SlideShare a Scribd company logo
1 of 68
Download to read offline
№48/2020
Norwegian Journal of development of the International Science
ISSN 3453-9875
VOL.1
It was established in November 2016 with support from the Norwegian Academy of Science.
DESCRIPTION
The Scientific journal “Norwegian Journal of development of the International Science” is issued 24 times a year
and is a scientific publication on topical problems of science.
Editor in chief – Karin Kristiansen (University of Oslo, Norway)
The assistant of theeditor in chief – Olof Hansen
• James Smith (University of Birmingham, UK)
• Kristian Nilsen (University Centre in Svalbard, Norway)
• Arne Jensen (Norwegian University of Science and Technology, Norway)
• Sander Svein (University of Tromsø, Norway)
• Lena Meyer (University of Gothenburg, Sweden)
• Hans Rasmussen (University of Southern Denmark, Denmark)
• Chantal Girard (ESC Rennes School of Business, France)
• Ann Claes (University of Groningen, Netherlands)
• Ingrid Karlsen (University of Oslo, Norway)
• Terje Gruterson (Norwegian Institute of Public Health, Norway)
• Sander Langfjord (University Hospital, Norway)
• Fredrik Mardosas (Oslo and Akershus University College, Norway)
• Emil Berger (Ministry of Agriculture and Food, Norway)
• Sofie Olsen (BioFokus, Norway)
• Rolf Ulrich Becker (University of Duisburg-Essen, Germany)
• Lutz Jäncke (University of Zürich, Switzerland)
• Elizabeth Davies (University of Glasgow, UK)
• Chan Jiang(Peking University, China) and other independent experts
1000 copies
Norwegian Journal of development of the International Science
Iduns gate 4A, 0178, Oslo, Norway
email: publish@njd-iscience.com
site: http://www.njd-iscience.com
CONTENT
AGRICULTURAL SCIENCES
Yakovets L.
AGRICULTURAL ASSESSMENT OF SOIL CONDITION IN
DEPENDENCE ON THE INTENSITY OF AGRICULTURAL
CHEMISTRY . ................................................................ 3
EARTH SCIENCES
Kosenko Yu.
ASSESSMENT OF RECREATIONAL LOAD OF ECO-
NETWORK FACILITIES OF CHERKASY REGION . ...........9
Malkova Y., Dolin V.
CHEMICAL COMPOSITION OF BRINES OF
DOMBROVSKY QUARRY KALUSH-GOLINSKY POTASH
DEPOSIT. ...................................................................12
MEDICAL SCIENCES
Mushehian М., Litovchenko T.
CHANGES IN CEREBRAL HEMODYNAMICS AND
BIOELECTRIC ACTIVITY AS A PREDICTOR OF EPILEPTIC
SEIZURES . .................................................................19
Berdysh D., Ishchenko O.
A LOOK AT INSURANCE MEDICINE. ..........................25
PHARMACEUTICS
Khvorost O., Fedchenkova Yu.,
Skrebtsova К., Popik A.
COMPARATIVE PHARMACOGNOSTIC STUDY OF FRUIT
CALYX OF DISTRIBUTED VARIETIES OF FRAGARIA
ANANASSA AND WILD FRAGARIA VIRIDIS. ............... 28
Gordey K., Gontova T.,
Gaponenko V., Vusik D.
COMPARATIVE STUDY OF THE ELEMENTAL
COMPOSITION OF THE FEVERFEW CULTIVARS
‘PHLORA PLENO’ AND ‘WHITE GEM’ . .......................34
Zuikina S., Vyshnevska L.
APPLICATION OF DIVISIVE CLUSTER ANALYSIS IN
PHARMACEUTICAL DEVELOPMENT OF COMBINED
MEDICAL PHYTOPREPARATIONS FOR COMPLEX
THERAPY OF MASTOPATHY. .....................................37
Nefedova L., Sahaidak-Nikitiuk R.,
Blazheyevskiy M., Barnatovich S.
SCIENTIFIC SUBSTANTIATION OF THE FORMULATION
AND TECHNOLOGY OF A NEW COMPLEX NASAL DRUG
COMPOSITION FOR LOCAL TREATMENT OF
INFLUENZA AND ACUTE RESPIRATORY VIRAL
INFECTIONS . .............................................................42
Semchenko K., Vyshnevska L.
SELECTION OF Excipients AND ANALYSIS OF CRITICAL
PARAMETERS OF THE TECHNOLOGICAL PROCESS OF
PRODUCTION OF CAPSULES WITH ANTHELMINTIC
ACTIVITY. ..................................................................47
Kononenko N., Mirzaliev M., Chikitkina V.
STUDY OF ALLERGENIC PROPERTIES OF DRY EXTRACT
OF CABBAGE GARDEN. .............................................50
Yakovenko O., Ruban O.,
Devyatkina N., Devyatkina T.
STUDY OF THE STRESS-PROTECTIVE EFFECT OF THE
COMBINATION OF GLYCINE WITH MAGNESIUM
CITRATE . ...................................................................52
PHYSICAL SCIENCES
Vinogradova M., Scopich N.
FROM VACUUM INDIFFERENT TO ATOM –ТO ETHER
INTERACTING WITH ATOM . .....................................59
Norwegian Journal of development of the International Science No 48/2020 3
AGRICULTURAL SCIENCES
AGRICULTURAL ASSESSMENT OF SOIL CONDITION IN DEPENDENCE ON THE INTENSITY
OF AGRICULTURAL CHEMISTRY
Yakovets L.
Candidate of Agricultural Sciences, senior lecturer of the Department of Botany, Genetics and Plant Pro-
tection, Faculty of Agronomy and Forestry,
Vinnytsia National Agrarian University
Abstract
The article presents studies on agroecological assessment of the state of the forest-steppe soil, depending on
the intensity of agriculture chemistry. The purpose of the research was to identify changes in the agro-ecological
state of the soil, depending on the intensity of agriculture, as a factor of the transition of pollutants accumulated in
the soil into grain and seeds of the main field crops. The researches were carried out in the farms of Vinnytsia
region, using resource-saving and intensive technologies of growing crops. The studies were aimed at identifying
the tendency of change of agrocological indicators of dark gray podzolized soil depending on the intensity of the
use of means of chemisation. Laboratory analyzes of the investigated soils were carried out in a certified laboratory
of the testing center of the Vinnytsia Branch of the State Institution «Institute for Soil Conservation of Ukraine».
It was established that the content of mobile metals of heavy metals in the forest-steppe agro-ecosystems of
the right bank at different levels of agriculture chemistry, the residues of organochlorine pesticides differed within
the error and did not exceed their maximum permissible concentrations.
Keywords: mineral fertilizers, pesticides, soil, intensity, pollution, agriculture, heavy metals.
The current crisis state of the land resources of
Ukraine, the deterioration of the ecological state of the
lands of intensive agricultural use, the decline in soil
fertility and the large-scale spread of soil degradation
processes necessitate significant changes in human eco-
nomic activity and environmental management. In this
regard, it is extremely important and relevant to use an
integrated approach to assessing the current agroeco-
logical state of agricultural land [1]. Agroecological
land assessment is carried out in order to determine the
level of soil fertility for growing certain groups of
crops, comparing the requirements of agricultural crops
to growing conditions with the agroecological condi-
tions of a particular territory [2]. An important indicator
that is taken into account in the agroecological assess-
ment of a site is its geomorphology. An agroecological
assessment of geomorphology is needed for crop selec-
tion and main processing strategies. Agroecological as-
sessment of land in a certain way correlates with eco-
nomic assessment, socio-ecological and environmen-
tal-economic [2].
Environmentally unjustified agricultural produc-
tion led to significant losses of the humus layer of the
soil, the development of erosion processes, an increase
in areas of acidic and saline soils, a decrease in the con-
tent of nutrients and beneficial microflora, pollution
with pesticide residues, heavy metals, radionuclides [4,
5, 6].
Therefore, in order to solve the problems that have
arisen in the field of land use, as well as for the devel-
opment and implementation of scientifically based
measures for the ecologically balanced use of agricul-
tural land, it is necessary to have information on the
agro-ecological state of soils.
Soil is a thin upper layer of the earth's crust, which
arose as a result of its transformation under the influ-
ence of water, air, organisms and has natural fertility.
Soils consist of solid, liquid and gaseous parts, plants,
animals, microorganisms and is one of the components
of the biosphere, the basic component of any landscape
[7].
Soil is a unique, irreplaceable natural resource, so-
lar energy storage, the basis of plant, animal and human
life, as well as a natural indicator of environmental pol-
lution [8].
Soils function as a habitat, accumulator and
sources of matter and energy for organisms, an inter-
mediate chain between biological and geological circu-
lation, a protective barrier and conditions for the nor-
mal functioning of the biosphere as a whole, and the
like. The named functions of soils form their ecological
potential [9].
Agroecological potential, that is, the ability of
soils to perform the function of agricultural land, create
optimal conditions for the growth and development of
agricultural plants, as well as maintain ecological bal-
ance in agricultural landscapes and the natural environ-
ment, was determined by indicators characterizing: the
thickness of the humus layer of the soil; nutrient con-
tent; groundwater level and salinity; biotic potential or
bioproductivity of land (average annual productive
moisture, growing season, average annual radiation
balance) resistance of soils to pollution (sums of active
temperatures, steepness of slopes, rockiness, structure,
resistivity, mechanical composition, humus content,
type of water regime, pH reaction, ion capacity, silting,
plowing, economic development) contamination with
radionuclides (cesium, strontium, plutonium, ameri-
cium), heavy metals (total content of boron, molyb-
denum, manganese, zinc, cobalt, nickel, copper, chro-
mium, lead and others), pesticides and mineral fertiliz-
ers, taking into account the natural characteristics of
soils; unfavorable natural and anthropogenic processes
[9].
4 Norwegian Journal of development of the International Science No 48/2020
Technogenic pollution causes significant environ-
mental damage to soils. It depends on the type of soil,
the amount of industrial waste, heavy metals, radionu-
clides, pesticides and mineral fertilizers.
Soil pollution by industrial emissions and chemi-
calization of agriculture is one of the potential contam-
inants of land resources. In cities, the common source
of soil pollution with heavy metals are enterprises of
ferrous and non-ferrous metallurgy, light industry. The
danger of soil pollution is determined not only by the
content of heavy metals, but also by the hazard class of
certain toxicants. The first hazard class includes arse-
nic, cadmium, mercury, selenium, lead, zinc, fluorine,
benz (a) pyrene; to the second - boron, cobalt, nickel,
copper, molybdenum, antimony, chromium; to the third
- barium, vanadium, tungsten, manganese, strontium.
Their content in soils can be estimated both by gross
and mobile forms of elements. Many of them can lead
to morbidity in humans [7].
Soil pollution with chemical plant protection prod-
ucts is complex. A several-fold decrease in the use of
pesticides in recent years, although it contributed to a
decrease in soil and agricultural products pollution with
pesticides, has not significantly changed the situation.
This is due to the fact that the residual amount of pesti-
cides is in the soil for a long time [7].
During the period of the most intensive use of
chemicals, when 5.5 kg of pesticides were used per hec-
tare of arable land, their residues ended up in 50-60%
of soil samples and in 30-35% of plant samples, incl.
2.5% with an excess of MPC in soil and 3.5% with an
excess of maximum permissible levels in food products
and 2.5% in feed. For some preparations from the group
of persistent organochlorine compounds (polychloro-
pinene, polychlorinated fel, celtan), the frequency of
detection of residues in the treated fields reached 90-
98%, incl. up to 10% with an excess of MPC.
An even more unfavorable situation was observed
with respect to contamination with symmetriazine
herbicides, the remains of which appeared in the soils
3-4 years after treatment in 56% of the samples. Their
high persistence and phytotoxicity led to the death of
sensitive crops in large areas. The greater the pesticide
load on soils, the higher their harmfulness to the popu-
lation [5].
About 50% of the total yield increase is provided
by mineral fertilizers, 25% - by cultivation technolo-
gies. However, do not forget that the improper use of
mineral fertilizers - nitrogen, phosphorus, potassium,
complex and others - is accompanied by undesirable
side effects: pollution of the natural environment and is
explained by the unbalanced use of fertilizers, deviation
from the norms of their application. Some types of min-
eral fertilizers can increase the acidity of soils, the ac-
cumulation of hazardous residues in them. It is known
that plants absorb only 50% of nitrogen and 10-20% of
phosphorus fertilizers, the rest is washed out by atmos-
pheric precipitation. If mineral fertilizers are used im-
properly in the natural environment, nitrogen, phospho-
rus, potassium can accumulate in increased amounts.
This leads to acidification of the soil solution, pollution
of groundwater as a result of filtration of fertilizers (es-
