349 , 1.361] [1.501 , 4.224]
LTU(12) Dierence 0.161 0.012 0.148
CI 90% [0.115 , 0.206] [-0.013 , 0.043] [0.092 , 0.198]
LTU(24) Dierence 0.078 0.014 0.064
CI 90% [0.043 , 0.109] [-0.008 , 0.035] [0.022 , 0.104]
Gini Dierence -0.036 0.006 -0.042
CI 90% [-0.071 , 0.000] [-0.002 , 0.010] [-0.075 , -0.005]
Authors' calculations.
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 31 / 34
Decomposition Unemployment Duration Gender Gaps
Decomposition Distributional Statistics of Duration from Unemployment to
Employment
Total Composition Structure
COB Mean Dierence 7.224 5.698 1.525
CI 90% [4.804 , 9.020] [3.816 , 8.678] [-1.691 , 3.203]
CCOX
Mean Dierence 7.865 1.713 6.151
CI 90% [5.266 , 9.507] [0.159 , 3.028] [3.813 , 8.191]
LTU(12) Dierence 0.184 0.036 0.148
CI 90% [0.137 , 0.231] [0.000 , 0.071] [0.095 , 0.202]
LTU(24) Dierence 0.176 0.041 0.135
CI 90% [0.130 , 0.226] [0.003 , 0.074] [0.084 , 0.192]
Gini Dierence -0.040 -0.014 -0.025
CI 90% [-0.079 , -0.008] [-0.029 , 0.001] [-0.065 , 0.007]
Authors' calculations.
Other results
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 32 / 34
Outline
1 Oaxaca-Blinder Decomposition under Censoring
2 Decomposition based on Model Specication
3 Monte Carlo Simulations
4 A Decomposition Exercise
5 Final Remarks
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 33 / 34
Concluding Remarks
We propose a nonparametric Oaxaca-Blinder type decomposition
method for the mean dierence under censoring, using classical
identication assumptions in survival analysis literature.
Under weaker identication conditions, we present a decomposition
method based on the estimation of the conditional distribution.
Both methods work properly in nite samples.
Unemployment duration gap by gender in Spain:
The structure eect plays the major role to explain the gender gaps of
several distributional parameters.
The composition eect is statistically signicant to explain gender gaps
for the duration until getting a job.
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Oaxaca-Blinder type Decomposition Methods for Duration
Outcomes
Andres Garcia-Suaza
andres.garcia@urosario.edu.co
.............................Thank you!
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Future Research
The COB methods can be extended for:
Detailed decomposition: path dependece and omitted group problems
(Oaxaca and Ransom 1999; Yun, 2005; Firpo et. al. 2007).
Decomposition of other parameters: RIF regression (Firpo et. al.
2009).
Proportionality of hazard rates assumed by the Cox model might be
unrealistic in some situations. More exible semiparametric models, as
Distributional Regression (Foresi and Peracchi, 1995; Chernozhukov
et. al. 2013), are desirable.
Empirical ndings remark the relevance of institutional factors. We
study whether unemployment benets plays a role in the gender
dierence of the exit rate.
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
OB Decomposition
Counterfactual Outcomes and Assumptions
∆µ
Y = (β1 − β0)T
µ
(1)
X + βT
0
µ
(1)
X − µ
(0)
X
Target counterfactual statistic:
µ
(0,1)
Y = E Y (0)|X = E (X | D = 1) = βT
0
µ
(1)
X .
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
OB Decomposition
Counterfactual Outcomes and Assumptions
∆µ
Y = (β1 − β0)T
µ
(1)
X + βT
0
µ
(1)
X − µ
(0)
X
Assumption 1
Let ε( ) be the best linear predictor error for subpopulation , i.e.
ε( ) = (Y ( ) − βT X( )). The following conditions are satised:
a. Overlapping support: if X × E denotes the support of observables and
unobservable characteristics of the underlying population, then
(X(0), ε(0)) ∪ (X(1), ε(1)) ∈ X × E.
b. Simple counterfactual treatment.
c. Conditional independence of treatment and unobservables: D ⊥ ε|X.
Back
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Multivariate Kaplan-Meier Estimator
Identication of the Multivariate Distribution: Some intuition
Dene P (C ≤ y|D = ) = G (y|D = ). Under Assumption 2:
H11 (y, x, ) = P (Z ≤ y, X ≤ x, D = , δ = 1)
=
y
0
[1 − G (¯y − |D = )] F (d ¯y, x, )
and,
H (y, ) = P (Z ≤ y, δ = 1)
= [1 − G (¯y − |D = )] [1 − F (y−, ∞, )]
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Multivariate Kaplan-Meier Estimator
Identication of the Multivariate Distribution: Some intuition
Dene P (C ≤ y|D = ) = G (y|D = ). Under Assumption 2:
H11 (y, x, ) = P (Z ≤ y, X ≤ x, D = , δ = 1)
=
y
0
[1 − G (¯y − |D = )] F (d ¯y, x, )
and,
H (y, ) = P (Z ≤ y, δ = 1)
= [1 − G (¯y − |D = )] [1 − F (y−, ∞, )]
Therefore,
Λ (y, x, ) =
y
0
F (d ¯y, x, ) [1 − G (¯y − |D = )]
1 − F (¯y−, ∞, ) [1 − G (¯y − |D = )]
=
y
0
H11 (d ¯y, x, )
1 − H (¯y−, )
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Multivariate Kaplan-Meier Estimator
Estimation
Thus, Λ is estimated by:
ˆΛ (y, x, ) =
y
0
ˆH11 (d ¯y, x, )
1 − ˆH (¯y−, )
=
n
i=1
1{Zi ≤y,Xi ≤x,Di = ,δi =1}
n − R
( )
i + 1
where, R
( )
i = n ˆH (Zi , ).
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Multivariate Kaplan-Meier Estimator
Estimation
Thus, Λ is estimated by:
ˆΛ (y, x, ) =
y
0
ˆH11 (d ¯y, x, )
1 − ˆH (¯y−, )
=
n
i=1
1{Zi ≤y,Xi ≤x,Di = ,δi =1}
n − R
( )
i + 1
where, R
( )
i = n ˆH (Zi , ).
And the joint distribution associated is
ˆF (y, x, ) = 1 −
Z
( )
i:n
≤y,X
( )
[i:n ]
≤x