pecially nitrogen), an increase in the content of nitrates,
sulfates, chlorides in well water, the accumulation of
residual reserves of nitrate nitrogen in crop production,
pollution of reservoirs, rivers with fertilizer residues
due to erosion processes, etc.d., causing harm to the
health of people, animals, fisheries [9].
In recent years, the agricultural landscapes of
Ukraine have been constantly exposed to various types
of radiation pollution - atmospheric emissions of radi-
onuclides as a result of nuclear weapons testing, waste
from processing raw materials at nuclear fuel cycle en-
terprises, and the like.
Collection, analysis and generalization of radio-
logical survey data of arable land in Ukraine showed
that the contamination of cesium-137 above 37 kBq /
m2 on agricultural land in Ukraine is spread over 461.7
thousand hectares, of which arable land is 345.9 thou-
sand hectares. The contaminated areas are stored on the
territory of 12 regions, where 8.8 mln. ga [10].
Strontium contamination of soil on agricultural
land in Ukraine is observed on a much larger scale than
cesium. Within 0.74-5.55 kBq / m2
, strontium-90 con-
taminated 4.6 million hectares, which is 52% of the sur-
veyed area. Such an intensive spread of this radionu-
clide on the territory of Ukraine is due, first of all, to
the global emissions of strontium-90 during tests of nu-
clear weapons in the atmosphere [9].
The research was carried out in the farms of the
Right-Bank Forest-Steppe, using resource-saving and
intensive technologies for growing grain crops. The re-
search was aimed at identifying the tendency of
changes in agreological indicators of dark gray podzo-
lized soils, depending on the intensity of the use of
chemicals.
The studies were supposed to study the influence
of the intensification of agriculture on the change in the
content of salts of heavy metals and pesticides in grain
and seeds of the main field crops: winter wheat, spring
barley, winter rape, corn, sunflower, soybeans, peas
and buckwheat.
The effect of the intensity of the chemicalization
of farming systems in the cultivation of basic agricul-
tural crops on the agroecological state of the soil was
aimed at revealing the change in the agroecological
state of the soil, depending on the intensity of agricul-
ture, as a factor in the transfer of pollutants accumu-
lated in the soil into grain and seeds of the main field
crops.
Soil samples were taken from the 0-20 cm layer in
accordance with DSTU ISO 10381-1: 2004 [11]; deter-
mination of the content of humus in the soil - using the
Tyurin method in accordance with DSTU 4289: 2004
[12]; determination of the content of mobile forms of
heavy metals (Pb, Cd, Zn, Cu) - after removal with an
acetate-ammonium buffer solution pH 4.8 by atomic
absorption spectrophotometry in accordance with
DSTU 4770 [13]; determination of the reaction of soil
pH salt - ionometric in accordance with DSTU ISO
10390-2001 [14, 15]; determination of hydrolytic acid-
ity - by the Kappen method in accordance with DSTU
7537: 2014 [14, 15]; determination of the content of hy-
drolyzed nitrogen in the soil - by the Cornfield method
according to GOST 7863: 2015 [16, 18, 20,]; determi-
nation of the content of mobile forms of phosphorus
Norwegian Journal of development of the International Science No 48/2020 5
and potassium in the soil - by Chirikov's methods ac-
cording to DSTU 4115-2002 [14, 16, 19].
The dark gray podzolized soils were formed
mainly in liquefied lighted forests with a well-devel-
oped herbaceous cover. Signs of podzolization in com-
parison with gray soils are weakly expressed, and the
processes of humus accumulation are intensified.
The dark gray podzolized soil is characterized by
the following properties: the humus-eluvial horizon is
dense, and all the horizons below are very compacted.
According to their granulometric composition, they are
light and medium loamy [21].
Soil porosity is closely related to density. In dark
gray podzolized soil, it is satisfactory for the arable
layer (51%) and then drops to 44-50% [21].
Agrophysical properties of dark gray podzolized
soils are satisfactory and good, characterized by a fairly
stable water regime. In them, the number of waterproof
aggregates noticeably increases, soils float less, and a
crust forms less often. The moisture content increases
significantly, but at the same time the amount of inac-
cessible moisture also increases. They have high natu-
ral fertility [21].
The potential fertility of dark gray podzolized soils
is quite high. Their bonitet ranges from 37 in sandy
loam to 55 points in heavy loamy varieties [21].
Our research has established that in the conditions
of the Right-Bank Forest-Steppe within the Vinnytsia
region on dark gray podzolized soils, where intensive
chemicalization technologies are used, a high humus
content was in the field where winter rape was grown –
4.4%. On the plot where sunflower was grown, the hu-
mus content was 0.2% less, where corn was grown -
0.7% less, spring barley – 0.9% less and where winter
wheat was grown – 2.1% less and amounted to 2.3%.
The high content of hydrolyzed nitrogen was in
the soil where sunflower was grown - 98.0 mg/kg. In
the area where barley and corn were grown, the content
of hydrolyzed nitrogen was 2.1% less, where winter
wheat was grown – 2.8% less and where winter rape
was grown – 3.5% less and amounted to 70.0 mg/kg.
A high content of mobile phosphorus was in the
soil where corn was grown – 319.0 mg/kg. In the area
where winter wheat was grown, the content of mobile
phosphorus was 1.2% less, where barley was grown –
3.8% less, where sunflower was grown - 3.9% less and
where winter rape was grown – by 16.0% less and
amounted to 159.0 mg/kg.
The high content of mobile potassium was in the
soil where winter wheat was grown – 239.0 mg/kg. On
the plot where barley was grown, the content of mobile
potassium was 4.2% less, where sunflower was grown
– 6.9% less, where maize was grown – 12.7% less and
where winter rape was grown – 13.9% less and
amounted to 100.0 mg/kg.
A high content of calcium was in the soil where
winter rape was grown – 164.0 mg.eq/kg. On the plot
where sunflower was grown, the calcium content was
0.4% less, where barley and corn were grown – 1.6%
less and where winter wheat was grown – 4.8% less and
amounted to 116.0 mg.eq/kg.
The highest hydrolytic acidity was in the soil
where winter rape was grown – 1.60 mg.eq/100 g. In
the area where wheat was grown, the hydrolytic acidity
was 0.63% less, where sunflower was grown – 1.24%
less where maize was grown – by 1.25% less and where
barley was grown - by 1.32% less and amounted to 0.28
mg.eq/100 g.
The saline pH was higher in the soil where the bar-
ley was grown - pH 7.0. On the plot where corn and
sunflower were grown, the salt pH was 0.2% lower,
where winter wheat was grown - 0.9% less and where
winter rape was grown – 1.2% less and amounted to
5.8.
So, the soil where winter wheat was grown had the
least humus and calcium content, but the largest – po-
tassium.
The soil where the winter rape was grown was
characterized by a high content of humus and calcium,
high hydrolytic acidity, but a low content of hydrolyzed
nitrogen, mobile forms of phosphorus and potassium,
and low pH.
The area where the corn was grown had a high
content of mobile phosphorus, and the sunflower had a
high content of hydrolyzed nitrogen.
With the use of resource-saving chemicalization
technologies, a high humus content was observed in the
soil where winter wheat was grown – 3.4%.
In the area where sunflower was grown, the humus
content was 0.2% less, where peas were grown – 0.4%
less, barley – 0.5% less and where soybeans were
grown – 1.1% less and amounted to 2, 3%.
The soil on which the barley was grown had the
lowest hydrolytic acidity and the highest pH.
The high content of hydrolyzed nitrogen was in
the soil where winter wheat, barley and sunflower were
grown – 77.0 mg/kg. In the area where peas were
grown, the content of hydrolyzed nitrogen was 0.7%
less and where soybeans were grown – 1.4% less and
amounted to 63.0 mg/kg. The high content of mobile
phosphorus was in the soil where peas were grown –
249.0 mg/kg. In the area where soybeans were grown,
the content of mobile phosphorus was 1.3% less, where
sunflower was grown – 8.3% less, where barley was
grown - 16.6% less and where winter wheat was grown
– 19.5% less and amounted to 54.0 mg/kg.
The high content of mobile potassium was in the
soil where sunflower was grown – 94.0 mg/kg. In the
area where peas were grown, the content of mobile po-
tassium was 0.4% less, where soybeans were grown –
2.9% less, where winter wheat was grown – 4.5% less
and where barley was grown – 4.6% less and amounted
to 48.0 mg/kg.
A high content of calcium was in the soil where
winter wheat was grown – 96.0 mg.eq/kg. In the area
where peas were grown, the calcium content was 0.1%
less, where sunflowers were grown - 0.6% less, where
soybeans were grown – by 1.0% and where barley was
grown – 2.6% less and amounted to 70, 0 mg. eq./kg.
The highest hydrolytic acidity was in the soil
where barley was grown - 3.48 mg. eq./100 g. In the
area where winter wheat and sunflower were grown,
hydrolytic acidity was 2.7% less, where soybeans were
grown - by 3.0% less and where peas were grown – by
3.2% less and amounted to 0.31 mg. eq./100 g.
6 Norwegian Journal of development of the International Science No 48/2020
The saline pH was higher in the soil where the peas
were grown – 7.2. In the area where soybeans were
grown, the saline pH was 0.8% lower, where winter
wheat and sunflower were grown – 1.0% less and
where barley was grown – 2.2% less and amounted to
5.0.
So, the soil where winter wheat was grown had the
lowest content of mobile phosphorus, but the highest –
calcium.
The soil where the barley was grown was charac-
terized by a high value of hydrolytic acidity, but a low
content of mobile potassium.
The soil on which the sunflower was grown had a
high content of mobile potassium. The soil on which
soybeans were grown had the lowest humus and hydro-
lyzed nitrogen content.
The soil on which the peas were grown had the
lowest hydrolytic acidity, but the highest pH and mo-
bile phosphorus content.
So, in fact, fluctuations in the agrochemical pa-
rameters of soils depended on the culture of the field
and the predecessor in the crop rotation. In particular,
in terms of agrochemical parameters, the soil of the
field where winter wheat was grown at a resource-sav-
ing level of chemicalization of agriculture had the low-
est humus and calcium content, but the highest content
of mobile potassium. This indicates the processes of
soil degradation, depletion of organic matter. The soil
of the field where winter rape was grown, on the con-
trary, was characterized by a high content of humus,
calcium, high hydrolytic acidity, but low nitrogen con-
tent, easily hydrolyzed by mobile forms of phosphorus
and exchangeable potassium, which indicates the pecu-
liarities of the rapeseed culture and its effect on the soil
condition.
The ecological state of the soil of the field where
winter wheat was grown due to the intensive level of
chemicalization of agriculture had the lowest content of
mobile phosphorus, but the highest - calcium, which led
to an effect on the pH of the soil environment. It was
found that the soil on which the sunflower was grown
had a high content of mobile potassium and the lowest
content of available forms of phosphorus, which indi-
cates a high requirement of this crop for phosphorus nu-
trition. But this negatively affects the condition of the
soil and subsequent crops.
Maximum concentration limit for lead in soil is 6.0
mg/kg. Under conditions of intensive chemicalization,
a high content of lead was found in the soil where win-
ter rape and corn were grown - 0.03 mg/kg, which is
200 times less than the MPC, and in other cases – 0.02
mg/kg, which is 300 times less MPC (Table 1).
MPC of cadmium in soil is 0.7 mg/kg. A high con-
tent of cadmium was found in the soil where winter
rape was grown - 0.11 mg/kg, which exceeded the MPC
by 1.6 times, and in other cases, the cadmium content
was 0.02 mg/kg, which is 35 times less than the MPC.
Maximum concentration limit of copper in soil is
3.0 mg/kg. A high copper content was found in the soil
where winter rape was grown - 0.2 mg/kg, which is 15
times less than the MPC, and in other cases – 0.1
mg/kg, which is 30 times less than the MPC.
The maximum concentration limit for zinc in soil
is 23.0 mg/kg. A high zinc content was found in the soil
where winter rape was grown – 2.36 mg/kg, which is
9.7 times less than the MPC, where winter wheat was
grown – 1.59 mg/kg, which is 14.5 times less than the
MPC. where corn was grown – 1.35 mg/kg, which is
17.0 times less than the MPC, where sunflower was
grown – 1.23 mg/kg, which is 18.7 times less than the
MPC and where barley was grown – 0.86 mg kg , which
is 26.7 times less than the MPC.
Table 1.
The content of mobile forms of heavy metals in soils of agrocenosis
(averaged data, 2018–2019)
Culture name
Heavy metal content, mg / kg
Pb Cd Cu Zn
fact. MPC fact. MPC fact. MPC fact. MPC
Winter wheat 0,02
6,0
0,02
0,7
0,1
3,0
1,59
23,0
Winter rape 0,03 0,11 0,2 2,36
Spring barley 0,02 0,02 0,1 0,86
Corn 0,03 0,02 0,1 1,35
Sunflower 0,02 0,02 0,1 1,23
So, the soil where winter wheat was grown had the
permissible content of lead, cadmium, copper and zinc,
did not exceed the MPC.
The soil where the winter rape was grown was
characterized by a high content of cadmium, copper and
zinc.
The soil on which the barley was grown had the
lowest zinc content.
The soil on which the corn and sunflower were
grown had the permissible content of lead, cadmium,
copper and zinc, did not exceed the MPC.
Under the conditions of resource-saving chemical-
ization on all soils, the lead content in the soil was 0.01
mg / kg, which is 600 times less than the MPC (Table
2).
A high content of cadmium was found in the soil
where barley and sunflower were grown - 0.08 mg/kg,
which is 8.8 times less than the MPC, where soybeans
were grown – 0.02 mg/kg, which is 35 times less than
the MPC, and other options – 0.1 mg/kg, which is 70
times less than the MPC.
A high copper content was found in the soil where
soybeans were grown – 1.0 mg/kg, which is 3 times less
than the MPC, where sunflower was grown – 0.86
mg/kg, which is 3.5 times less than the MPC where
winter wheat was grown – 0.82 mg/kg, which is 3.6
Norwegian Journal of development of the International Science No 48/2020 7
times less than the MPC, where barley was grown –
0.77 mg/kg, which is 3.9 times less than the MPC and
where peas were grown – 0.68 mg/kg, which is 4.4
times less than the MPC.
Table 2.
The content of mobile forms of heavy metals in soils of agrocenosis
(averaged data, 2018–2019)
Culture name
Heavy metal content, mg / kg
Pb Cd Cu Zn
fact. MPC fact. MPC fact. MPC fact. MPC
Winter wheat 0,02
6,0
0,02
0,7
0,1
3,0
1,59
23,0
Spring barley 0,03 0,11 0,2 2,36
Sunflower 0,02 0,02 0,1 0,86
Soy 0,03 0,02 0,1 1,35
Peas 0,02 0,02 0,1 1,23
A high zinc content was found in the soil where
barley was grown – 6.8 mg/kg, which is 3.4 times less
than the MPC where sunflower was grown – 6.5 mg/kg,
which is 3.5 times less than the MPC where they were
grown soybeans – 4.7 mg/kg, which is 4.9 times less
than the MPC, where peas were grown – 3.8 mg/kg,
which is 6.0 times less than the MPC and where winter
wheat was grown – 3.6 mg/kg, which is 6.4 times less
than the MPC.
So, the soil where winter wheat was grown had the
lowest cadmium and zinc content.
The soil where the barley was grown was charac-
terized by a high content of cadmium and zinc.
The soil on which the sunflower was grown had a
high cadmium content.
The soil on which the soybeans were grown had a
high copper content.
The soil on which the peas were grown had the
lowest cadmium and copper content.
Comparison of fertility and toxicity indices of dark
gray podzolized soils, where measures of intensive and
resource-saving chemicalization were used in the culti-
vation of agricultural plants, showed the following:
- the content of humus in dark gray podzolized
soils under conditions of intensive chemicalization was
2.3-4.4%, and by resource-saving chemicalization it
was 1.3% less;
- the content of hydrolyzed nitrogen in dark gray
podzolized soils under conditions of intensive chemi-
calization was 63.0-98.0 mg/ g, and for resource-saving
chemicalization it was 2.1% less;
- the content of mobile phosphorus in dark gray
podzolized soils under conditions of intensive chemi-
calization was 159.0-319.0 mg/kg, and for resource-
saving chemicalization it was 8.8% less;
- the content of mobile potassium in dark gray
podzolized soils under conditions of intensive chemi-
calization was - 100.0-239.0 mg/kg, and for resource-
saving chemicalization by 9.9%;
- the calcium content in dark gray podzolized soils
under conditions of intensive chemicalization was
116.0-164.0 mg.eq/kg, and with moderate chemicaliza-
tion it was 5.3% less;
- the value of hydrolytic acidity in dark gray pod-
zolized soils under conditions of intensive chemicaliza-
tion was 0.35-1.60 mg.eq/100 g, and for resource-sav-
ing chemicalization by 0.75% more;
- pH value in dark gray podzolized soils under
conditions of intensive chemicalization was 5.8-7.0,
and for resource-saving chemicalization by 0.3% more;
- lead content in dark gray podzolized soils under
conditions of intensive chemicalization was 0.02-0.03
mg/kg, and for resource-saving chemicalization by
0.1% more;
- the content of cadmium in dark gray podzolized
soils under conditions of intensive chemicalization was
0.02-0.11 mg/kg, and for resource-saving chemicaliza-
tion by 0.1% less;
- the copper content in dark gray podzolized soils
under conditions of intensive chemicalization was 0.1-
0.2 mg / kg, and for resource-saving chemicalization by
0.1% more;
- the zinc content in dark gray podzolized soils un-
der conditions of intensive chemicalization was 0.86-
2.36 mg/kg, and for resource-saving chemicalization –
3.6-6.8 mg/kg, which is 3.5% more.
The residual content of pesticides (γ - HCH, DDT)
in dark gray podzolized soils during the cultivation of
winter wheat, spring barley, sunflower, soybeans and
peas was determined (Table 3).
Table 3.
The residual content of pesticides in dark gray podzolized soils during the cultivation of basic agricultural crops
under the conditions of intensive and resource-saving chemicalization of the Right-Bank Forest-Steppe (average
for 2018–2019)
Culture name
Pesticide content, mg/kg
γ – GHCG DDT
fact. MPC fact. MPC
Winter wheat ˂0,02
0,5
˂0,02
0,2
Spring barley ˂0,02 ˂0,02
Sunflower ˂0,02 ˂0,02
Soy ˂0,02 ˂0,02
Peas ˂0,02 ˂0,02
8 Norwegian Journal of development of the International Science No 48/2020
According to the research results, it was found that
the residual amount of pesticides in dark gray podzo-
lized soils during the cultivation of basic agricultural
crops under conditions of intensive and resource-saving
chemicalization of agriculture was significantly lower
than the MPC - less than 0.02 mg/kg γ – HCH at the
MPC 0.5 mg/kg and less than 0.02 mg/kg DDT with an
MPC of 0.2 mg/kg, which is less than the device error.
It was found that in the conditions of intensive and
resource-saving chemicalization of agriculture, the ac-
cumulation of pesticide residues γ - HCH and DDT in
dark gray podzolized soils was not found.
So, according to the results of assessing the state
of food photographs of agroecosystems of the Right-
Bank Forest-Steppe at different levels of chemicaliza-
tion of agriculture, it was found that, in fact, fluctua-
tions in agrochemical parameters of the soil depended
on the specific agrocenosis of the crop and the prede-
cessor in crop rotation, and the content of mobile forms
of heavy metals (lead, copper, cadmium, zinc), residues
organochlorine pesticides differed within the margin of
error and did not exceed their maximum permissible
concentration.
REFERENCES:
1.Dobryak D.A., Classification and ecological use
of agricultural lands / DA Dobryak. Good man. M .:
Knowledge, 2001. 309 p.
2.Ride N.M., Environmental assessment of agro-
biocenoses: theory, methodology, practice / NM. Ride,
V.P. Strokal, Yu.V. Rybalko. - Kherson: Publishing
house "Oldie-plus", 2011. 568 p.
3.On the state of soil fertility in Ukraine. Kiev,
2010. URL: file: /// C: /Users/admin/Desk-
top/stan_gruntiv.pdf.
4.Klimenko N. A., Borisyuk B. V., Kolesnik T. N.
Balanced use of land resources: textbook. allowance.
Kherson: OLDI-PLUS, 2014.552 p.
5.Furdychko A.I. Ecological foundations of bal-
anced development of the agrosphere in the context of
the European integration of Ukraine: monograph. Kiev:
DIA, 2014. 432 p.
6.Tarariko A.G., Emelnova Zh. L., Ilyenko T.V.,
Kuchma T.L. Formation of the agrosphere of Ukraine
according to the principles of the Rio conference. Eco-
logical Bulletin. 2014. No. 4.
S. 26-28.
7.Khilko M.I. Environmental safety of Ukraine:
textbook. Kiev, 2017. 267 p.
8.Mazur V.A., Vradiy A.I. Monitoring of soil pol-
lution by heavy metals at the research site in the NDG
"Agronomichnoe", Vinnytsia National Agrarian Uni-
versity. Agriculture and forestry. 2019. No. 13. S. 16-
24.
9.Radionuclide contamination of agricultural
land, URL: http://www.iogu.gov.ua/monitorynh-ob-
jektiv-dovkillya/radionuklidy.
10. Gutorov A.I. Problems of sustainable land use
in agriculture: theory, methodology, practice: mono-
graph. Kharkov: KhNAU, 2010. 405 p.
11. DSTU ISO 10381-1: 2004. Soil quality. Sam-
ple selection. Part 1. Guidance on the design of sam-
pling programs. [Introductions 2006.04.01]. K.: Derzh-
spozhivstandart of Ukraine, 2006. 36 p.
12. DSTU 4289: 2004. Soil quality. Methods for
the determination of organic matter. [Introductions
2008.01.01]. K.: State Consumer Standard of Ukraine,
2008. 16 p.
13. DSTU 4770: 2007 Soil quality. Determination
of the content of mobile manganese compounds (zinc,
cadmium, iron, cobalt, copper, nickel, chromium, lead)
in the soil in a buffered ammonium acetate extract with
pH 4.8 by atomic absorption spectrophotometry. [Intro-
ductions 2009.01.01]. K.: Derzhspozhivstandart of
Ukraine, 2009. 117 p.
14. Methods for determining the composition and
properties of soils. S. A. Balyuk, V. A. Barakhtyan, M.
E. Lazebnaya; ed. Balyuka S.A. Kh., 2004.S. 193-
210.376.
15. 15. DSTU ISO 10390: 2001 Soil quality. De-
termination of pH. [Introductions 2003.01.01]. K.
Gosstandart of Ukraine, 2003. 14 p.
16. Gritsaenko S.M., Gritsaenko A.A., Karpenko
V.P. Methods of biological and agrochemical studies of
plants and soils. Moscow: ZAO Nachalova, 2003. 320
p.
17. DSTU 7537: 2014 Soil quality. Determination
of hydrolytic acidity. [Introductions 2015.01.01]. K.
Ministry of Economic Development of Ukraine, 2015.
10 p.
18. DSTU 7863: 2015 Soil quality. Determination
of easily hydrolyzed nitrogen by the Cornfield method.
[Introductions 2016.01.01]. K. UkrNDNTS, 2016. 9 p.
19. DSTU 4115-2002 Soils. Determination of mo-
bile compounds of phosphorus and potassium accord-
ing to the modified Chirikov method. [Introductions
2003.01.01]. K. Gospotrebstandart of Ukraine, 2003.
12 p.
20. Yakovets L.A., Vatamanyuk A.V. Peculiari-
ties of the accumulation of lead and cadmium in grain
of cereal crops during storage. Organic agricultural pro-
duction: education and science: Collection of abstracts
of the International Scientific and Practical Conference
(Kiev, November 1, 2018). Kiev, 2018.S. 69-71.
21. Musluva T.N. Copper in the soils of Zhytomyr
Polesie. Bulletin of the Zhytomyr National Agroeco-
logical University. Scientific and theoretical collection.
2010. No. 2 (27). S. 30-45.
Norwegian Journal of development of the International Science No 48/2020 9
EARTH SCIENCES
ASSESSMENT OF RECREATIONAL LOAD OF ECO-NETWORK FACILITIES OF CHERKASY
REGION
Kosenko Yu.
lecturer at the Department of Ecology and Life Safety of Uman National University of Horticulture
ОЦІНКА РЕКРЕАЦІНОГО НАВАНТАЖЕННЯ ОБʼЄКТІВ ЕКОМЕРЕЖІ ЧЕРКАСЬКОЇ
ОБЛАСТІ
Косенко Ю.Ю.
викладач кафедри екології та безпеки життєдіяльності Уманського національного університету
садівництва
Abstract
The article considers the degree of recreational load of the territory by the objects of the nature reserve fund
(insularization) of the elements of the network of specially protected natural territories of Cherkasy region. The
method of calculating the insularization index is given. The connection of this indicator with some traditional
parameters, such as "percentage of reserves" is analyzed. Territorial differences in the degree of insularization of
protected areas in terms of administrative districts are shown.
Анотація
У статті розглядається ступінь рекреаціного навантаження території об’єктами ПЗФ (інсуляризації)
елементів мережі особливо охоронюваних природних територій Черкаської області. Наведено методику
обчислення індексу інсулярізації. Проаналізовано зв'язок цього показника з деякими традиційними пара-
метрами, такими як «відсоток заповідності». Показані територіальні відмінності ступеня інсулярізації при-
родоохоронних територій в розрізі адміністративних районів.
Keywords: insularization; specially protected natural area; insularization index; percentage of reserves;
Cherkasy region.
Ключові слова: інсуляризація; особливо охоронювана природна територія; індекс інсуляризації; від-
соток заповідності; Черкаська область.
Проблема інсулярізації особливо охоронюва-
них природних територій (ООПТ) і об'єктів в Чер-
каській області стоїть дуже гостро. Краще, коли за-
повідна територія повністю охоплює межі природ-
ного комплексу, - тоді забезпечуються всі необхідні
умови для його повноцінного існування, а найго-
ловніше, така ділянка буде відрізнятися стійкістю і
саморегуляцією.
На жаль, в нашій області заповідні території
часто охоплюють тільки частину природного ком-
плексу або взагалі тільки один унікальний,
рідкісний компонент - «природний об'єкт» (дже-
рело, окреме дерево, група дерев чи криниця та
т.п.). Така розчленованість природоохоронної тери-