1 −
δ
( )
[i:n ]
n − R
( )
i + 1


with Z
( )
i:n = Zj if R
( )
j = i, and for any {ξi }n
i=1
, ξ
( )
[i:n ] is the i-th
concomitant of Z
( )
i:n , i.e., ξ
( )
[i:n ] = ξj if Z
( )
i:n = Zj .
Back
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Example Multivariate KM
Z 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
δ 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Example Multivariate KM
Z 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
δ 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1
Back
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
(Censored) OB Decompisition -COB-
For a generic J (y, ) dene τ
( )
J = inf {y : J (y, ) = 1} ≤ ∞.
Assumption 3For = {0, 1}, it holds that τ
( )
FY
≤ τ
( )
G .
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
(Censored) OB Decompisition -COB-
For a generic J (y, ) dene τ
( )
J = inf {y : J (y, ) = 1} ≤ ∞.
Assumption 3For = {0, 1}, it holds that τ
( )
FY
≤ τ
( )
G .
Corollary 2
Assume E X( )X( )T
is positive denite and n
n → ρ with ρ0 + ρ1 = 1.
Under Assumption 1-3, we have:
n1/2 ˆ∆µ
Y − ∆µ
Y
d
→ N (0, V∆Y
)
n1/2 ˆ∆µ
S − ∆µ
S
d
→ N (0, V∆S
)
n1/2 ˆ∆µ
C − ∆µ
C
d
→ N (0, V∆C
)
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
(Censored) OB Decompisition -COB-
Inference
Proposition 2
Assume E X( )X( )T
is positive denite and n
n → ρ with ρ0 + ρ1 = 1.
Under Assumption 2-3, we have:
n1/2 ˆβ − β , ˆµ
( )
X − µ
( )
X
d
→ N 0, Σ
( )
βµX
where
Σ
( )
βµX
= Σ
( )
XX
−1
Σ
( )
0
Σ
( )
XX
−1
= σ
( )
β , σ
( )
βµX
; σ
( )
βµX
, σ( )
µX
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
(Censored) OB Decompisition -COB-
Inference
Let ρ0 = ρ. V∆Y
, V∆S
and V∆C
are dened as:
V∆Y
=
1
ρ
V0 +
1
1 − ρ
V1
where V = µ
( )T
X σ
( )
β µ
( )
X + βT σ
( )
µX β + 2βT σ
( )
βµX
µ
( )
X ,
V∆S
=
1
1 − ρ
∆T
β σ(1)
µX
∆β +
2
1 − ρ
∆T
β σ
(1)
βµX
µ
(1)
X +
1
ρ (1 − ρ)
µ
(1)T
X σβµ
(1)
X
V∆C
=
1
ρ
∆T
µX
σ
(0)
β ∆µX
+
2
ρ
βT
0
σ
(0)
βµX
∆µX
+
1
ρ (1 − ρ)
βT
0
σµX
µ
(1)
X
with ∆T
β = β1 − β0, ∆T
µX
= µ
(1)
X − µ
(0)
X , σβ = ρσ
(1)
β + (1 − ρ) σ
(0)
β and
σµX
= ρσ
(1)
µX + (1 − ρ) σ
(0)
µX .
Back
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Bootstrapping Techniques under Censoring
Sampling methods (Efron -1981-).
Simple method: draw (Z∗
i , δ∗
i , X∗
i ) for i = 1, . . . , n from (Zi , δi , Xi ).
Obvious method: draw Y ∗
i ∼ F (y|X∗
i ) and C∗
∼ G (y|X∗
i ). Dene
Z∗
= min (Y ∗
, C∗
) and δ∗
= 1{Y ∗≤C∗}.
Usual methods for constructing condence bands can be used:
percentile, hybrid, boot-t.
Back
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Censoring Mechanism
Back
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Estimation Baseline Quantities
Breslow estimator:
ˆΛ
( )
0B (y) =
y
i=1
1
j∈r(yi ) e
ˆβT x
( )
j
Kalbeisch and Prentice estimator:
ˆΛ
( )
0KP (y) =
n
i=1
1 − ˆα
( )
i 1{yi ≤y}
where the hazard probabilities ˆα
( )
i solve:
j∈d( )(yi )
e
ˆβT x
( )
j 1 − ˆα
exp ˆβT x
( )
j
i
−1
=
l∈r( )(yi )
e
ˆβT x
( )
l
with r( ) (yi ) the pool risk and the d( ) (yi ) set of individuals reporting
failure.
Back
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Validity CCOX Method
Consistency Under Assumptions 1, 3 and 4, and n
n → ρ with ρ0 + ρ1 = 1,
we have:
n1/2 ˆF
(i,j)
Y (y) − F
(i,j)
Y (y) =⇒ ¯M(i,j)
(y)
where ¯M(i,j) (y) tight zero-mean Gaussian process with uniform continuous
path on Supp (y), dene as:
¯M(i,j)
(y) = ρ
1/2
i M(i)
(y, x) dF(j)
(x) + ρ
1/2
j N(j)
F(i)
(y|.)
and,
n
1/2
ˆF( )
(y|x) − F( )
(y|x) =⇒ M( )
(y, x)
n
1/2
fd ˆF( )
(x) − F( )
(x) =⇒ N( )
(f )
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Validity CCOX Method
Previous result lies on the fact that n1/2 ˆβ − β
d
→ N (0, Vβ) and
n1/2 ˆΛ0 (y) − Λ0 (y) =⇒ C∞ (Tsiatis, 1981: Andersen and Gill,
1982).
Since F (y|.) is Hadamard dierentiable with respect to β and Λ0
(.)
(see c.f. Freitag and Munk, 2005), the CCOX is Hadamard
dierentiable, and the related smooth functionals also obeys a central
limit theorem.
Given that bootstrap techniques are valid to make inference on Cox
estimator of the conditional distribution (Cheng and Huang, 2010);
then, resampling methods are also valid for the CCOX.
By Hadamard dierentiability this result also applies to smooth
functionals.
Back
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Validity CCOX Method
Previous result lies on the fact that n1/2 ˆβ − β
d
→ N (0, Vβ) and
n1/2 ˆΛ0 (y) − Λ0 (y) =⇒ C∞ (Tsiatis, 1981: Andersen and Gill,
1982).
Since F (y|.) is Hadamard dierentiable with respect to β and Λ0
(.)
(see c.f. Freitag and Munk, 2005), the CCOX is Hadamard
dierentiable, and the related smooth functionals also obeys a central
limit theorem.
Given that bootstrap techniques are valid to make inference on Cox
estimator of the conditional distribution (Cheng and Huang, 2010);
then, resampling methods are also valid for the CCOX.
By Hadamard dierentiability this result also applies to smooth
functionals.
Back
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Validity CCOX Method
Previous result lies on the fact that n1/2 ˆβ − β
d
→ N (0, Vβ) and
n1/2 ˆΛ0 (y) − Λ0 (y) =⇒ C∞ (Tsiatis, 1981: Andersen and Gill,
1982).
Since F (y|.) is Hadamard dierentiable with respect to β and Λ0
(.)
(see c.f. Freitag and Munk, 2005), the CCOX is Hadamard
dierentiable, and the related smooth functionals also obeys a central
limit theorem.
Given that bootstrap techniques are valid to make inference on Cox
estimator of the conditional distribution (Cheng and Huang, 2010);
then, resampling methods are also valid for the CCOX.
By Hadamard dierentiability this result also applies to smooth
functionals.
Back
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Validity CCOX Method
Previous result lies on the fact that n1/2 ˆβ − β
d
→ N (0, Vβ) and
n1/2 ˆΛ0 (y) − Λ0 (y) =⇒ C∞ (Tsiatis, 1981: Andersen and Gill,
1982).
Since F (y|.) is Hadamard dierentiable with respect to β and Λ0
(.)
(see c.f. Freitag and Munk, 2005), the CCOX is Hadamard
dierentiable, and the related smooth functionals also obeys a central
limit theorem.
Given that bootstrap techniques are valid to make inference on Cox
estimator of the conditional distribution (Cheng and Huang, 2010);
then, resampling methods are also valid for the CCOX.
By Hadamard dierentiability this result also applies to smooth
functionals.
Back
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
COB Decomposition
Montecarlo Exercises
Simulation Setup
= 0
Y (0)
= 5 + X(0)
+ ε
(0)
Y ε
(0)
Y ∼ N (0, 1)
C(0)
= 5 + ε
(0)
C ε
(0)
C ∼ N (υ0, 1.5)
= 1
Y (1)
= 5 + X(1)
+ ε
(1)
Y ε
(1)
Y ∼ N (0, 1)
C(1)
= 5 + ε
(1)
C ε
(1)
C ∼ N (υ1, 1.5)
X(0) ∼ N (1.5, 0.5) and X(1) ∼ N (1, 0.5).
(υ0, υ1) = (2.5, 2), hence, censoring level is 30%.
Back
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Censoring Mechanism and Distributional Assumptions
Montecarlo Exercises
Simulation Setup
Assumption DGP
Y ⊥ C
Weibull
Y ∼ WB e2−x
, 5
C ∼ WB e2+υ
, 5
υ = (0.25, −0.2, −0.5)
Normal
Y = 5 + X + εY , εY ∼ N (0, 1)
C = 5 + εC , εC ∼ N (υ, 1)
υ = (3, 1.5, 0.5)
Y ⊥ C|X
Weibull
Y ∼ WB e2−x
, 5
C ∼ WB e2−x+υ
, 7
υ = (0.45, 0.2, −0.02)
Normal
Y = 5 + X + εY , εY ∼ N (0, 1)
C = 5 + X + εC , εC ∼ N (υ, 1)
υ = (2.5, 1, 0)
X ∼ U (0, 1).
Censoring levels: 0%, 5%, 25% and 50%.
We compare the estimation of the unconditional distribution using the
counterfactual operator with the KM estimator.
BackAndres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Distributional Assumption
Montecarlo Exercises
Weibull Normal
y-axis measures the maximum distance: MD=max
y
| ˜FY (y)− ˆFY (y)|. Values are multiplied by 1000 to facilitate
comparisons. Survival times generated under the assumption Y ⊥ C.
Back
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Decomposition Exercise and Inference
Montecarlo Exercises
Y ( ) ∼ WB e3−X( )
, 5 and C( ) ∼ WB e3.17−X( )
, 5 .
X(0) ∼ U (0, 1) and X(1) = 3
i=1
U (0, 1).
Censoring levels: 0% and 30%.
n = 500, B = 1000.
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Decomposition Exercise and Inference
Montecarlo Exercises
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Decomposition Exercise and Inference
Montecarlo Exercises
Condence Level Censoring Levels Truncated Mean Q(0.50)
Pr δ(0)
= 0 Pr δ(1)
= 0 Percentile Hybrid Percentile Hybrid
95
0.0 0.0 0.961 0.962 0.958 0.953
0.0 0.3 0.954 0.963 0.952 0.940
0.3 0.0 0.963 0.972 0.958 0.944
0.3 0.3 0.952 0.966 0.968 0.944
90
0.0 0.0 0.907 0.913 0.917 0.911
0.0 0.3 0.902 0.911 0.915 0.903
0.3 0.0 0.915 0.923 0.915 0.897
0.3 0.3 0.912 0.917 0.907 0.895
Mean is truncated at Y = 15.
Back
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
Decomposition Unemployment Duration Gender Gaps
Duration until getting a Job: Censoring Mechanism
Dependence of Censoring on Covariates
Exit from Unemp. Unemp. to Emp.
Women Men Women Men
Linear Prob. Model 0.046 0.083 0.177 0.123
Logit 0.070 0.128 0.166 0.167
Authors' calculations.
Decomposition of Mean Dierence Ignoring Censoring
Exit from Unemp. Unemp. to Emp.
COB CCOX COB CCOX
Total 2.085 2.040 0.945 0.876
Composition 0.438 0.471 0.089 0.029
Structure 1.647 1.569 0.857 0.847
Authors' calculations.
Back
Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34

More Related Content

Similar to Oaxaca-Blinder type Decomposition Methods for Duration Outcomes

slides_online_optimization_david_mateos
slides_online_optimization_david_mateosslides_online_optimization_david_mateos
slides_online_optimization_david_mateosDavid Mateos
 
A Generalization of the Chow-Liu Algorithm and its Applications to Artificial...
A Generalization of the Chow-Liu Algorithm and its Applications to Artificial...A Generalization of the Chow-Liu Algorithm and its Applications to Artificial...
A Generalization of the Chow-Liu Algorithm and its Applications to Artificial...
Joe Suzuki
 
Distributionworkshop 2.pptx
Distributionworkshop 2.pptxDistributionworkshop 2.pptx
Distributionworkshop 2.pptx
nagalakshmig4
 
Multivariate Distributions, an overview
Multivariate Distributions, an overviewMultivariate Distributions, an overview
Multivariate Distributions, an overview
Arthur Charpentier
 
Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...
Valentin De Bortoli
 
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...Fuad Anwar
 
Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau Equation
Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau EquationStudy of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau Equation
Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau Equation
Fuad Anwar
 
On the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCAOn the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCA
Dmitrii Ignatov
 
MCQMC 2016 Tutorial
MCQMC 2016 TutorialMCQMC 2016 Tutorial
MCQMC 2016 Tutorial
Fred J. Hickernell
 
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMSSOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
Tahia ZERIZER
 
E5-roughsets unit-V.pdf
E5-roughsets unit-V.pdfE5-roughsets unit-V.pdf
E5-roughsets unit-V.pdf
Ramya Nellutla
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cube
VjekoslavKovac1
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
Zac Darcy
 
Aggressive Sampling for Multi-class to Binary Reduction with Applications to ...
Aggressive Sampling for Multi-class to Binary Reduction with Applications to ...Aggressive Sampling for Multi-class to Binary Reduction with Applications to ...
Aggressive Sampling for Multi-class to Binary Reduction with Applications to ...
Ioannis Partalas
 
AlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier HudryAlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier Hudry
AlgoPerm 2012
 

Similar to Oaxaca-Blinder type Decomposition Methods for Duration Outcomes (20)

slides_online_optimization_david_mateos
slides_online_optimization_david_mateosslides_online_optimization_david_mateos
slides_online_optimization_david_mateos
 
A Generalization of the Chow-Liu Algorithm and its Applications to Artificial...
A Generalization of the Chow-Liu Algorithm and its Applications to Artificial...A Generalization of the Chow-Liu Algorithm and its Applications to Artificial...
A Generalization of the Chow-Liu Algorithm and its Applications to Artificial...
 