торії на окремі фрагменти називається «інсуляриза-
цією». Інсуляризовані (дрібні і ізольовані) одиниці
згодом швидко втрачають природну цінність.
Оптимальний розмір заповідної території в
літературних джерелах остаточно не обґрунтова-
ний. Складність полягає в тому, що для кожного
об’єкту або природного комплексу оптимальний
розмір території буде різним, крім того, він зале-
жить і від природної зони або географічного поясу,
в яких знаходиться заповідний об'єкт, а також рівня
його замкненості (болото, озеро або ліс). Напри-
клад, з огляду на різні підходи, можна вважати, що
оптимальна територія для заповідника в країнах
помірного поясу буде близька до 1 млн. га,
мінімальною територією заповідника можна вва-
жати площу близько 250 тис. га в зоні хвойних і
мішаних лісів і пустелях, близько 50-100 тис. га в
зоні широколистяних лісів і лісостепу, 10 тис. га в
степу. Звичайно, в межах області виділити такі
площі немає можливості і в багатьох випадках це
недоцільно.
До двох загальноприйнятих критеріїв (кілько-
сті об’єктів, що охороняються, та розміру території,
яка знаходиться під охороною) в абсолютному та
процентному вираженні, виділяють третій критерій
– ступінь розчленованості заповідних територій,
тобто інсуляризованості природних об’єктів. Ві-
домо, що природна територія тільки тоді буде стій-
кою, коли вона є цілісною і має достатню площу
для підтримання самовідновлення популяцій рос-
лин і тварин.
Індекс інсуляризованості (I) включає в себе два
компоненти.
Перший із компонентів (I1) обчислюється із
врахуванням загальної площі регіону (S) і площі
всіх відносно стійких (площею більше 50 га) та
нестійких (площею менше 50 га) заповідних
об’єктів. Площа останніх позначається як (Sн). Цей
компонент розраховується за формулою:
Значення I1 знаходяться в межах від 0 (інсуля-
ризованість повністю відсутня) до 1 (інсуляризова-
ність максимальна і територія під охороною скла-
дається з найдрібніших ділянок).
10 Norwegian Journal of development of the International Science No 48/2020
Другий компонент індексу інсуляризованості
(I2) базується на кількості заповідних об’єктів регі-
ону (N) та кількості нестійких об’єктів у цьому ж
регіоні (Nн). Тоді:
Значення цього компоненту також лежать у
межах від 0 (інсуляризація відсутня) до 1. В цілому,
індекс інсуляризованості території (I) буде:
Чим більше значення I, тим більш значну роль
у загальній території, що охороняється, відіграють
дрібні ділянки, що не мають екологічної стабільно-
сті.
Кількісне оцінення природо-заповідних об’єктів у межах адміністративних районів Черкаської області
№п/п Назва району
Площа
району
(тис.кв.
км)
Загальна площа
ПЗФ
Зага-
льна
кі-
лькість
ПЗО <50,га ПЗО >50,га
Індекс
інсуля-
ризова-
ності
га % од. га од. га
1
Городищенський
м. Городище
0,9 492 0,54 15 11 124 4 368 0,367
2
Драбівський
смт. Драбів
1,2 473 0,39 10 7 175 3 298 0,352
3
Жашківський
м. Жашків
1,0 1955 1,95 7 3 85 4 1870 0,224
4
Звенигородський
м. Звенигородка
1,0 1144 1,14 57 49 537 8 607 0,43
5
Золотоніський
м. Золотоноша
1,5 14997 9,99 23 18 224 5 14753 0,44
6
Кам’янський
м. Кам’янка
0,7 159 0,22 19 19 159 - - 1
7
Канівський
м. Канів
1,3 22544 17,3 60 52 22093 8 451 0,431
8
Катеринопільський
смт. Катеринопіль
0,7 130 0,18 10 10 130 - - 1
9
Корсунь-Шевчен-
ківський
м. Корсунь-Шевче-
нківський
0,9 4184,9 4,65 48 44 59,3 4 4125,6 0,461
10
Лисянський
смт. Лисянка
0,7 247,75 0,35 28 27 195,65 1 52,1 0,481
11
Маньківський
смт. Маньківка
0,8 1950,8 2,43 35 31 396,44 4 1554,7 0,442
12
Монастирищенсь-
кий
м. Монастирище
0,7 1024,4 1,46 9 5 76,7 4 947,7 0,275
13
Смілянський
м. Сміла
0,9 2725,8 3,02 24 20 153,295 4 2572,5 0,415
14
Тальнівський
м. Тальне
0,9 618,6 0,68 12 10 132,6 2 486 0,415
15
Уманський
м. Умань
1,4 194,71 0,14 8 7 34,71 1 160 0,43
16
Христинівський
м. Христинівка
0,6 281,5 0,46 7 5 98,8 2 182,7 0,355
17
Черкаський
м.Черкаси
1,6 7335,49 4,58 60 47 447,79 13 6887,7 0,412
18
Чигиринський
м.Чигирин
1,2 1867,347 1,55 21 15 32,77 6 1834,577 0,355
19
Чорнобаївський
смт. Чорнобаїв
1,6 26992,97 16,8 21 15 217,6669 6 26775,3 0,355
20
Шполянський
м. Шпола
1,1 354,54 0,32 15 13 165,94 2 188,6 0,43
Norwegian Journal of development of the International Science No 48/2020 11
Нашими дослідженнями встановлено, що
майже відсутня інсуляризація в Жашківському рай-
оні (0,224), що пояснюється майже повною від-
сутністю в його межах дрібних заповідних об'єктів
(3 об’єкти). Незначні показники спостерігаються в
Монастирищенському районі (0,275), де є 5 об'єктів
які мають площу менше 50 га. У той же час високий
рівень інсулярізації в Камʼянському (1) та Катери-
нопільському (1) районах. Так як там присутні
лише дрібні заповідні об’єкти. Підрахований індекс
інсулярізації підтверджує недоліки і деформації в
структурі ООПТ області, його значення колива-
ються в межах адміністративних районів. Порів-
нюючи значення індексу інсулярізації і «відсоток
заповідності» отримуємо певні неузгодження.
Прикладом такого неузгодження може слу-
жити Чорнобаївський район - при високому показ-
нику заповідності 16,8% тут спостерігається доволі
високий рівень інсулярізаціі (0,355). Аналізуючи
всі обрахунки, можна зробити висновки, що показ-
ники інсуляризації по адміністративним районам є
майже на одному рівні.
З огляду на всі недоліки в кількісній та якісній
структурі ООПТ Черкаської області, можна ска-
зати, що процес оптимізації цієї системи є надзви-
чайно актуальною проблемою. Розширюючи еко-
логічну мережу, природно-заповідний фонд, необ-
хідно не забувати про їх якість, і намагатися
створювати такі об'єкти, які здатні до саморегуля-
ції, самовідновлення і до протистояння антропоген-
ному впливу.
СПИСОК ЛІТЕРАТУРИ:
1.Екологічна мережа Центрального При-
дніпров’я / Бащенко М. І., Гончар О. Ф., Лавров В.
В., Дерій С. І. – К. : Центр екол. освіти та інфор-
мації, 2009. – 386 с.
2.Застосування географічних інформаційних
систем у ґрунтознавстві: Навчальний посібник. / Т.
С. Ямелинець. – Львів: Видавничий центр ЛНУ
імені Івана Франка, 2008. – 196 с.
3.Заповідна Черкащина : історія, сьогодення,
майбутнє / під заг. ред. М. Г. Чорного. – Черкаси :
Вертикаль, 2012. – 200 с.
4.Заваріка Г.М. Туризм на охоронних природ-
них територіях./ Географія та туризм.- 2014.- Ви-
пуск 28.- С.С. 45-49.
5.Конякін С. М. Оцінка репрезентативності
природнозаповідного фонду Черкаської області як
основи функціонування регіональної екомережі / С.
М. Конякін // Наук. вісник Чернівецького нац. ун-
ту. – 2012. – Вип. 614-615. – С. 58-65.
6.Никифоров В. В. Экологическая сеть Сред-
него Приднепровья: современное состояние и пути
оптимизации / В. В. Никифоров. – Днепропетровск
: изд-во Днепропетровського ун-та, 2003. – 188 с.
7.Регіональна доповідь про стан навколишнь-
ого природного середовища в Черкаській області у
2017 році / Держуправління екології та природних
ресурсів в Черкаській обл. – Черкаси, 2018. – 204 с.
8.Розбудова екомережі України / за ред. Ю. Р.
Шеляг-Сосонка. – К.: Програма розвитку ООН.
Проект «Екомережі», 1999. – 127 с.
12 Norwegian Journal of development of the International Science No 48/2020
CHEMICAL COMPOSITION OF BRINES OF DOMBROVSKY QUARRY KALUSH-GOLINSKY
POTASH DEPOSIT
Malkova Y.
Junior Research Fellow, State Institution "Institute of Environmental Geochemistry of National academy of
sciences of Ukraine"
Dolin V.
Doctor of Geological Sciences, Professor, State Institution "Institute of Environmental Geochemistry of Na-
tional academy of sciences of Ukraine"
ХІМІЧНИЙ СКЛАД РОЗСОЛІВ ДОМБРОВСЬКОГО КАР’ЄРУ КАЛУШ-ГОЛИНСЬКОГО
РОДОВИЩА КАЛІЙНИХ СОЛЕЙ
Малькова Я.
Молодший науковий співробітник, Державна установа «Інститут геохімії навколишнього середо-
вища Національної академії наук України»
Долін В.
Доктор геологічних наук, професор, Державна установа «Інститут геохімії навколишнього середо-
вища Національної академії наук України»
Abstract
The chemical composition of brines was analyzed. It is established that variations in the relative equivalent
composition of brine components during 46 years of the quarry operation, on the average, are ± 50%. The content
of heavy metals in brines has been analyzed. It is established that concentrations of elements (Zn, Pb, Fe, Mn, Cr,
Ni) exceed the maximum permissible concentrations. The quality of water that fills the quarry, taking into account
the concentrations of chlorides and sulfates, and macroelements, can be attributed to Class 4. The relative equiva-
lent composition of brines has been analyzed. Regression dependencies have been calculated and the conclusion
about brine mineralization growth with time has been made.
Анотація
Проаналізовано хімічний склад розсолів. Встановлено, що варіації відносного еквівалентного складу
компонентів розсолу протягом 46 років експлуатації кар’єру, в середньому, становлять ±50 %. Проаналізо-
вано вміст важких металів у розсолах. Встановлено, що концентрації елементів (Zn, Pb, Fe, Mn, Cr, Ni)
перевищують гранично допустимі концентрації. Якість води, яка наповнює кар’єр, враховуючи концен-
трації хлоридів і сульфатів, а також макроелементів, може бути віднесена до 4 класу. Проаналізований
відносний еквівалентний склад розсолів. Розраховано регресійні залежності та зроблено висновок про зро-
стання мінералізації розсолу з часом.
Keywords: chemical composition of brines, concentration, brine, mineralization, density.
Ключові слова: хімічний склад розсолів, концентрація, розсіл, мінералізація, густина.
Впродовж останнього десятиріччя негативний
вплив розробки та екологічно недосконалої
ліквідації гірничодобувних підприємств Карпатсь-
кого регіону перетворився на чинник виникнення
трансграничних надзвичайних ситуацій у басейнах
рр. Дністер та Тиса.
Специфікою використання надр у межах Ка-
луш-Голинскього родовища є порушення гідрогео-
фільтраційної ізольованості соляних тіл, розвиток
карстових процесів унаслідок утворення порожнин
у породному масиві та порушення геомеханічної
рівноваги солевміщуючих порід, що призводить до
руйнації міжкамерних ціликів, утворення зрушень
земної поверхні, карстових воронок, забруднення
підземних вод.
Загроза забруднення джерел питного водопо-
стачання Дністровського басейну істотною мірою
визначається неконтрольованим затопленням Дом-
бровського кар’єру (52.5 млн. м3
) та ката-
строфічним витоком розсолів з концентрацією 60–
450 г/дм3
в річкову мережу. Об’єм розсолів на по-
чаток 2020 р. становить 26,89 млн. м3
. Міне-
ралізація в придонній частині 400 г/дм3
. Макси-
мально можливий об’єм наповнення 41 млн. м3
.
Перед авторами стояла задача детально до-
слідити еволюцію хімічного складу розсолів для
подальших прогнозних розрахунків.
Об’єкт дослідження та методика
Авторами проаналізовано дані ДП «Калійний
завод» та ДП НДІ «Галургія» щодо хімічного
складу поверхневого шару розсолів. Варіації вмісту
солей спостерігаються у широких межах (77—375
г×дм-3
) зі стійкою тенденцією щодо зниження міне-
ралізації починаючи з 2007 р. Проф. Семчук Я.М.
[3, с. 304], а пізніше його учні [2, с. 125] експери-
ментально довели, що насичений водний розчин со-
леносних порід Домбровського кар’єру має міне-
ралізацію 420-430 г×дм–3
.
За головними компонентами води відносяться
до хлоридно-натрієвого типу, за класифікацією
Курлова – до хлоридно-магній-натрієвого, Пітьєвої
– до хлоридно-сульфатного-натрій-магнієвого з
підвищеним вмістом калію.
Norwegian Journal of development of the International Science No 48/2020 13
Варіації відносного еквівалентного складу
компонентів розсолу протягом 46 років експлуата-
ції кар’єру, в середньому, становлять ±50 %
(табл.1). [1, с. 71] При цьому відносний еквівалент-
ний склад компонентів розсолу практично не
змінювався. (рис.1).
Таблиця 1.
Варіації хімічного складу розсолів протягом 1968–2007 рр.
Одиниці K Mg SO4 Na Cl
г×дм–3 12,0–43,0
21,3
7,83–27,4
15,8
13,25–113
45,8
48,7–78,2
63,0
86,9–170
131
% від Sum
4,8–12,9
7,8
18,7–34,2
23,3
36,0–66,8
48,2
3,6–7,9
5,7
5,5–30,2
16,5
М×дм–3 0,31–1,1
0,55
0,33–1,1
0,66
0,14–1,2
0,48
2,1–3,4
2,7
2,5–4,8
3,7
y = -0,0411x + 41,2
R2
= 0,0148
0
10
20
30
40
50
0 10 20 30 40 50
Період, роки
Cl
-
,
мг-екв%
y = 0,0432x + 8,98
R2
= 0,0159
0
5
10
15
20
25
0 10 20 30 40 50
Період, роки
SO
4
2-
,
мг-екв%
y = 0,0409x + 29,6
R2
= 0,0162
0
5
10
15
20
25
30
35
40
45
0 10 20 30 40 50
Період, роки
Na
+
,
мг-екв.%
y = -0,0083x + 5,91
R2
= 0,0065
0
2
4
6
8
10
12
0 10 20 30 40 50
Період, роки
К
+
,
мг-екв.%
y = -0,0347x + 14,3
R2
= 0,014
0
5
10
15
20
25
0 10 20 30 40 50
Період, роки
Mg
2+
,
мг-екв.%
Рис. 1. – Часова динаміка відносного еквівалентного складу компонентів розсолу.
14 Norwegian Journal of development of the International Science No 48/2020
За даними кореляційного аналізу спо-
стерігається тенденція до зменшення концентрації
основних компонентів розсолу зі зростанням
об’єму тіла наповнення кар’єру (Ккор. близько 0,5).
(табл. 2, рис. 2). Ця тенденція характеризує другий
умовний період, що розпочався після повені 2008 р.
[4, с.1] Спостережувана тенденція зниження міне-
ралізації поверхневого шару розсолів з часом та зі
зростанням їх об’єму з високою достовірністю (R2
~ 0,9) описується експоненційною залежністю ви-
гляду:
)
,
( V
t
k
e
a
S 

 (1)
де S – мінералізація розсолу, г×дм-3
, k – кон-
станта, яка характеризує динаміку процесу фор-
мування хімічного складу протягом певного часу
(точка 2007 р. відповідає 1 на осі абсцис, рис. 3. а)
або зі зростанням об’єму розсолу (шкала осі абсцис
у млн. м3
, рис. 3. б) та має відповідну розмірність
рік-1
та м-3
. Параметри рівнянь наведено на графіках
(рис.3.).
Таблиця 2.
Результати кореляційного аналізу даних
K,
mg-
eq/l
K,
mg-
eq.%
Na,
mg-
eq/l
Na,
mg-
eq.%
Mg,
mg-
eq/l
Mg,
mg-
eq.%
SO4,
mg-eq/l
SO4,
mg-
eq.%
Cl,
mg-
eq/l
Cl,
mg-
eq.%
S,
mg-
eq/l
K, mg-
eq/l
1,00
K, mg-
eq.%
0,90 1,00
Na, mg-
eq/l
0,63 0,35 1,00
Na, mg-
eq.%
-
0,61
-0,44
-
0,32
1,00
Mg,
mg-eq/l
0,55 0,24 0,50 -0,91 1,00
Mg,
mg-
eq.%
0,38 0,16 0,25 -0,95 0,92 1,00
SO4,
mg-eq/l
0,23 -0,08 0,48 -0,46 0,65 0,53 1,00
SO4,
mg-
eq.%
-
0,03
-0,25 0,22 -0,27 0,40 0,37 0,92 1,00
Cl, mg-
eq/l
0,82 0,62 0,79 -0,63 0,67 0,50 0,17 -0,17 1,00
Cl, mg-
eq.%
0,00 0,23
-
0,24
0,29 -0,41 -0,38 -0,92 -1,00 0,15 1,00
S, mg-
eq/l
0,77 0,46 0,86 -0,73 0,85 0,65 0,62 0,31 0,88 -0,33 1,00
d 0,82 0,59 0,74 -0,67 0,72 0,55 0,26 -0,06 0,94 0,04 0,88
t
-
0,04
-0,08
-
0,20
0,13 -0,05 -0,12 0,05 0,13 -0,20 -0,12
-
0,13
V
-
0,30
-0,23
-
0,52
0,42 -0,36 -0,40 -0,23 -0,10 -0,48 0,12
-
0,49
Norwegian Journal of development of the International Science No 48/2020 15
y = -0,0411x + 41,2
R2
= 0,0148
0
10
20
30
40
50
0 10 20 30 40 50
Період, роки
Cl
-
,
мг-екв%
y = 0,0432x + 8,98
R2
= 0,0159
0
5
10
15
20
25
0 10 20 30 40 50
Період, роки
SO
4
2-
,
мг-екв%
y = -0,0002x + 9642,4
R2
= 0,2436
0
2000
4000
6000
8000
10000
12000
14000
0 5000000 10000000 15000000 20000000
V, м3
S,
mg-eq/l
y = -9E-05x + 3845,3
R2
= 0,2302
0
1000
2000
3000
4000
5000
6000
0 5000000 10000000 15000000 20000000
V, м3
Cl,
mg-eq/l
y = -6E-05x + 2856,6
R2
= 0,2699
0
500
1000
1500
2000
2500
3000
3500
4000
0 5000000 10000000 15000000 20000000
V, м3
Na,
mg-eq/l
Рис. 2. – Регресійні залежності між концентрацією компонентів та об’ємом розсолу
16 Norwegian Journal of development of the International Science No 48/2020
S=408e-0,221t
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Період, роки
0
50
100
150
200
250
300
350
400
S,
г
*
дм
-3
S=686e-0,110V
6 8 10 12 14 16 18 20 22
V, млн. м
3
0
50
100
150
200
250
300
350
400
S,
г
*
дм
-3
а б
Рис. 3. – Динаміка мінералізації розсолу протягом сучасного періоду формування його хімічного
складу: а – у часі, б – залежно від об’єму.
У таблиці коефіцієнтів кореляції (табл. 2)
штриховкою виділено значимі (понад 0,5 по мо-
дулю) коефіцієнти кореляції. Білими цифрами на
темнішому фоні виділено значення коефіцієнтів ко-
реляції між величинами, що являють певний інте-
рес для вивчення процесів формування хімічного
складу розсолів та прогнозування. Величина
коефіцієнту кореляції між рядами даних визначає
імовірність (у частках одиниці) збільшення зна-
чення одного параметра при збільшенні іншого (по-
зитивна кореляція) та навпаки, зменшення зна-
чення одного параметра при збільшенні іншого
(негативна кореляція).
Густина розсолів великою мірою визначається
їхнім хімічний складом: Ккор становить 0,72—0,94
для всіх, за виключенням сульфат-аніону, компо-
нентів розсолу. Отже, вимірюючи лише густину
можна з високою достовірністю прогнозувати
хімічний склад розсолів за лінійною залежністю:
B
x
A
y 