Slides mc gill-v4
Slides mc gill-v4Slides mc gill-v4
Slides mc gill-v4
 
Distributionworkshop 2.pptx
Distributionworkshop 2.pptxDistributionworkshop 2.pptx
Distributionworkshop 2.pptx
 
Slides mc gill-v3
Slides mc gill-v3Slides mc gill-v3
Slides mc gill-v3
 
Multivariate Distributions, an overview
Multivariate Distributions, an overviewMultivariate Distributions, an overview
Multivariate Distributions, an overview
 
Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...
 
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
Jurnal Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landa...
 
Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau Equation
Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau EquationStudy of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau Equation
Study of Anisotropy Superconductor using Time-Dependent Ginzburg-Landau Equation
 
On the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCAOn the Family of Concept Forming Operators in Polyadic FCA
On the Family of Concept Forming Operators in Polyadic FCA
 
MCQMC 2016 Tutorial
MCQMC 2016 TutorialMCQMC 2016 Tutorial
MCQMC 2016 Tutorial
 
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMSSOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
 
E5-roughsets unit-V.pdf
E5-roughsets unit-V.pdfE5-roughsets unit-V.pdf
E5-roughsets unit-V.pdf
 
A Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cubeA Szemerédi-type theorem for subsets of the unit cube
A Szemerédi-type theorem for subsets of the unit cube
 
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERSINFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
INFLUENCE OF OVERLAYERS ON DEPTH OF IMPLANTED-HETEROJUNCTION RECTIFIERS
 
DTI lecture 100710
DTI lecture 100710DTI lecture 100710
DTI lecture 100710
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
Slides erm-cea-ia
Slides erm-cea-iaSlides erm-cea-ia
Slides erm-cea-ia
 
Aggressive Sampling for Multi-class to Binary Reduction with Applications to ...
Aggressive Sampling for Multi-class to Binary Reduction with Applications to ...Aggressive Sampling for Multi-class to Binary Reduction with Applications to ...
Aggressive Sampling for Multi-class to Binary Reduction with Applications to ...
 
AlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier HudryAlgoPerm2012 - 03 Olivier Hudry
AlgoPerm2012 - 03 Olivier Hudry
 

More from Facultad de Ciencias Económicas UdeA

Risk assessment in commodity markets with semi-nonparametric specifications
Risk assessment in commodity markets with semi-nonparametric specificationsRisk assessment in commodity markets with semi-nonparametric specifications
Risk assessment in commodity markets with semi-nonparametric specifications
Facultad de Ciencias Económicas UdeA
 
Inefficiency and Bank Failures A Joint Bayesian Estimation of a Hazards Model ...
Inefficiency and Bank Failures A Joint Bayesian Estimation of a Hazards Model ...Inefficiency and Bank Failures A Joint Bayesian Estimation of a Hazards Model ...
Inefficiency and Bank Failures A Joint Bayesian Estimation of a Hazards Model ...
Facultad de Ciencias Económicas UdeA
 
Modeling Heterogeneity by Structural Varying Coefficients Models in Presence of...
Modeling Heterogeneity by Structural Varying Coefficients Models in Presence of...Modeling Heterogeneity by Structural Varying Coefficients Models in Presence of...
Modeling Heterogeneity by Structural Varying Coefficients Models in Presence of...
Facultad de Ciencias Económicas UdeA
 
Estimation of Social Interaction Models: A Bayesian Approach
Estimation of Social Interaction Models: A Bayesian ApproachEstimation of Social Interaction Models: A Bayesian Approach
Estimation of Social Interaction Models: A Bayesian Approach
Facultad de Ciencias Económicas UdeA
 
Ajuste de Riesgo, Hospitalizaciones Innecesarias y Aprendizaje de M´aquinas
Ajuste de Riesgo, Hospitalizaciones Innecesarias y Aprendizaje de M´aquinasAjuste de Riesgo, Hospitalizaciones Innecesarias y Aprendizaje de M´aquinas
Ajuste de Riesgo, Hospitalizaciones Innecesarias y Aprendizaje de M´aquinas
Facultad de Ciencias Económicas UdeA
 
Prediction of Federal Funds Target Rate: A Dynamic Logistic Bayesian Model Av...
Prediction of Federal Funds Target Rate: A Dynamic Logistic Bayesian Model Av...Prediction of Federal Funds Target Rate: A Dynamic Logistic Bayesian Model Av...
Prediction of Federal Funds Target Rate: A Dynamic Logistic Bayesian Model Av...
Facultad de Ciencias Económicas UdeA
 
I Network de Métodos Cuantitativos en Economía – AFADECO
I Network de Métodos Cuantitativos en Economía – AFADECO I Network de Métodos Cuantitativos en Economía – AFADECO
I Network de Métodos Cuantitativos en Economía – AFADECO
Facultad de Ciencias Económicas UdeA
 
Actuales desafíos de la Unión Europea en un mundo cambiante
Actuales desafíos de la Unión Europea en un mundo cambianteActuales desafíos de la Unión Europea en un mundo cambiante
Actuales desafíos de la Unión Europea en un mundo cambiante
Facultad de Ciencias Económicas UdeA
 
Innovar para sobrevivir: La gestión del conocimiento
Innovar para sobrevivir: La gestión del conocimientoInnovar para sobrevivir: La gestión del conocimiento
Innovar para sobrevivir: La gestión del conocimiento
Facultad de Ciencias Económicas UdeA
 
Cuando una PYME crece: el cambio hacia una gestión profesional
Cuando una PYME crece: el cambio hacia una gestión profesionalCuando una PYME crece: el cambio hacia una gestión profesional
Cuando una PYME crece: el cambio hacia una gestión profesional
Facultad de Ciencias Económicas UdeA
 
Nuevas formas de la organización del trabajo (documento)
Nuevas formas de la organización del trabajo (documento)Nuevas formas de la organización del trabajo (documento)
Nuevas formas de la organización del trabajo (documento)
Facultad de Ciencias Económicas UdeA
 
Nuevas formas de organización del trabajo Parte 1
Nuevas formas de organización del trabajo Parte 1Nuevas formas de organización del trabajo Parte 1
Nuevas formas de organización del trabajo Parte 1
Facultad de Ciencias Económicas UdeA
 
La globalización de la economía y la internacionalización de las empresas
La globalización de la economía y la internacionalización de las empresasLa globalización de la economía y la internacionalización de las empresas
La globalización de la economía y la internacionalización de las empresas
Facultad de Ciencias Económicas UdeA
 
El papel de las políticas de rrhh en el fomento del emprendimiento corporativo
El papel de las políticas de rrhh en el fomento del emprendimiento corporativoEl papel de las políticas de rrhh en el fomento del emprendimiento corporativo
El papel de las políticas de rrhh en el fomento del emprendimiento corporativo
Facultad de Ciencias Económicas UdeA
 
Expatriación y shock cultural: cómo planificar una asignación internacional c...
Expatriación y shock cultural: cómo planificar una asignación internacional c...Expatriación y shock cultural: cómo planificar una asignación internacional c...
Expatriación y shock cultural: cómo planificar una asignación internacional c...
Facultad de Ciencias Económicas UdeA
 
Procolombia: Expansión de los negocios colombianos
Procolombia: Expansión de los negocios colombianosProcolombia: Expansión de los negocios colombianos
Procolombia: Expansión de los negocios colombianos
Facultad de Ciencias Económicas UdeA
 
Procafecol S.A. Juan Valdez: Construyendo valor para los cafeteros de Colombia
Procafecol S.A. Juan Valdez: Construyendo valor para los cafeteros de ColombiaProcafecol S.A. Juan Valdez: Construyendo valor para los cafeteros de Colombia
Procafecol S.A. Juan Valdez: Construyendo valor para los cafeteros de Colombia
Facultad de Ciencias Económicas UdeA
 
Grupo Orbis y su proceso de internacionalización
Grupo Orbis y su proceso de internacionalizaciónGrupo Orbis y su proceso de internacionalización
Grupo Orbis y su proceso de internacionalización
Facultad de Ciencias Económicas UdeA
 
Análisis del perfil de internacionalización de las multilatinas colombianas: ...
Análisis del perfil de internacionalización de las multilatinas colombianas: ...Análisis del perfil de internacionalización de las multilatinas colombianas: ...
Análisis del perfil de internacionalización de las multilatinas colombianas: ...
Facultad de Ciencias Económicas UdeA
 
Permanencias y disrupciones de la protección social para la vejez en colombia
Permanencias y disrupciones de la protección social para la vejez en colombiaPermanencias y disrupciones de la protección social para la vejez en colombia
Permanencias y disrupciones de la protección social para la vejez en colombia
Facultad de Ciencias Económicas UdeA
 

More from Facultad de Ciencias Económicas UdeA (20)

Risk assessment in commodity markets with semi-nonparametric specifications
Risk assessment in commodity markets with semi-nonparametric specificationsRisk assessment in commodity markets with semi-nonparametric specifications
Risk assessment in commodity markets with semi-nonparametric specifications
 
Inefficiency and Bank Failures A Joint Bayesian Estimation of a Hazards Model ...
Inefficiency and Bank Failures A Joint Bayesian Estimation of a Hazards Model ...Inefficiency and Bank Failures A Joint Bayesian Estimation of a Hazards Model ...
Inefficiency and Bank Failures A Joint Bayesian Estimation of a Hazards Model ...
 
Modeling Heterogeneity by Structural Varying Coefficients Models in Presence of...
Modeling Heterogeneity by Structural Varying Coefficients Models in Presence of...Modeling Heterogeneity by Structural Varying Coefficients Models in Presence of...
Modeling Heterogeneity by Structural Varying Coefficients Models in Presence of...
 