 , (1)
параметри якої визначено шляхом ре-
гресійного аналізу і наведено в табл. 3.
Таблиця 3.
Параметри регресійної залежності між величинами густини та концентрацією компонентів розсолу
Компонент (змінна у) А, мг-екв×дм—3
В, мг-екв×дм—3
R2
Мінералізація, S 38546 —36311 0,77
Хлориди, Cl—
16390 —15666 0,88
Натрій, Na+
8083 —6819 0,54
Калій, K+
3441 —3516 0,67
Магній, Mg2+
7761 —7854 0,52
Аналіз вмісту важких металів у поверхневому
шарі розсолу здійснювали на атомно-аб-
сорбційному спектрометрі С – 115 М1 за стандарт-
ною методикою. За низкою показників (вміст Ni,
Fe, Mn, Pb, Cr) визначено перевищення ГДК, вста-
новлених СанПиН 4630-88, які діяли в Україні до
2007 р. Зокрема, вміст свинцю у розсолі перевищує
ГДК більше, як у 40 разів (табл.4). Неважко ро-
зрахувати, що при випаровуванні розсолу сухий за-
лишок міститиме понад 3 мг×кг–1
водорозчинного
свинцю. У перерахунку на найбільш цінну сиро-
вину питомий вміст водорозчинного свинцю в 1 кг
сухого KCl становитиме майже в 7 разів більше —
близько 20 мг×кг–1
. За нині діючим ДСТУ якість
води, яка наповнює кар’єр, враховуючи концентра-
ції хлоридів і сульфатів, а також макроелементів,
може бути віднесена до 4 класу.
Таблиця.4.
Вміст важких металів у розсолі
Метал Концентрація ,
мг×дм–3
СанПиН 4630-88
(для водойм культурно-по-
бутового та питного водо-
постачання)
ПДК и ОБУВ 12-04-11
(1990) (для водойм рибо-
господарського призна-
чення)
Клас якості
води (за ДСТУ
4808:2007)
Цинк 0,18 1,03 0,05 2 (0,1-0,5)
Нікель 0,55 0,1 0,01 4 (> 0,1)
Залізо 0,78 0,33 Не встановлено 2 (0,3-1,0)
Марганець 0,43 0,13 Не встановлено 3 (0,1-0,5)
Свинець 1,23 0,03 0,01 4 (>0,1)
Мідь 0,11 1,03 0,005 4 (>0,003)
Хром 0,79 0,5 0,001 4 (>0,5)
Примітка: червоним кольором виділено перевищення допустимих концентрацій
Norwegian Journal of development of the International Science No 48/2020 17
Концентрації компонентів розсолу і густина
незначною мірою змінюються у часі, що характери-
зується невеликими значеннями коефіцієнтів коре-
ляції. У зв’язку зі значним розкидом даних
вірогідність регресійної залежності часової зміни
густини розсолу надзвичайно низька (рис. 4).
Отримані регресійні залежності описуються
рівняннями:
[Na+
] = 0.15×t + 59.3 (2),
[K+
] = 0.13×t + 18.2 (3),
[Mg2+
] = 0.094×t + 13.6 (4),
[Cl–
] = 0.21×t + 125 (5),
[SO4
2–
] = 0.56×t + 33.4 (6),
d = 0.0004×t + 1.169 (7),
Sum = 1.14×t + 250 (8).
Оскільки основними чинниками формування
хімічного складу розсолу є природно-техногенні
умови, рівняння 2-8 не є основними для прогно-
зування стану об’єкту дослідження.
Зміна концентрації натрію в часі
[Na] = 0,15t + 59,3
0
10
20
30
40
50
60
70
80
90
0 10 20 30 40 50
t, роки
Na,
г/л
Зміна концентрації калію у часі
[K] = 0,13t + 18,2
0
5
10
15
20
25
30
35
40
45
50
0 10 20 30 40 50
t, роки
K,
г/л
Зміна концентрації магнію у часі
[Mg] = 0,094t + 13,6
0
5
10
15
20
25
30
0 10 20 30 40 50
t, роки
Mg,
г/л
Зміна концентрації хлоридів у часі
[Cl] = 0,21t + 125
0,00
20,00
40,00
60,00
80,00
100,00
120,00
140,00
160,00
180,00
0 10 20 30 40 50
t, роки
Cl,
г/л
Зміна концентрації сульфатів у часі
[SO4 ] = 0,56t + 33,4
0,00
20,00
40,00
60,00
80,00
100,00
120,00
0 10 20 30 40 50
t, роки
SO4,
г/л
Зміна густини розсолу в часі
d = 0,0004t + 1,169
1,1
1,12
1,14
1,16
1,18
1,2
1,22
1,24
1,26
1,28
0 10 20 30 40 50
t, роки
d,
г/см
3
Зміна мінералізації у часі
Sum = 1,14t + 250
0
50
100
150
200
250
300
350
400
0 10 20 30 40 50
t, роки
Sum,
г/л
Рисунок 4. – Зміна фізико-хімічних властивостей розсолу в часі
Висновки
Відносний еквівалентний склад розсолів прак-
тично не змінюється протягом 60 років, що свід-
чить про квазістабільний стан об’єкту дослідження
та визначається гідрогеохімічними закономірно-
стями формування хімічного складу розсолів.
Відносно стабільний еквівалентний склад розсолів
є підставою для прогнозування хімічного складу
розсолів за простими лінійними залежностями.
Зменшення мінералізації поверхневого шару
розсолів у період після повені 2008 р. з високою до-
стовірністю описується експоненційною залеж-
ністю. Проаналізовано дані кореляційного аналізу,
18 Norwegian Journal of development of the International Science No 48/2020
спостерігається чітка тенденція до зменшення кон-
центрації основних компонентів розсолу зі зростан-
ням об’єму тіла наповнення кар’єру (Ккор близько
0,5). Розрахунки свідчать про стійку тенденцію до
зростання мінералізації розсолу з часом. Вміст важ-
ких металів перевищує ГДК до 40 разів.
Запропоновано експрес-метод визначення
хімічного складу розсолів за фізичними властиво-
стями (густиною та мінералізацією) з уточненням
розрахованих концентрацій за співвідношенням
еквівалентного вмісту компонентів.
СПИСОК ЛІТЕРАТУРИ:
1.Долін В.В., Яковлєв Є.О., Кузьменко Е.Д.,
Бараненко Б.Т. Прогнозування екогідрогеохімічної
ситуації при затопленні Домбровського кар’єру
калійних руд // Екологічна безпека та збалансоване
ресурсокористування. – 2010. - № 1. – с. 74-87.
2.Манюк О.Р. Науково-практичні засади захи-
сту довкілля від забруднення високомінералізова-
ними розсолами (на прикладі Калуш-Голинського
родовища калійних солей): Дис. ... канд. геол. наук:
21.06.01 / Івано-Франківський національний тех-
нічний університет нафти і газу. – Івано-
Франківськ, 2008. – 125 с.
3.Семчук Я.М. Наукові та методичні основи
охорони геологічного середовища в районах ро-
зробки калійних родовищ (на прикладі Передкар-
паття): Дис. ... д-ра техн. наук: 11.00.11 / Державний
НДІ галургії. — Калуш, 1994. — 304 с.
4.Y. Malkova, V. Dolin, Y. Yakovlev, 2020. For-
mation regularities of liquid body of Dombrovsky
quarry // Conference Proceedings, Geoinformatics:
Theoretical and Applied Aspects 2020, May 2020, p.1
– 5. DOI: https://doi.org/10.3997/2214-
4609.2020geo079
Norwegian Journal of development of the International Science No 48/2020 19
MEDICAL SCIENCES
CHANGES IN CEREBRAL HEMODYNAMICS AND BIOELECTRIC ACTIVITY AS A PREDICTOR
OF EPILEPTIC SEIZURES
Mushehian М.
Postgraduate (PhD) student, the Department of neurology and child neurology, Kharkiv Medical Academy
of Post-Graduate Education, Kharkiv, Ukraine
Litovchenko T.
Doctor of medical sciences, professor, the Department of neurology and child neurology, Kharkiv Medical
Academy of Post-Graduate Education, Kharkiv, Ukraine
Abstract
With the aim to improve the diagnosis of epilepsy due to cerebrovascular disease by establishing the features
of the hemodynamics and bioelectrical activity of brain in the patients with ischemic stroke and the subsequent
development of epileptic seizures, a cross-sectional randomized cohort comparative study with retrospective and
prospective stages was performed in 60 patients (men and women) with ischemic stroke aged 65 [57.0; 74.0] years,
in 30 of which epileptic seizures were detected. Vascular deformities in patients with acute cerebrovascular disease
are observed in at least a one-third of cases (S-shaped tortuosity of the left spinal artery in 36.7±29.2 %), reaching
a maximum regarding pathological tortuosity of the left common carotid artery (63.3±38.4 %) and do not have the
characteristics of the frequency response in the presence of epileptic seizures after ischemic stroke. The severity
of stenosis of the right and left internal and common carotid arteries in patients with ischemic stroke is not specific
with the development of epileptic seizures. Studies of cerebral hemodynamics in patients with epileptic seizures
on the background of ischemic stroke can improve the diagnosis of epilepsy on the in combination with cerebro-
vascular diseases. For patients with epileptic seizures after ischemic stroke the electroencephalogram is character-
ized by a tendency to increase the amplitude of delta waves (20.1 [15.8; 23.1] μV), alpha waves
(23.3 [20.3; 27.0] μV). The median frequency on the electroencephalogram among patients with epileptic seizures
after ischemic stroke has the following parameters: generalized – 8.7 [7.4; 9.8] Hz; in the leads from the left
hemisphere – 8.6 [7.4; 10.3] Hz, in the leads from the right hemisphere – 8.9 [7.5; 9.4] Hz, which is significantly
(p<0.01) lower than among patients with ischemic stroke without epileptic seizures. Patients with epileptic seizures
after ischemic stroke have a significantly higher chance of focal changes (70.0±38.3 %; φ=3.2; p<0.01), paroxys-
mal activity on the encephalogram than in patients without epilepsy (26,7±22.8 %; φ=4.2; p<0.01), dysfunction of
the median structures (63.3±38.4 %; φ=2.6; p<0.01). The established features of the bioelectrical activity of the
brain in patients with ischemic stroke and the subsequent development of epileptic seizures allow to improve the
diagnosis of epilepsy on the background of cerebrovascular diseases. The prospect of further research is to study
the association of cerebral hemodynamics with the development of epileptic seizures in patients with ischemic
stroke.
Keywords: epilepsy, ischemic stroke, electroencephalography, ultrasound, sonography, doppler, diagnosis.
Background. According to the guidelines of the
International League Against Epilepsy (ILAE), one of
the important diagnostic criteria for epilepsy is imaging
methods of brain examination in addition to clinical
symptoms, history, evaluation of electroencephalog-
raphy, etc. [1].
Late seizures are the most common cause of post-
stroke epilepsy – a chronic disease that impairs the
quality of life of patients and has no other objective
causes than a history of acute disturbance of cerebro-
vascular circulation [2, 3, 4]. Depending on the under-
lying cerebrovascular pathology, post-stroke epilepsy
may develop in 2–4 % of patients [4, 5, 6, 7].
In addition to epileptic seizures, elderly patients
may experience acute symptomatic (reactive, pro-
voked) seizures that occur within a week after a regis-
tered metabolic, toxic, structural, infectious, or inflam-
matory brain injury [8].
Cerebrovascular diseases, including stroke, are
considered to be the leading cause of epilepsy in the el-
derly population, 30–50 % of diagnosed new cases of
epilepsy in this age group [9].
The degree of correlation of symptoms, EEG data
and CT and MRI data depends on the time of onset of
seizures. Thus, most often the clinical picture of sei-
zures corresponds to the side of the zone of ischemia in
the acute period of stroke, and the more time passes
from the onset of acute brain circulation disorder to the
first seizures, the greater dissociation occurs, which
probably indicates the formation of areas of epilepto-
genesis not associated with primary necrosis.
However, despite numerous studies of epidemio-
logical, clinical history and other aspects of epilepsy,
the specifics of the bioelectrical activity of the brain in
patients with ischemic stroke and the subsequent devel-
opment of epileptic seizures specific data in the scien-
tific literature is still insufficiently covered.
Aim: to improve the diagnosis of epilepsy due to
cerebrovascular diseases by establishing the features of
cerebral hemodynamics and bioelectrical activity of the
brain in patients with ischemic stroke with prediction
of an epileptic seizure subsequent development.
Material and methods. The cross-sectional ran-
domized cohort comparative study with retrospective
20 Norwegian Journal of development of the International Science No 48/2020
and prospective stages was performed in 60 patients
(men and women) with ishemic stroke aged
65 [57.0; 74.0] years, in 30 of which epileptic seizures
were detected.
The total number of study participants – 60 people
of both sexes aged 65.0 [57.0; 74.0] years, who were
examined and treated in the Department of Vascular
Pathology of the Brain of the Kharkiv Railway Clinical
Hospital #1 of Branch "Health Center" of Joint Stock
Company "Ukrainian Railway" in 2008–2019, of
which: 30 people aged 70.5 [62.0; 78.0] years with is-
chemic stroke in combination with epilepsy as the main
group (group 1a); 30 patients aged 69.5 [57.0; 76.0]
years with ischemic stroke without epileptic seizures as
a comparison group (group 1b).
Standardized criteria for inclusion and non-inclu-
sion of participants in the study were applied.
Doppler echoencephalography was performed on
the ultrasound system Sigmairis 880 CE CD (France)
according to standard methods in order to assess the
condition of cerebral vessels and cerebral blood flow.
In the main vessels (right and left common carotid ar-
teries, right and left internal carotid arteries) following
indicators were recorded: thickness of the intima-media
complex (mm), maximum blood flow velocity (cm/s),
minimum blood flow velocity (cm/s), average velocity
blood flow (cm/s), resistive index, pulsatility index. In
addition, S-shaped tortuosity and hypoplasia were as-
sessed to characterize the condition of the right and left
vertebral arteries; pathological tortuosity, severity of
stenosis (% of normal) – to assess the condition of the
right and left internal and common carotid arteries.
The study was performed according to standard
methods of electroencephalography with identification
of neurophysiological semiotics and differentiation of
EEG types. The following indicators were subject to
registration. Wave amplitudes (μV): doubled average;
bands: delta (1.5–4.0 Hz), theta (4–8 Hz), alpha (8–
13 Hz), beta1 (14–20 Hz), beta2 (20–30 Hz). Zonal dif-
ferences. Interhemispheric asymmetry in amplitude
(%). The median frequency of the spectrum general, in
the left hemisphere leads, in the right hemisphere leads.
Sharp waves. Spike waves. Generalized characteristics
of EEG: diffuse, focal changes, paroxysmal activity,
dysfunction of a deep structures.
Following types of EEG have been distinguished.
Type I – organized ("normal" EEG) –alpha rhythm
dominates as the main EEG component, it is regular in
frequency, clearly modulated in the spindles, with a
medium and high index, well-expressed zonal differ-
ences. The shape of the waves is usually smooth. Beta
activity of high and medium frequency, small ampli-
tude. Slow waves are almost not expressed. Less or-
dered structural and spatial organization of alpha activ-
ity and the presence of irregular slow activity, mainly
in the anterior parts of the brain, usually with a smaller
amplitude than in alpha activity, are possible.
Type II – hypersynchronous. The main thing in the
structure of this type is a high index of regular fluctua-
tions of biopotentials with loss of their zonal differ-
ences. There are various options for such an increase in
activity synchronization: with the preservation and
even increase of oscillations of the alpha range, with the
disappearance of alpha activity and its replacement by
low-frequency beta activity or theta activity.
Type III – desynchronous ("flat" EEG) – is char-
acterized by the absence or sharp decrease in the num-
ber of alpha waves with a relative increase in the num-
ber of beta and theta oscillations of not high, low or
very low amplitude without zonal differences.
Type IV – disorganized, with a predominance of
alpha activity. On the EEG, the main one is an alpha
activity, but it is not regular enough or completely ir-
regular in frequency. Such a rather disorganized alpha
rhythm is not high enough in amplitude and may even
dominate in all parts of the brain. Beta activity is also
often enhanced, often represented by low-frequency os-
cillations of increased amplitude. In addition, on the
EEG theta and delta waves of a fairly high amplitude
may be present.
Type V – disorganized, with a predominance of
theta and delta activity. The structure of this type of
EEG is characterized by a weak representation of alpha
activity. Fluctuations in the biopotentials of the alpha,
beta, theta and delta bands are recorded without any
clear sequence. This non-dominant type of curve can
have both medium and high amplitude levels. Types of
EEG were distinguished according to the classification
of Zhirmunska A. A. (1984, 1991).
Logical and statistical analysis was performed by
nonparametric methods. Thus, the central regularity of
the studied traits in the assessment of the group of sub-
jects was expressed using the median (Me), and the var-
iability - the lower, 25 percent, quartile (LQ) and upper,
75 percent quartile (UQ), for brevity, expressing the de-
scription in : Me [LQ; UQ]. Qualitative, binary, ordinal
indicators were described in frequency values - abso-
lute and relative (percentage) with SD guidance. The
groups were compared in pairs using Fisher's angular
transformation, the value of the empirical angle and the
corresponding p-level were given; more than two
groups — with construction of conjugacy tables and ap-
plication of the method of maximum likelihood of Pear-
son's chi-square criterion. In all types of statistical anal-
ysis, trends at the p-level less than 0.05 were considered
statistically significant.
Results.
The frequency characterization of vascular de-
formities in patients with acute cerebrovascular disease
was performed (Table 1).
Norwegian Journal of development of the International Science No 48/2020 21
Table 1
Frequency characteristics of vascular deformities in patients with acute cerebrovascular disease
Vascular deformities
Group 1а,
n=30
Group 1b,
n=30
Abs. % SD Abs. % SD
S-shaped tortuosity of the right vertebral artery 14 46.7 34.1 13 43.3 32.6
S-shaped tortuosity of the left vertebral artery 11 36.7 29.2 12 40.0 31.0
Hypoplasia of the right vertebral artery 13 43.3 32.6 14 46.7 34.1
Pathological tortuosity of the left internal carotid artery 16 53.3 36.4 16 53.3 36.4
Pathological tortuosity of the right internal carotid artery 18 60.0 37.9 15 50.0 35.4
Pathological tortuosity of the right common carotid artery 13 43.3 32.6 16 53.3 36.4
Pathological tortuosity of the left common carotid artery 19 63.3 38.4 12 40.0 31.0
Note. * – the difference in comparison with group 1b is significant at p <0.05.
Vascular deformities in patients with acute
cerebrovascular disease were observed in at least a third
of cases (S-shaped tortuosity of the left vertebral artery
in 36.7±29.2 %), reaching a maximum in the
pathological tortuosity of the left common carotid
artery (63.3±38.4 %) and there is no peculiarities of the
frequency characteristics in the presence of epileptic
seizures after ischemic stroke.
The severity of stenosis in the right and left
internal and common carotid arteries was assessed
(Table 2).
Table 2
Stenosis severity of the right and left internal and common carotid arteries
in patients with acute cerebrovascular disease
Артерії, виразність стенозу
Group 1а,
n=30
Group 1b,
n=30
Me LQ UQ Me LQ UQ
Right common carotid artery,% 48.0 38.0 55.0 42.0 38.0 48.0
Left common carotid artery,% 42.5 38.0 50.0 45.5 36.0 53.0
Right internal carotid artery,% 46.0 40.0 54.0 46.5 40.0 55.0
Left internal carotid artery,% 44.0 40.0 50.0 48.0 38.0 55.0
Note. * – the difference in comparison with group 1b is significant at p <0.05.
The severity of stenosis of the right and left inter-
nal and common carotid arteries in patients with is-
chemic stroke was not specific in case of epileptic sei-
zures development.
Thus, taking into account the peculiarities of cere-
bral hemodynamics in patients with epileptic seizures
on the background of ischemic stroke can improve the
diagnosis of epilepsy on the background of cerebrovas-
cular diseases.
The amplitude characteristic of EEG waves has
been evaluated (Table 3).
Table 3
Amplitude characteristics of electroencephalographic waves
in patients with acute cerebrovascular disease
Amplitude
Group 1а,
n=30
Group 1b,
n=30
Me LQ UQ Me LQ UQ
- average doubled, μV 11.0 9.0 15.4 10.4 7.6 16.3
- delta waves, μV 20.1*
15.8 23.1 15.0 10.8 18.2
- theta waves, μV 26.1 21.4 31.7 22.5 20.2 27.2
- alpha waves, μV 23.3*
20.3 27.0 30.8 26.1 38.6
- beta1-waves, μV 15.5 13.7 17.2 16.5 14.7 18.6
- beta2-waves, μV 13.1 10.1 16.8 13.4 8.9 16.2
Note. * – the difference in comparison with group 1b is significant at p <0.05.
Patients in group 1a had a significantly higher am-
plitude of delta waves (p<0.01), alpha waves (p<0.01).
The median frequency of an EEG spectrum among
patients of group 1a is significantly lower than in group
1b by the following parameters: generalized (p<0.01),
in the leads from the left (p<0.01) and right (p<0.01)
hemispheres (Table 4).
22 Norwegian Journal of development of the International Science No 48/2020
Table 4
Median frequency of electroencephalographic wave spectrum
in patients with acute cerebrovascular disease
Median frequency
Group 1а,
n=30
Group 1b,
n=30
Me LQ UQ Me LQ UQ
- generalized, Hz 8.7*
7.4 9.8 10.1 8.8 10.7
- in leads from the left hemisphere, Hz 8.6*
7.4 10.3 10.3 9.0 10.9
- in leads from the right hemisphere, Hz 8.9*
7.5 9.4 10.1 9.0 10.5
Note. * – the difference in comparison with group 1b is significant at p <0.05.
The frequency characteristic of qualitative indicators of EEG is carried out (Table 5).
Table 5
Frequency characteristics of electroencephalography
in patients with acute cerebrovascular disease
Parameters
Group 1а,
n=30
Group 1b,
n=30
Abs. % SD Abs. % SD
Sharp waves 9 30.0 25.1 15 50.0 35.4
Peak waves 5 16.7 15.2 4 13.3 12.4
Diffuse changes 30 100.0 0.0 30 100.0 0.0
Focal changes 21 70.0*
38.3 9 30.0 25.1
Paroxysmal activity 8 26.7*
22.8 0 0.0 0.0
Dysfunction of the deep structures 19 63.3*
38.4 9 30.0 25.1
Note. * – the difference in comparison with group 1b is significant at p <0.05.
The group of patients with epileptic seizures after
ischemic stroke had a higher frequency of focal
changes (φ=3.2; p<0.01), paroxysmal activity (φ=4.2;
p<0.01), dysfunction of the deep brain structures
(φ=2.6; p<0.01).
The frequency response of EEG types showed the
predominance of IV and V EEG types (Table 6).
Table 6
Frequency characteristics of EEG types
in patients with acute cerebrovascular disease
Type of electroencephalogram
Group 1а,
n=30
Group 1b,
n=30
Abs. % SD Abs. % SD
Type І 0 0.0 0.0 1 3.3 3.3
Type ІІ 4 13.3 12.4 6 20.0 17.9
Type ІІІ 3 10.0 9.5 3 10.0 9.5
Type ІV 13 43.3 32.6 12 40.0 31.0
Type V 10 33.3 27.2 8 26.7 22.8
Note. * – the difference in comparison with group 1b is significant at p <0.05.
Thus, the established features of the bioelectrical
activity of the brain in patients with ischemic stroke and
the subsequent development of epileptic seizures allow
to improve the diagnosis of epilepsy on the background
of cerebrovascular diseases.
The consideration of the basic criteria for as-
sessing the clinical course in patients with acute and
chronic cerebrovascular diseases is not completely per-
fect and leaves the possibility of insufficient effective-
ness of this approach.
Discriminant analysis was used in the training
sample in order to classify the prognostic solution by
measuring various parameters (results) of the examina-
tion of patients.
Carrying out a canonical discriminant analysis of
the results of examination of patients by the standard
method allowed to develop mathematical models based
on the task of increasing the informativeness of predict-
ing the development and progression of epileptic sei-
zures in patients with acute and chronic cerebrovascu-
lar diseases.
The first issue to be addressed by discriminant
analysis was the prediction of seizures in patients with
acute cerebrovascular disease.
Source variables (age; history of hypertension;
scores on the scales HAM-D, MoCA, NIHSS, Rankin,
Barthel, NHS3; 10 EEG parameters; score by the Faze-
kas scale) were selected, the number of which in the
Norwegian Journal of development of the International Science No 48/2020 23
process of step-by-step discriminant analysis (back-
ward stepwise) is reduced to the optimal 10 and as a
result the following formulas of canonical discriminant
functions were developed:
ПІ(EpiDevAcuTRUE)=(1.675×Х1)–(0.234×Х2)+(8.415×Х3)+(10.963×Х4)+
+(2.118×Х5)+(29.745×Х6)+(2.167×Х7)+(1.823×Х8)+(6.506×Х9)+
(12.222×Х10)–355.400;
ПІ(EpiDevAcuFALSE)=(1.793×Х1)–(0.260×Х2)+(11.164×Х3)+(12.314×Х4)+
+(2.090×Х5)+(32.512×Х6)+(2.345×Х7)+(2.022×Х8)+(7.571×Х9)+
(13.823×Х10)–446.278,
where PI is the value of the prognostic index (UI),
which assesses the probability of developing an epilep-
tic seizure in patients with cerebrovascular disorders
(PI(EpiDevAcuTRUE) - the probability of development is
greater than or equal to 95%, PI(EpiDevAcuFALSE) - the
probability of developing less than 5%) ; X1 - age,
years; X2 - history of hypertension, years; X3 - score
on the HAM-D scale; X4 - score on the MoCA scale;
X5 - score on the NIHSS scale; X6 - score on the Ran-
kin scale; X7 - score on the Barthel scale; X8 - score on
the NHS3 scale; X9 - median asymmetry in alpha
rhythm; X10 - Fazekas score.
If PI(EpiDevAcuFALSE) < PI(EpiDevAcuTRUE), a high
(≥95%) probability of developing an epileptic seizure
in patients with acute cerebrovascular accident is estab-
lished.
If PI(EpiDevAcuFALSE) > PI(EpiDevAcuTRUE) — a low
(<5%) probability of developing an epileptic seizure in
patients with acute cerebrovascular accident is estab-
lished.
Discussion
The vascular component of epileptogenesis which
we have detected in the study corresponds to what other
authors have revealed. Thus, as well as in our study, the
significance of brain circulation state in the condition
of neurovascular unit has been shown [25], an essential
role of vascular integrity has been determined [26].
Transcranial and extracranial duplex ultrasound
scanning is an inexpensive and non-invasive method of
examination that allows to determine the features of
cerebral blood flow and identify sites of occlusion in
large vessels of a brain [10, 11]. Khasanova D. R. et al.
(2010) found changes in cerebrovascular reactivity in
patients with ischemic stroke and epileptic seizures.
Emphasis was placed on the predominance of perfusion
reserve disorders in the vertebrobasilar circulation
(90.2 %), compared with carotid, which correlated with
EEG-registered foci of pathological activity (79.3 %).
This may partly explain the increased convulsive activ-
ity, as it develops insufficiency of the antiepileptic sys-
tem, most of which (in particular, the cerebellum, retic-
ular formation, caudate nucleus) are supplied with
blood by the vessels of the vertebrobasilar circulation
[12].
The results of visualization and electroneurophys-
iological studies allow to establish etiopathogenetic
features, type of epilepsy, characteristics of seizures in
patients with cerebrovascular diseases. The basic and
most common electroneurophysiological method, elec-
troencephalography, is not included in the standard ex-
amination of patients with acute stroke, but this simple
inexpensive non-invasive method can provide infor-
mation about changes in the cerebral cortex as a result
of its damage. According to our experience and the data
of other authors, electroencephalography is the best
technique for detecting brain epileptic activity, espe-
cially in patients with nonconvulsive post-stroke sei-
zures [13, 14, 15]. Thus, Claassen J. et al. (2004) found
convulsive activity of brain in 19% of patients after
stroke using continuous EEG monitoring, most of
whom (92 %) had no motor manifestations [16]. In our
study we have revealed higher amplitude of delta- and
alpha waves, focal changes, paroxysmal activity, dys-
function of the deep brain structures.
Electroencephalography is of great importance in
the early diagnosis of seizures and post-stroke epilepsy,
and also allows you to monitor the course of the dis-
ease, helps to choose a method of treatment and predict
its results [14, 17, 18]. Apart of this, EEG is also used
to differentiate true seizures from non-convulsive con-
ditions that can mimic them. The recording of a stand-
ard (routine) EEG takes 20–45 minutes, but there are
also extended techniques such as extended EEG (re-
cording for 1–2 hours) and continuous EEG monitor-
ing, which can take up to 24 hours or more. Continuous
EEG allows to fix ictal (during seizure) and interictal
patterns better than standard EEG, especially in cases
of non-convulsive seizures or non-convulsive status ep-
ilepticus [15, 17, 19]. Thus, in the study Bentes S.
(2017) the interictal epileptiform discharges on the first
EEG were registered in 17.9 % of visitors, while daily
serial EEG monitoring during the week after stroke re-
vealed the majority of people with paroxysmal activity
[20].
In general, abnormalities registered on the EEG in
patients with stroke can be divided into three groups
[13] (including which have been detected in our study):
1) nonspecific patterns (diffuse or focal polymor-
phic slowing of delta rhythm, ipsilateral attenuation or
lack of alpha and beta activity);
2) interictal epileptiform patterns that develop due
to irritation of the cerebral cortex and indicate an in-
creased risk of seizures (sharp waves and spikes, lat-
eralized periodic discharges, bilateral independent pe-
riodic discharges, generalized periodic discharges, tem-
poral intermittent delta-activity);
3) ictal epileptic patterns (rhythmic theta, delta or
alpha activity, rhythmic spikes or spike waves).
According to the meta-analysis of 8 studies exam-
ining EEG changes in patients with seizures after stroke
(n=739), the most common finding was diffuse or focal
slowing (49.3 %), followed by epileptiform discharges
(35 %) and only 11.9 % had a normal EEG picture [21].
In the study of 69 patients with post-stroke EEG sei-
zures, normal activity was maintained in only 8 %
(compared to 54 % in patients without stroke), and most
of them had the following EEG abnormalities: intermit-
tent rhythmic delta activity (n=17), diffuse slowing
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1
Njd 48 1