Estimation of Social Interaction Models: A Bayesian Approach
Estimation of Social Interaction Models: A Bayesian ApproachEstimation of Social Interaction Models: A Bayesian Approach
Estimation of Social Interaction Models: A Bayesian Approach
 
Ajuste de Riesgo, Hospitalizaciones Innecesarias y Aprendizaje de M´aquinas
Ajuste de Riesgo, Hospitalizaciones Innecesarias y Aprendizaje de M´aquinasAjuste de Riesgo, Hospitalizaciones Innecesarias y Aprendizaje de M´aquinas
Ajuste de Riesgo, Hospitalizaciones Innecesarias y Aprendizaje de M´aquinas
 
Prediction of Federal Funds Target Rate: A Dynamic Logistic Bayesian Model Av...
Prediction of Federal Funds Target Rate: A Dynamic Logistic Bayesian Model Av...Prediction of Federal Funds Target Rate: A Dynamic Logistic Bayesian Model Av...
Prediction of Federal Funds Target Rate: A Dynamic Logistic Bayesian Model Av...
 
I Network de Métodos Cuantitativos en Economía – AFADECO
I Network de Métodos Cuantitativos en Economía – AFADECO I Network de Métodos Cuantitativos en Economía – AFADECO
I Network de Métodos Cuantitativos en Economía – AFADECO
 
Actuales desafíos de la Unión Europea en un mundo cambiante
Actuales desafíos de la Unión Europea en un mundo cambianteActuales desafíos de la Unión Europea en un mundo cambiante
Actuales desafíos de la Unión Europea en un mundo cambiante
 
Innovar para sobrevivir: La gestión del conocimiento
Innovar para sobrevivir: La gestión del conocimientoInnovar para sobrevivir: La gestión del conocimiento
Innovar para sobrevivir: La gestión del conocimiento
 
Cuando una PYME crece: el cambio hacia una gestión profesional
Cuando una PYME crece: el cambio hacia una gestión profesionalCuando una PYME crece: el cambio hacia una gestión profesional
Cuando una PYME crece: el cambio hacia una gestión profesional
 
Nuevas formas de la organización del trabajo (documento)
Nuevas formas de la organización del trabajo (documento)Nuevas formas de la organización del trabajo (documento)
Nuevas formas de la organización del trabajo (documento)
 
Nuevas formas de organización del trabajo Parte 1
Nuevas formas de organización del trabajo Parte 1Nuevas formas de organización del trabajo Parte 1
Nuevas formas de organización del trabajo Parte 1
 
La globalización de la economía y la internacionalización de las empresas
La globalización de la economía y la internacionalización de las empresasLa globalización de la economía y la internacionalización de las empresas
La globalización de la economía y la internacionalización de las empresas
 
El papel de las políticas de rrhh en el fomento del emprendimiento corporativo
El papel de las políticas de rrhh en el fomento del emprendimiento corporativoEl papel de las políticas de rrhh en el fomento del emprendimiento corporativo
El papel de las políticas de rrhh en el fomento del emprendimiento corporativo
 
Expatriación y shock cultural: cómo planificar una asignación internacional c...
Expatriación y shock cultural: cómo planificar una asignación internacional c...Expatriación y shock cultural: cómo planificar una asignación internacional c...
Expatriación y shock cultural: cómo planificar una asignación internacional c...
 
Procolombia: Expansión de los negocios colombianos
Procolombia: Expansión de los negocios colombianosProcolombia: Expansión de los negocios colombianos
Procolombia: Expansión de los negocios colombianos
 
Procafecol S.A. Juan Valdez: Construyendo valor para los cafeteros de Colombia
Procafecol S.A. Juan Valdez: Construyendo valor para los cafeteros de ColombiaProcafecol S.A. Juan Valdez: Construyendo valor para los cafeteros de Colombia
Procafecol S.A. Juan Valdez: Construyendo valor para los cafeteros de Colombia
 
Grupo Orbis y su proceso de internacionalización
Grupo Orbis y su proceso de internacionalizaciónGrupo Orbis y su proceso de internacionalización
Grupo Orbis y su proceso de internacionalización
 
Análisis del perfil de internacionalización de las multilatinas colombianas: ...
Análisis del perfil de internacionalización de las multilatinas colombianas: ...Análisis del perfil de internacionalización de las multilatinas colombianas: ...
Análisis del perfil de internacionalización de las multilatinas colombianas: ...
 
Permanencias y disrupciones de la protección social para la vejez en colombia
Permanencias y disrupciones de la protección social para la vejez en colombiaPermanencias y disrupciones de la protección social para la vejez en colombia
Permanencias y disrupciones de la protección social para la vejez en colombia
 

Recently uploaded

Seminar: Gender Board Diversity through Ownership Networks
Seminar: Gender Board Diversity through Ownership NetworksSeminar: Gender Board Diversity through Ownership Networks
Seminar: Gender Board Diversity through Ownership Networks
GRAPE
 
G20 summit held in India. Proper presentation for G20 summit
G20 summit held in India. Proper presentation for G20 summitG20 summit held in India. Proper presentation for G20 summit
G20 summit held in India. Proper presentation for G20 summit
rohitsaxena882511
 
how to sell pi coins effectively (from 50 - 100k pi)
how to sell pi coins effectively (from 50 - 100k  pi)how to sell pi coins effectively (from 50 - 100k  pi)
how to sell pi coins effectively (from 50 - 100k pi)
DOT TECH
 
NEW NORMAL! WHAT BECOMES OF ACCOUNTING PROFESSION
NEW NORMAL!  WHAT BECOMES OF ACCOUNTING PROFESSION NEW NORMAL!  WHAT BECOMES OF ACCOUNTING PROFESSION
NEW NORMAL! WHAT BECOMES OF ACCOUNTING PROFESSION
Godwin Emmanuel Oyedokun MBA MSc PhD FCA FCTI FCNA CFE FFAR
 
how to sell pi coins in Hungary (simple guide)
how to sell pi coins in Hungary (simple guide)how to sell pi coins in Hungary (simple guide)
how to sell pi coins in Hungary (simple guide)
DOT TECH
 
5 Tips for Creating Standard Financial Reports
5 Tips for Creating Standard Financial Reports5 Tips for Creating Standard Financial Reports
5 Tips for Creating Standard Financial Reports
EasyReports
 
Scope Of Macroeconomics introduction and basic theories
Scope Of Macroeconomics introduction and basic theoriesScope Of Macroeconomics introduction and basic theories
Scope Of Macroeconomics introduction and basic theories
nomankalyar153
 
The WhatsPump Pseudonym Problem and the Hilarious Downfall of Artificial Enga...
The WhatsPump Pseudonym Problem and the Hilarious Downfall of Artificial Enga...The WhatsPump Pseudonym Problem and the Hilarious Downfall of Artificial Enga...
The WhatsPump Pseudonym Problem and the Hilarious Downfall of Artificial Enga...
muslimdavidovich670
 
how to swap pi coins to foreign currency withdrawable.
how to swap pi coins to foreign currency withdrawable.how to swap pi coins to foreign currency withdrawable.
how to swap pi coins to foreign currency withdrawable.
DOT TECH
 
Instant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School SpiritInstant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School Spirit
egoetzinger
 
Abhay Bhutada Leads Poonawalla Fincorp To Record Low NPA And Unprecedented Gr...
Abhay Bhutada Leads Poonawalla Fincorp To Record Low NPA And Unprecedented Gr...Abhay Bhutada Leads Poonawalla Fincorp To Record Low NPA And Unprecedented Gr...
Abhay Bhutada Leads Poonawalla Fincorp To Record Low NPA And Unprecedented Gr...
Vighnesh Shashtri
 
^%$Zone1:+971)581248768’][* Legit & Safe #Abortion #Pills #For #Sale In #Duba...
^%$Zone1:+971)581248768’][* Legit & Safe #Abortion #Pills #For #Sale In #Duba...^%$Zone1:+971)581248768’][* Legit & Safe #Abortion #Pills #For #Sale In #Duba...
^%$Zone1:+971)581248768’][* Legit & Safe #Abortion #Pills #For #Sale In #Duba...
mayaclinic18
 
在线办理(TAMU毕业证书)美国德州农工大学毕业证PDF成绩单一模一样
在线办理(TAMU毕业证书)美国德州农工大学毕业证PDF成绩单一模一样在线办理(TAMU毕业证书)美国德州农工大学毕业证PDF成绩单一模一样
在线办理(TAMU毕业证书)美国德州农工大学毕业证PDF成绩单一模一样
5spllj1l
 
Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFiTdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
nimaruinazawa258
 
Donald Trump Presentation and his life.pptx
Donald Trump Presentation and his life.pptxDonald Trump Presentation and his life.pptx
Donald Trump Presentation and his life.pptx
SerdarHudaykuliyew
 
how to sell pi coins in South Korea profitably.
how to sell pi coins in South Korea profitably.how to sell pi coins in South Korea profitably.
how to sell pi coins in South Korea profitably.
DOT TECH
 
when will pi network coin be available on crypto exchange.
when will pi network coin be available on crypto exchange.when will pi network coin be available on crypto exchange.
when will pi network coin be available on crypto exchange.
DOT TECH
 
Applying the Global Internal Audit Standards_AIS.pdf
Applying the Global Internal Audit Standards_AIS.pdfApplying the Global Internal Audit Standards_AIS.pdf
Applying the Global Internal Audit Standards_AIS.pdf
alexiusbrian1
 
where can I find a legit pi merchant online
where can I find a legit pi merchant onlinewhere can I find a legit pi merchant online
where can I find a legit pi merchant online
DOT TECH
 
The Rise of Generative AI in Finance: Reshaping the Industry with Synthetic Data
The Rise of Generative AI in Finance: Reshaping the Industry with Synthetic DataThe Rise of Generative AI in Finance: Reshaping the Industry with Synthetic Data
The Rise of Generative AI in Finance: Reshaping the Industry with Synthetic Data
Champak Jhagmag
 

Recently uploaded (20)

Seminar: Gender Board Diversity through Ownership Networks
Seminar: Gender Board Diversity through Ownership NetworksSeminar: Gender Board Diversity through Ownership Networks
Seminar: Gender Board Diversity through Ownership Networks
 
G20 summit held in India. Proper presentation for G20 summit
G20 summit held in India. Proper presentation for G20 summitG20 summit held in India. Proper presentation for G20 summit
G20 summit held in India. Proper presentation for G20 summit
 
how to sell pi coins effectively (from 50 - 100k pi)
how to sell pi coins effectively (from 50 - 100k  pi)how to sell pi coins effectively (from 50 - 100k  pi)
how to sell pi coins effectively (from 50 - 100k pi)
 
NEW NORMAL! WHAT BECOMES OF ACCOUNTING PROFESSION
NEW NORMAL!  WHAT BECOMES OF ACCOUNTING PROFESSION NEW NORMAL!  WHAT BECOMES OF ACCOUNTING PROFESSION
NEW NORMAL! WHAT BECOMES OF ACCOUNTING PROFESSION
 
how to sell pi coins in Hungary (simple guide)
how to sell pi coins in Hungary (simple guide)how to sell pi coins in Hungary (simple guide)
how to sell pi coins in Hungary (simple guide)
 
5 Tips for Creating Standard Financial Reports
5 Tips for Creating Standard Financial Reports5 Tips for Creating Standard Financial Reports
5 Tips for Creating Standard Financial Reports
 
Scope Of Macroeconomics introduction and basic theories
Scope Of Macroeconomics introduction and basic theoriesScope Of Macroeconomics introduction and basic theories
Scope Of Macroeconomics introduction and basic theories
 
The WhatsPump Pseudonym Problem and the Hilarious Downfall of Artificial Enga...
The WhatsPump Pseudonym Problem and the Hilarious Downfall of Artificial Enga...The WhatsPump Pseudonym Problem and the Hilarious Downfall of Artificial Enga...
The WhatsPump Pseudonym Problem and the Hilarious Downfall of Artificial Enga...
 
how to swap pi coins to foreign currency withdrawable.
how to swap pi coins to foreign currency withdrawable.how to swap pi coins to foreign currency withdrawable.
how to swap pi coins to foreign currency withdrawable.
 
Instant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School SpiritInstant Issue Debit Cards - High School Spirit
Instant Issue Debit Cards - High School Spirit
 
Abhay Bhutada Leads Poonawalla Fincorp To Record Low NPA And Unprecedented Gr...
Abhay Bhutada Leads Poonawalla Fincorp To Record Low NPA And Unprecedented Gr...Abhay Bhutada Leads Poonawalla Fincorp To Record Low NPA And Unprecedented Gr...
Abhay Bhutada Leads Poonawalla Fincorp To Record Low NPA And Unprecedented Gr...
 
^%$Zone1:+971)581248768’][* Legit & Safe #Abortion #Pills #For #Sale In #Duba...
^%$Zone1:+971)581248768’][* Legit & Safe #Abortion #Pills #For #Sale In #Duba...^%$Zone1:+971)581248768’][* Legit & Safe #Abortion #Pills #For #Sale In #Duba...
^%$Zone1:+971)581248768’][* Legit & Safe #Abortion #Pills #For #Sale In #Duba...
 
在线办理(TAMU毕业证书)美国德州农工大学毕业证PDF成绩单一模一样
在线办理(TAMU毕业证书)美国德州农工大学毕业证PDF成绩单一模一样在线办理(TAMU毕业证书)美国德州农工大学毕业证PDF成绩单一模一样
在线办理(TAMU毕业证书)美国德州农工大学毕业证PDF成绩单一模一样
 
Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFiTdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
Tdasx: Unveiling the Trillion-Dollar Potential of Bitcoin DeFi
 
Donald Trump Presentation and his life.pptx
Donald Trump Presentation and his life.pptxDonald Trump Presentation and his life.pptx
Donald Trump Presentation and his life.pptx
 
how to sell pi coins in South Korea profitably.
how to sell pi coins in South Korea profitably.how to sell pi coins in South Korea profitably.
how to sell pi coins in South Korea profitably.
 
when will pi network coin be available on crypto exchange.
when will pi network coin be available on crypto exchange.when will pi network coin be available on crypto exchange.
when will pi network coin be available on crypto exchange.
 
Applying the Global Internal Audit Standards_AIS.pdf
Applying the Global Internal Audit Standards_AIS.pdfApplying the Global Internal Audit Standards_AIS.pdf
Applying the Global Internal Audit Standards_AIS.pdf
 
where can I find a legit pi merchant online
where can I find a legit pi merchant onlinewhere can I find a legit pi merchant online
where can I find a legit pi merchant online
 
The Rise of Generative AI in Finance: Reshaping the Industry with Synthetic Data
The Rise of Generative AI in Finance: Reshaping the Industry with Synthetic DataThe Rise of Generative AI in Finance: Reshaping the Industry with Synthetic Data
The Rise of Generative AI in Finance: Reshaping the Industry with Synthetic Data
 

Oaxaca-Blinder type Decomposition Methods for Duration Outcomes

  • 1. Oaxaca-Blinder type Decomposition Methods for Duration Outcomes Andres Garcia-Suaza andres.garcia@urosario.edu.co Universidad del Rosario (Colombia) I Network Métodos Cuantitativos AFADECO - U de A Nov. 10, 2017 Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 1 / 34
  • 2. Decomposition Methods Study dierence of distributional features between two populations: Total dierence = Structure Eect + Composition Eect Decomposition of the mean: Oaxaca (1973) and Blinder (1973) -OB-. Extensions OB decomposition: Variance and Inequality: Juhn et. al. (1992). Quantile: Machado and Mata (2005), Melly (2005). Distribution and its functionals: DiNardo et. al. (1996), Chernozhukov et. al. (2013) -CFM-. Non-linear models: Bauer and Sinning (2008). Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 2 / 34
  • 3. Censored Data: Duration Outcomes Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 3 / 34
  • 4. Censored Data: Duration Outcomes Some examples in economics: Unemployment duration, employment duration, rms lifetime, school dropout, ... Previous methods no valid for censored data. Decomposition of average hazard rate. Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 3 / 34
  • 5. Oaxaca-Blinder type Decomposition Methods for Duration Outcomes Our goals Propose decomposition methods for censored outcomes. Mean decomposition. Decomposition of other parameters through the estimation of the whole outcome distribution. Discuss the eect of neglecting the presence of censoring and the role of the censoring mechanism assumptions. Analyze factors explaining unemployment gender gaps using Spanish data for 2004-2007. Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 4 / 34
  • 6. Outline 1 Oaxaca-Blinder Decomposition under Censoring 2 Decomposition based on Model Specication 3 Monte Carlo Simulations 4 A Decomposition Exercise 5 Final Remarks Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 5 / 34
  • 7. Outline 1 Oaxaca-Blinder Decomposition under Censoring 2 Decomposition based on Model Specication 3 Monte Carlo Simulations 4 A Decomposition Exercise 5 Final Remarks Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 6 / 34
  • 8. OB Decomposition Mean Dierence Decomposition Suppose we are interested in the average dierence of an outcome Y between two groups, denoted by ∈ {0, 1} (e.g. 0 men and 1 women). ∆µ Y = µ (1) Y − µ (0) Y Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 7 / 34
  • 9. OB Decomposition Mean Dierence Decomposition Suppose we are interested in the average dierence of an outcome Y between two groups, denoted by ∈ {0, 1} (e.g. 0 men and 1 women). Let X be a vector of characteristics of the population. The dierence can be expressed in terms of the best linear predictor: ∆µ Y = µ (1) Y − µ (0) Y = βT 1 µ (1) X − βT 0 µ (0) X Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 7 / 34
  • 10. OB Decomposition Mean Dierence Decomposition Suppose we are interested in the average dierence of an outcome Y between two groups, denoted by ∈ {0, 1} (e.g. 0 men and 1 women). Let X be a vector of characteristics of the population. The dierence can be expressed in terms of the best linear predictor: ∆µ Y = µ (1) Y − µ (0) Y = βT 1 µ (1) X − βT 0 µ (0) X where, βT µ ( ) X is the best linear predictor of µ ( ) Y , and β = arg min b∈Rk E Y − bT X | D = 2 Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 7 / 34
  • 11. OB Decomposition Mean Dierence Decomposition Suppose we are interested in the average dierence of an outcome Y between two groups, denoted by ∈ {0, 1} (e.g. 0 men and 1 women). Let X be a vector of characteristics of the population. The dierence can be expressed in terms of the best linear predictor: ∆µ Y = µ (1) Y − µ (0) Y = βT 1 µ (1) X − βT 0 µ (0) X Note that E βT X | D = = βT µ ( ) X , but it does not hold for the conditional hazard!. Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 7 / 34
  • 12. OB Decomposition Mean Dierence Decomposition Suppose we are interested in the average dierence of an outcome Y between two groups, denoted by ∈ {0, 1} (e.g. 0 men and 1 women). Let X be a vector of characteristics of the population. The dierence can be expressed in terms of the best linear predictor: ∆µ Y = µ (1) Y − µ (0) Y = βT 1 µ (1) X − βT 0 µ (0) X Rearranging terms: ∆µ Y = (β1 − β0)T µ (1) X Structure eect + βT 0 µ (1) X − µ (0) X Composition eect Identication Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 7 / 34
  • 13. OB Decomposition Estimation Given a sample {Yi , Xi , Di }n i=1 , OB decomposition can be estimated as: ¯∆µ Y = ¯β1 − ¯β0 T ¯µ (1) X + ¯βT 0 ¯µ (1) X − ¯µ (0) X where, ¯µ ( ) X = n−1 n i=1 Xi 1{Di = }, and ¯β = arg min b∈Rk n i=1 Y − bT X 2 1{Di = } with n = n i=1 1{Di = }. Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 8 / 34
  • 14. OB Decomposition under Censoring Data Structure Let Y a non-negative random variable denoting duration, e.g., unemployment duration. X is a set of relevant covariates. We observe Z = min (Y , C), and δ = 1{Y ≤C}. Hence, instead of (Y , X, D, C), we observe (Z, X, D, δ). Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 9 / 34
  • 15. OB Decomposition under Censoring Consider the joint distribution of (Y , X, D), given by F (y, x, ) = P (Y ≤ y, X ≤ x, D = ) Note that: µ ( ) Y = ydF (y, ∞, ) and µ ( ) X = xdF (∞, x, ) with, β = arg min b∈Rk y − bT x 2 dF (y, x, ) . Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 10 / 34
  • 16. OB Decomposition under Censoring Consider the joint distribution of (Y , X, D), given by F (y, x, ) = P (Y ≤ y, X ≤ x, D = ) Note that: µ ( ) Y = ydF (y, ∞, ) and µ ( ) X = xdF (∞, x, ) with, β = arg min b∈Rk y − bT x 2 dF (y, x, ) . Therefore, ¯∆µ Y is the empirical analog of ∆µ Y when F is replaced by its sample version ¯F (y, x, ) = n−1 n i=1 1{Yi ≤y,Xi ≤x,Di = } Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 10 / 34
  • 17. OB Decomposition under Censoring Identication of the Multivariate Distribution Consider the following probability P (y ≤ Y y + h, X ∈ B | Y ≥ y, D = ) = P (y ≤ Y ≤ y + h, X ∈ B, D = ) P (Y ≥ y, D = ) = {X∈B} F (y + h, dx, ) − F (y−, dx, ) 1 − F (y−, ∞, ) Therefore, the cumulative hazard can be dened as Λ (y, x, ) = y 0 F (d ¯y, x, ) 1 − F (¯y−, ∞, ) Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 11 / 34
  • 18. OB Decomposition under Censoring Identication of the Multivariate Distribution Consider the following probability P (y ≤ Y y + h, X ∈ B | Y ≥ y, D = ) = P (y ≤ Y ≤ y + h, X ∈ B, D = ) P (Y ≥ y, D = ) = {X∈B} F (y + h, dx, ) − F (y−, dx, ) 1 − F (y−, ∞, ) Therefore, the cumulative hazard can be dened as Λ (y, x, ) = y 0 F (d ¯y, x, ) 1 − F (¯y−, ∞, ) F (y, x, ) = 1 − exp −ΛC (y, x, ) ¯y≤y [1 − Λ ({¯y} , x, )] Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 11 / 34
  • 19. Multivariate Kaplan-Meier Estimator Identication of the Multivariate Distribution Assumption 2 a. P (Y ≤ y, C ≤ c | D = ) = P (Y ≤ y | D = ) P (C ≤ c | D = ). b. P (Y ≤ C | Y , X, D) = P (Y ≤ C | Y , D). Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 12 / 34
  • 20. Multivariate Kaplan-Meier Estimator Identication of the Multivariate Distribution Assumption 2 a. P (Y ≤ y, C ≤ c | D = ) = P (Y ≤ y | D = ) P (C ≤ c | D = ). b. P (Y ≤ C | Y , X, D) = P (Y ≤ C | Y , D). Proposition 1 Under Assumption 2, the joint cumulative hazard function can be writen as: Λ (y, x, ) = y 0 H11 (d ¯y, x, ) 1 − H (¯y−, ) where, H11 (y, x, ) = P (Z ≤ y, X ≤ x, D = , δ = 1) and, H (y, ) = P (Z ≤ y, δ = 1) Details Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 12 / 34
  • 21. Multivariate Kaplan-Meier Estimator Equivalently, ˆF can be written as: ˆF (y, x, ) = n i=1 W ( ) i 1 Z ( ) i:n ≤y,X ( ) [i:n ] ≤x where, W ( ) i = δ ( ) [i:n ] n − R ( ) i + 1 i−1 j=1  1 − δ ( ) [j:n ] n − R ( ) j + 1   with Z ( ) i:n = Zj if R ( ) j = i, and for any {ξi }n i=1 , ξ ( ) [i:n ] is the i-th concomitant of Z ( ) i:n , i.e., ξ ( ) [i:n ] = ξj if Z ( ) i:n = Zj . Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 13 / 34
  • 22. Multivariate Kaplan-Meier Estimator Equivalently, ˆF can be written as: ˆF (y, x, ) = n i=1 W ( ) i 1 Z ( ) i:n ≤y,X ( ) [i:n ] ≤x where, W ( ) i = δ ( ) [i:n ] n − R ( ) i + 1 i−1 j=1  1 − δ ( ) [j:n ] n − R ( ) j + 1   In absence of censoring: δ ( ) [i:n ] = 1 ∀i, and hence, W ( ) i = n−1 . An example Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 13 / 34
  • 23. (Censored) OB Decompisition -COB- Pluging-in ˆF we have: ˆ∆µ Y = ˆβ1 − ˆβ0 T ˆµ (1) X + ˆβT 0 ˆµ (1) X − ˆµ (0) X where ˆµ ( ) X = n i=1 W ( ) i X ( ) [i:n ] and ˆβ = arg min b∈Rk n i=1 W ( ) i Z ( ) i:n − bT X ( ) [i:n ] 2 Inference Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 14 / 34
  • 24. (Censored) OB Decompisition -COB- Some comments Inference: asymptotic variance and bootstrap are suitable. Bootstrap In absence of censoring, classical results are obtained. Monte Carlo simulations show a fairly good performance. What if mean is not informative? Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 15 / 34
  • 25. Outline 1 Oaxaca-Blinder Decomposition under Censoring 2 Decomposition based on Model Specication 3 Monte Carlo Simulations 4 A Decomposition Exercise 5 Final Remarks Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 16 / 34
  • 26. Counterfactual Distributions A convenient form to write the marginal distribution of the outcome for D = is given by: F ( , ) Y (y) = E 1 Y ( ) i ≤y Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 17 / 34
  • 27. Counterfactual Distributions A convenient form to write the marginal distribution of the outcome for D = is given by: F ( , ) Y (y) = E 1 Y ( ) i ≤y = E F( ) (y|x) | D = = F( ) (y|x) dF( ) (x) with F( ) (x) = P (X ≤ x | D = ). Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 17 / 34
  • 28. Counterfactual Distributions Dene the counterfactual outcome Y (i,j), which follows a distribution function given by F (i,j) Y (y). Consider the counterfactual operator distribution (Rothe -2010- and Chernozhuvok et. al. -2013-): F (i,j) Y (y) = E F(i) (y|x) | D = j = F(i) (y|x) dF(j) (x) Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 18 / 34
  • 29. Counterfactual Distributions Dene the counterfactual outcome Y (i,j), which follows a distribution function given by F (i,j) Y (y). Consider the counterfactual operator distribution (Rothe -2010- and Chernozhuvok et. al. -2013-): F (i,j) Y (y) = E F(i) (y|x) | D = j = F(i) (y|x) dF(j) (x) Thus, if F (i,j) Y (y) is identiable, for any parameter θ F (i,j) Y we have: ∆θ Y = θ F (1,1) Y − θ F (0,0) Y Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 18 / 34
  • 30. Counterfactual Distributions Dene the counterfactual outcome Y (i,j), which follows a distribution function given by F (i,j) Y (y). Consider the counterfactual operator distribution (Rothe -2010- and Chernozhuvok et. al. -2013-): F (i,j) Y (y) = E F(i) (y|x) | D = j = F(i) (y|x) dF(j) (x) Thus, if F (i,j) Y (y) is identiable, for any parameter θ F (i,j) Y we have: ∆θ Y = θ F (1,1) Y − θ F (0,1) Y + θ F (0,1) Y − θ F (0,0) Y = ∆θ S + ∆θ C Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 18 / 34
  • 31. Counterfactual Distributions Estimation By replacing the multivariate empirical distribution of covariates, given by ¯F( ) (x) = n−1 n i=1 1{Xi ≤x,Di = } we have: ¯F (i,j) Y (y) = n−1 j n l=1 ¯F(i) (y|xl ) 1{Dl = } Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 19 / 34
  • 32. Counterfactual Distributions Estimation By replacing the multivariate empirical distribution of covariates, given by ¯F( ) (x) = n−1 n i=1 1{Xi ≤x,Di = } we have: ¯F (i,j) Y (y) = n−1 j n l=1 ¯F(i) (y|xl ) 1{Dl = } How identify and estimate F( ) (y|x) under censoring? Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 19 / 34
  • 33. Conditional Distribution of Duration Outcomes Identication and Estimation F( ) (y|x) is identiable under Assumption 2, but weaker conditions are needed. Censoring Assumption 4 (Conditional independence)For each = {0, 1}, it is hold that Y ( ) ⊥ C( ) | X( ) Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 20 / 34
  • 34. Conditional Distribution of Duration Outcomes Identication and Estimation F( ) (y|x) is identiable under Assumption 2, but weaker conditions are needed. Censoring Assumption 4 (Conditional independence)For each = {0, 1}, it is hold that Y ( ) ⊥ C( ) | X( ) Classical methods, like distribution regression and quantile methods can be misleading or cumbersome to compute. Because of the link between hazards and distribution functions, it is specied a model for the conditional hazard. ...but, parametric hazard models are very restrictive. so, we use a semiparametric model. Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 20 / 34
  • 35. Conditional Distribution of Duration Outcomes Estimation Assume that hazard function (Cox 1972, 1975) is given by: λ( ) (y|x) = λ ( ) 0 (y) exp βT x Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 21 / 34
  • 36. Conditional Distribution of Duration Outcomes Estimation Assume that hazard function (Cox 1972, 1975) is given by: λ( ) (y|x) = λ ( ) 0 (y) exp βT x Cox Model Conditional distribution is F( ) (y|x) = 1 − exp − y 0 λ ( ) 0 (¯y) d ¯y exp(βT x) β is estimated by Partial Maximum Likelihood estimation. λ ( ) 0 (y) does not need to be specied, and is estimated nonparametrically (c.f. Kalbeisch and Prentice, 1973; and Breslow, 1974) Baseline estimators Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 21 / 34
  • 37. Decomposition of other Distributional Features (CCOX) ˆ∆θ Y = θ ˆF (1,1) Y − θ ˆF (0,1) Y + θ ˆF (0,1) Y − θ ˆF (0,0) Y where ˆF (i,j) Y (y) = n−1 j n l=1 ˆF(i) (y|xl ) 1{Dl = } and ˆF(i) (y|x) = 1 − exp − y 0 ˆλ (i) 0 (¯y) d ¯y exp(ˆβT i x) Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 22 / 34
  • 38. Decomposition of other Distributional Features (CCOX) ˆ∆θ Y = θ ˆF (1,1) Y − θ ˆF (0,1) Y + θ ˆF (0,1) Y − θ ˆF (0,0) Y where ˆF (i,j) Y (y) = n−1 j n l=1 ˆF(i) (y|xl ) 1{Dl = } and ˆF(i) (y|x) = 1 − exp − y 0 ˆλ (i) 0 (¯y) d ¯y exp(ˆβT i x) Validity follows the arguments in Chernozhuvok et. al. (2013). Inference can be performed based on bootstrapping techniques. Asymptotics Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 22 / 34
  • 39. Outline 1 Oaxaca-Blinder Decomposition under Censoring 2 Decomposition based on Model Specication 3 Monte Carlo Simulations 4 A Decomposition Exercise 5 Final Remarks Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 23 / 34
  • 40. Monte Carlo Simulations Issues to evaluate: Compare proposed methods with classical methods for no-censored data. Performance under dierent censoring mechanims and distributional assumptions. Inference on decomposition components based on bootstrapping. Parameters for the simulations: Sample sizes: 50, 500, 2500. Replications: 1000. Censorship levels: various levels depending on the exercises. Simulation procedure: Draw (Y , X, C), and then compute Z = min (Y , C) and δ = 1{Y ≤C}. Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 24 / 34
  • 41. COB Decomposition Montecarlo Exercises Composition eect Structure Eect y-axis measures the average of the absolute deviations across 1000 draws. DGP Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 25 / 34
  • 42. Censoring Mechanism Montecarlo Exercises Y ⊥ C Y ⊥ C|X y-axis measures the maximum distance: MD=max y | ˜FY (y)− ˆFY (y)|. Values are multiplied by 1000 to facilitate comparisons. Simulated times follow Weibull distribution and baseline quantities computed by Breslow estimator. DGP Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 26 / 34
  • 43. Outline 1 Oaxaca-Blinder Decomposition under Censoring 2 Decomposition based on Model Specication 3 Monte Carlo Simulations 4 A Decomposition Exercise 5 Final Remarks Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 27 / 34
  • 44. Unemployment Duration Gender Gaps Spain 2004-2007 Spain had experienced one of the highest unemployment rates among OECD countries during the period 1995-2005: 14% in Spain, 5% in the US and 6.8% the average OECD. Also, more pronounced dierences between gender are observed: 9 p.p in Spain and 0.04 p.p. in the US. Existing studies: Dierences in unemployment rates (Niemi, 1974; Jhonson, 1983; Azmat et. al., 2006). Dierence in the exit rate and the average hazard rate (Eusamio, 2004; Ortega, 2008; Baussola et. al., 2015). Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 28 / 34
  • 45. A Decomposition Exercise Gender Unemployment Duration Gap in Spain: 2004-2007 Data: Survey of Income and Living Conditions 2004-2007. Contain information about occupational status monthly. Individual characteristics: age, educational level, tenure, marital status, household structure (household head and unemployed members) and region. Population: workers older than 25 starting unemployment spell during 2004-2007. Target parameters: Average unemployment duration, the probability of being long term unemployed (12 and 24 months) and the Gini coecient. Two dimensions of duration: duration until exit from unemployment and duration until getting a job. Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 29 / 34
  • 46. Unemployment Duration in Spain: 2004-2007 Distributional Parameters of Duration to Exit from Unemployment Mean LTU(12) LTU(24) Gini Kaplan-Meier Women 11.090 0.410 0.145 0.496 Men 7.804 0.237 0.065 0.542 CCOX Women 11.160 0.396 0.145 0.508 Men 7.767 0.235 0.067 0.544 Only Uncensored Women 7.456 0.292 0.045 0.446 Men 5.466 0.153 0.014 0.485 Authors' calculations. Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 30 / 34
  • 47. Decomposition Unemployment Duration Gender Gaps Decomposition Distributional Statistics of Duration to Exit from Unemployment Total Composition Structure COB Mean Dierence 3.285 0.386 2.899 CI 90% [2.067 , 4.442] [-0.478 , 2.425] [0.408 , 4.219] CCOX Mean Dierence 3.392 0.537 2.855 CI 90% [2.098 , 4.491] [-0.349 , 1.361] [1.501 , 4.224] LTU(12) Dierence 0.161 0.012 0.148 CI 90% [0.115 , 0.206] [-0.013 , 0.043] [0.092 , 0.198] LTU(24) Dierence 0.078 0.014 0.064 CI 90% [0.043 , 0.109] [-0.008 , 0.035] [0.022 , 0.104] Gini Dierence -0.036 0.006 -0.042 CI 90% [-0.071 , 0.000] [-0.002 , 0.010] [-0.075 , -0.005] Authors' calculations. Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 31 / 34
  • 48. Decomposition Unemployment Duration Gender Gaps Decomposition Distributional Statistics of Duration from Unemployment to Employment Total Composition Structure COB Mean Dierence 7.224 5.698 1.525 CI 90% [4.804 , 9.020] [3.816 , 8.678] [-1.691 , 3.203] CCOX Mean Dierence 7.865 1.713 6.151 CI 90% [5.266 , 9.507] [0.159 , 3.028] [3.813 , 8.191] LTU(12) Dierence 0.184 0.036 0.148 CI 90% [0.137 , 0.231] [0.000 , 0.071] [0.095 , 0.202] LTU(24) Dierence 0.176 0.041 0.135 CI 90% [0.130 , 0.226] [0.003 , 0.074] [0.084 , 0.192] Gini Dierence -0.040 -0.014 -0.025 CI 90% [-0.079 , -0.008] [-0.029 , 0.001] [-0.065 , 0.007] Authors' calculations. Other results Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 32 / 34
  • 49. Outline 1 Oaxaca-Blinder Decomposition under Censoring 2 Decomposition based on Model Specication 3 Monte Carlo Simulations 4 A Decomposition Exercise 5 Final Remarks Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 33 / 34
  • 50. Concluding Remarks We propose a nonparametric Oaxaca-Blinder type decomposition method for the mean dierence under censoring, using classical identication assumptions in survival analysis literature. Under weaker identication conditions, we present a decomposition method based on the estimation of the conditional distribution. Both methods work properly in nite samples. Unemployment duration gap by gender in Spain: The structure eect plays the major role to explain the gender gaps of several distributional parameters. The composition eect is statistically signicant to explain gender gaps for the duration until getting a job. Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 51. Oaxaca-Blinder type Decomposition Methods for Duration Outcomes Andres Garcia-Suaza andres.garcia@urosario.edu.co .............................Thank you! Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 52. Future Research The COB methods can be extended for: Detailed decomposition: path dependece and omitted group problems (Oaxaca and Ransom 1999; Yun, 2005; Firpo et. al. 2007). Decomposition of other parameters: RIF regression (Firpo et. al. 2009). Proportionality of hazard rates assumed by the Cox model might be unrealistic in some situations. More exible semiparametric models, as Distributional Regression (Foresi and Peracchi, 1995; Chernozhukov et. al. 2013), are desirable. Empirical ndings remark the relevance of institutional factors. We study whether unemployment benets plays a role in the gender dierence of the exit rate. Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 53. OB Decomposition Counterfactual Outcomes and Assumptions ∆µ Y = (β1 − β0)T µ (1) X + βT 0 µ (1) X − µ (0) X Target counterfactual statistic: µ (0,1) Y = E Y (0)|X = E (X | D = 1) = βT 0 µ (1) X . Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 54. OB Decomposition Counterfactual Outcomes and Assumptions ∆µ Y = (β1 − β0)T µ (1) X + βT 0 µ (1) X − µ (0) X Assumption 1 Let ε( ) be the best linear predictor error for subpopulation , i.e. ε( ) = (Y ( ) − βT X( )). The following conditions are satised: a. Overlapping support: if X × E denotes the support of observables and unobservable characteristics of the underlying population, then (X(0), ε(0)) ∪ (X(1), ε(1)) ∈ X × E. b. Simple counterfactual treatment. c. Conditional independence of treatment and unobservables: D ⊥ ε|X. Back Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 55. Multivariate Kaplan-Meier Estimator Identication of the Multivariate Distribution: Some intuition Dene P (C ≤ y|D = ) = G (y|D = ). Under Assumption 2: H11 (y, x, ) = P (Z ≤ y, X ≤ x, D = , δ = 1) = y 0 [1 − G (¯y − |D = )] F (d ¯y, x, ) and, H (y, ) = P (Z ≤ y, δ = 1) = [1 − G (¯y − |D = )] [1 − F (y−, ∞, )] Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 56. Multivariate Kaplan-Meier Estimator Identication of the Multivariate Distribution: Some intuition Dene P (C ≤ y|D = ) = G (y|D = ). Under Assumption 2: H11 (y, x, ) = P (Z ≤ y, X ≤ x, D = , δ = 1) = y 0 [1 − G (¯y − |D = )] F (d ¯y, x, ) and, H (y, ) = P (Z ≤ y, δ = 1) = [1 − G (¯y − |D = )] [1 − F (y−, ∞, )] Therefore, Λ (y, x, ) = y 0 F (d ¯y, x, ) [1 − G (¯y − |D = )] 1 − F (¯y−, ∞, ) [1 − G (¯y − |D = )] = y 0 H11 (d ¯y, x, ) 1 − H (¯y−, ) Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 57. Multivariate Kaplan-Meier Estimator Estimation Thus, Λ is estimated by: ˆΛ (y, x, ) = y 0 ˆH11 (d ¯y, x, ) 1 − ˆH (¯y−, ) = n i=1 1{Zi ≤y,Xi ≤x,Di = ,δi =1} n − R ( ) i + 1 where, R ( ) i = n ˆH (Zi , ). Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 58. Multivariate Kaplan-Meier Estimator Estimation Thus, Λ is estimated by: ˆΛ (y, x, ) = y 0 ˆH11 (d ¯y, x, ) 1 − ˆH (¯y−, ) = n i=1 1{Zi ≤y,Xi ≤x,Di = ,δi =1} n − R ( ) i + 1 where, R ( ) i = n ˆH (Zi , ). And the joint distribution associated is ˆF (y, x, ) = 1 − Z ( ) i:n ≤y,X ( ) [i:n ] ≤x  1 − δ ( ) [i:n ] n − R ( ) i + 1   with Z ( ) i:n = Zj if R ( ) j = i, and for any {ξi }n i=1 , ξ ( ) [i:n ] is the i-th concomitant of Z ( ) i:n , i.e., ξ ( ) [i:n ] = ξj if Z ( ) i:n = Zj . Back Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 59. Example Multivariate KM Z 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 δ 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 60. Example Multivariate KM Z 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 δ 1 1 0 1 1 0 0 1 0 1 0 1 1 0 1 Back Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 61. (Censored) OB Decompisition -COB- For a generic J (y, ) dene τ ( ) J = inf {y : J (y, ) = 1} ≤ ∞. Assumption 3For = {0, 1}, it holds that τ ( ) FY ≤ τ ( ) G . Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 62. (Censored) OB Decompisition -COB- For a generic J (y, ) dene τ ( ) J = inf {y : J (y, ) = 1} ≤ ∞. Assumption 3For = {0, 1}, it holds that τ ( ) FY ≤ τ ( ) G . Corollary 2 Assume E X( )X( )T is positive denite and n n → ρ with ρ0 + ρ1 = 1. Under Assumption 1-3, we have: n1/2 ˆ∆µ Y − ∆µ Y d → N (0, V∆Y ) n1/2 ˆ∆µ S − ∆µ S d → N (0, V∆S ) n1/2 ˆ∆µ C − ∆µ C d → N (0, V∆C ) Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 63. (Censored) OB Decompisition -COB- Inference Proposition 2 Assume E X( )X( )T is positive denite and n n → ρ with ρ0 + ρ1 = 1. Under Assumption 2-3, we have: n1/2 ˆβ − β , ˆµ ( ) X − µ ( ) X d → N 0, Σ ( ) βµX where Σ ( ) βµX = Σ ( ) XX −1 Σ ( ) 0 Σ ( ) XX −1 = σ ( ) β , σ ( ) βµX ; σ ( ) βµX , σ( ) µX Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 64. (Censored) OB Decompisition -COB- Inference Let ρ0 = ρ. V∆Y , V∆S and V∆C are dened as: V∆Y = 1 ρ V0 + 1 1 − ρ V1 where V = µ ( )T X σ ( ) β µ ( ) X + βT σ ( ) µX β + 2βT σ ( ) βµX µ ( ) X , V∆S = 1 1 − ρ ∆T β σ(1) µX ∆β + 2 1 − ρ ∆T β σ (1) βµX µ (1) X + 1 ρ (1 − ρ) µ (1)T X σβµ (1) X V∆C = 1 ρ ∆T µX σ (0) β ∆µX + 2 ρ βT 0 σ (0) βµX ∆µX + 1 ρ (1 − ρ) βT 0 σµX µ (1) X with ∆T β = β1 − β0, ∆T µX = µ (1) X − µ (0) X , σβ = ρσ (1) β + (1 − ρ) σ (0) β and σµX = ρσ (1) µX + (1 − ρ) σ (0) µX . Back Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 65. Bootstrapping Techniques under Censoring Sampling methods (Efron -1981-). Simple method: draw (Z∗ i , δ∗ i , X∗ i ) for i = 1, . . . , n from (Zi , δi , Xi ). Obvious method: draw Y ∗ i ∼ F (y|X∗ i ) and C∗ ∼ G (y|X∗ i ). Dene Z∗ = min (Y ∗ , C∗ ) and δ∗ = 1{Y ∗≤C∗}. Usual methods for constructing condence bands can be used: percentile, hybrid, boot-t. Back Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 66. Censoring Mechanism Back Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 67. Estimation Baseline Quantities Breslow estimator: ˆΛ ( ) 0B (y) = y i=1 1 j∈r(yi ) e ˆβT x ( ) j Kalbeisch and Prentice estimator: ˆΛ ( ) 0KP (y) = n i=1 1 − ˆα ( ) i 1{yi ≤y} where the hazard probabilities ˆα ( ) i solve: j∈d( )(yi ) e ˆβT x ( ) j 1 − ˆα exp ˆβT x ( ) j i −1 = l∈r( )(yi ) e ˆβT x ( ) l with r( ) (yi ) the pool risk and the d( ) (yi ) set of individuals reporting failure. Back Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 68. Validity CCOX Method Consistency Under Assumptions 1, 3 and 4, and n n → ρ with ρ0 + ρ1 = 1, we have: n1/2 ˆF (i,j) Y (y) − F (i,j) Y (y) =⇒ ¯M(i,j) (y) where ¯M(i,j) (y) tight zero-mean Gaussian process with uniform continuous path on Supp (y), dene as: ¯M(i,j) (y) = ρ 1/2 i M(i) (y, x) dF(j) (x) + ρ 1/2 j N(j) F(i) (y|.) and, n 1/2 ˆF( ) (y|x) − F( ) (y|x) =⇒ M( ) (y, x) n 1/2 fd ˆF( ) (x) − F( ) (x) =⇒ N( ) (f ) Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 69. Validity CCOX Method Previous result lies on the fact that n1/2 ˆβ − β d → N (0, Vβ) and n1/2 ˆΛ0 (y) − Λ0 (y) =⇒ C∞ (Tsiatis, 1981: Andersen and Gill, 1982). Since F (y|.) is Hadamard dierentiable with respect to β and Λ0 (.) (see c.f. Freitag and Munk, 2005), the CCOX is Hadamard dierentiable, and the related smooth functionals also obeys a central limit theorem. Given that bootstrap techniques are valid to make inference on Cox estimator of the conditional distribution (Cheng and Huang, 2010); then, resampling methods are also valid for the CCOX. By Hadamard dierentiability this result also applies to smooth functionals. Back Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 70. Validity CCOX Method Previous result lies on the fact that n1/2 ˆβ − β d → N (0, Vβ) and n1/2 ˆΛ0 (y) − Λ0 (y) =⇒ C∞ (Tsiatis, 1981: Andersen and Gill, 1982). Since F (y|.) is Hadamard dierentiable with respect to β and Λ0 (.) (see c.f. Freitag and Munk, 2005), the CCOX is Hadamard dierentiable, and the related smooth functionals also obeys a central limit theorem. Given that bootstrap techniques are valid to make inference on Cox estimator of the conditional distribution (Cheng and Huang, 2010); then, resampling methods are also valid for the CCOX. By Hadamard dierentiability this result also applies to smooth functionals. Back Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 71. Validity CCOX Method Previous result lies on the fact that n1/2 ˆβ − β d → N (0, Vβ) and n1/2 ˆΛ0 (y) − Λ0 (y) =⇒ C∞ (Tsiatis, 1981: Andersen and Gill, 1982). Since F (y|.) is Hadamard dierentiable with respect to β and Λ0 (.) (see c.f. Freitag and Munk, 2005), the CCOX is Hadamard dierentiable, and the related smooth functionals also obeys a central limit theorem. Given that bootstrap techniques are valid to make inference on Cox estimator of the conditional distribution (Cheng and Huang, 2010); then, resampling methods are also valid for the CCOX. By Hadamard dierentiability this result also applies to smooth functionals. Back Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 72. Validity CCOX Method Previous result lies on the fact that n1/2 ˆβ − β d → N (0, Vβ) and n1/2 ˆΛ0 (y) − Λ0 (y) =⇒ C∞ (Tsiatis, 1981: Andersen and Gill, 1982). Since F (y|.) is Hadamard dierentiable with respect to β and Λ0 (.) (see c.f. Freitag and Munk, 2005), the CCOX is Hadamard dierentiable, and the related smooth functionals also obeys a central limit theorem. Given that bootstrap techniques are valid to make inference on Cox estimator of the conditional distribution (Cheng and Huang, 2010); then, resampling methods are also valid for the CCOX. By Hadamard dierentiability this result also applies to smooth functionals. Back Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 73. COB Decomposition Montecarlo Exercises Simulation Setup = 0 Y (0) = 5 + X(0) + ε (0) Y ε (0) Y ∼ N (0, 1) C(0) = 5 + ε (0) C ε (0) C ∼ N (υ0, 1.5) = 1 Y (1) = 5 + X(1) + ε (1) Y ε (1) Y ∼ N (0, 1) C(1) = 5 + ε (1) C ε (1) C ∼ N (υ1, 1.5) X(0) ∼ N (1.5, 0.5) and X(1) ∼ N (1, 0.5). (υ0, υ1) = (2.5, 2), hence, censoring level is 30%. Back Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 74. Censoring Mechanism and Distributional Assumptions Montecarlo Exercises Simulation Setup Assumption DGP Y ⊥ C Weibull Y ∼ WB e2−x , 5 C ∼ WB e2+υ , 5 υ = (0.25, −0.2, −0.5) Normal Y = 5 + X + εY , εY ∼ N (0, 1) C = 5 + εC , εC ∼ N (υ, 1) υ = (3, 1.5, 0.5) Y ⊥ C|X Weibull Y ∼ WB e2−x , 5 C ∼ WB e2−x+υ , 7 υ = (0.45, 0.2, −0.02) Normal Y = 5 + X + εY , εY ∼ N (0, 1) C = 5 + X + εC , εC ∼ N (υ, 1) υ = (2.5, 1, 0) X ∼ U (0, 1). Censoring levels: 0%, 5%, 25% and 50%. We compare the estimation of the unconditional distribution using the counterfactual operator with the KM estimator. BackAndres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 75. Distributional Assumption Montecarlo Exercises Weibull Normal y-axis measures the maximum distance: MD=max y | ˜FY (y)− ˆFY (y)|. Values are multiplied by 1000 to facilitate comparisons. Survival times generated under the assumption Y ⊥ C. Back Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 76. Decomposition Exercise and Inference Montecarlo Exercises Y ( ) ∼ WB e3−X( ) , 5 and C( ) ∼ WB e3.17−X( ) , 5 . X(0) ∼ U (0, 1) and X(1) = 3 i=1 U (0, 1). Censoring levels: 0% and 30%. n = 500, B = 1000. Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 77. Decomposition Exercise and Inference Montecarlo Exercises Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 78. Decomposition Exercise and Inference Montecarlo Exercises Condence Level Censoring Levels Truncated Mean Q(0.50) Pr δ(0) = 0 Pr δ(1) = 0 Percentile Hybrid Percentile Hybrid 95 0.0 0.0 0.961 0.962 0.958 0.953 0.0 0.3 0.954 0.963 0.952 0.940 0.3 0.0 0.963 0.972 0.958 0.944 0.3 0.3 0.952 0.966 0.968 0.944 90 0.0 0.0 0.907 0.913 0.917 0.911 0.0 0.3 0.902 0.911 0.915 0.903 0.3 0.0 0.915 0.923 0.915 0.897 0.3 0.3 0.912 0.917 0.907 0.895 Mean is truncated at Y = 15. Back Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34
  • 79. Decomposition Unemployment Duration Gender Gaps Duration until getting a Job: Censoring Mechanism Dependence of Censoring on Covariates Exit from Unemp. Unemp. to Emp. Women Men Women Men Linear Prob. Model 0.046 0.083 0.177 0.123 Logit 0.070 0.128 0.166 0.167 Authors' calculations. Decomposition of Mean Dierence Ignoring Censoring Exit from Unemp. Unemp. to Emp. COB CCOX COB CCOX Total 2.085 2.040 0.945 0.876 Composition 0.438 0.471 0.089 0.029 Structure 1.647 1.569 0.857 0.847 Authors' calculations. Back Andres Garcia-Suaza (UR) Decomposition Methods - Duration Data 34 / 34