More Related Content

What's hot

4 ijhaf oct-2017-11-impact of rotten cocoa
4 ijhaf oct-2017-11-impact of rotten cocoa4 ijhaf oct-2017-11-impact of rotten cocoa
4 ijhaf oct-2017-11-impact of rotten cocoaAI Publications
 
Physical Characterization and Geotechnical Properties of Municipal Solid Waste
Physical Characterization and Geotechnical Properties of Municipal Solid WastePhysical Characterization and Geotechnical Properties of Municipal Solid Waste
Physical Characterization and Geotechnical Properties of Municipal Solid WasteIOSR Journals
 
Abstracts of the xxvi annual meeting of onta,
Abstracts of the xxvi annual meeting of onta,Abstracts of the xxvi annual meeting of onta,
Abstracts of the xxvi annual meeting of onta,Edgar Medina
 
The effect of organic mulch on the growth and yield of Spinach (Spinacia oler...
The effect of organic mulch on the growth and yield of Spinach (Spinacia oler...The effect of organic mulch on the growth and yield of Spinach (Spinacia oler...
The effect of organic mulch on the growth and yield of Spinach (Spinacia oler...Agriculture Journal IJOEAR
 
Alleviation of Water Stress on Photosynthesis in Oilyplants
Alleviation of Water Stress on Photosynthesis in OilyplantsAlleviation of Water Stress on Photosynthesis in Oilyplants
Alleviation of Water Stress on Photosynthesis in OilyplantsSryahwa Publications
 
Formation Patterns of Acridid Communities in Urban Landscapes of Turkmenistan
Formation Patterns of Acridid Communities in Urban  Landscapes of TurkmenistanFormation Patterns of Acridid Communities in Urban  Landscapes of Turkmenistan
Formation Patterns of Acridid Communities in Urban Landscapes of TurkmenistanSryahwa Publications
 
CREA: The case of Italy: Monitoring of soil pollution in relation to food pro...
CREA: The case of Italy: Monitoring of soil pollution in relation to food pro...CREA: The case of Italy: Monitoring of soil pollution in relation to food pro...
CREA: The case of Italy: Monitoring of soil pollution in relation to food pro...ExternalEvents
 
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...FAO
 
Use of Autochthonous Organic Inputs for Amelioration of Fluoride Toxicity and...
Use of Autochthonous Organic Inputs for Amelioration of Fluoride Toxicity and...Use of Autochthonous Organic Inputs for Amelioration of Fluoride Toxicity and...
Use of Autochthonous Organic Inputs for Amelioration of Fluoride Toxicity and...Agriculture Journal IJOEAR
 
ENEA: Why is soil biodiversity so important in keeping soil healthy? A case s...
ENEA: Why is soil biodiversity so important in keeping soil healthy? A case s...ENEA: Why is soil biodiversity so important in keeping soil healthy? A case s...
ENEA: Why is soil biodiversity so important in keeping soil healthy? A case s...ExternalEvents
 
Environmental Education Program for Biodiversity Conservation during the Reha...
Environmental Education Program for Biodiversity Conservation during the Reha...Environmental Education Program for Biodiversity Conservation during the Reha...
Environmental Education Program for Biodiversity Conservation during the Reha...Quarry Life Award by HeidelbergCement
 
Optimal Salinity, Nitrate and Phosphate Concentrations on Germination and Gro...
Optimal Salinity, Nitrate and Phosphate Concentrations on Germination and Gro...Optimal Salinity, Nitrate and Phosphate Concentrations on Germination and Gro...
Optimal Salinity, Nitrate and Phosphate Concentrations on Germination and Gro...iosrjce
 
.literdecompositionprocessincofeagroforestysystem
.literdecompositionprocessincofeagroforestysystem.literdecompositionprocessincofeagroforestysystem
.literdecompositionprocessincofeagroforestysystemjcpetita
 
Effect of soil acidity on some soybean varieties
Effect of soil acidity on some soybean varietiesEffect of soil acidity on some soybean varieties
Effect of soil acidity on some soybean varietiesInnspub Net
 
Asma parveen ppt
Asma parveen pptAsma parveen ppt
Asma parveen pptPunith M
 

What's hot (20)

4 ijhaf oct-2017-11-impact of rotten cocoa
4 ijhaf oct-2017-11-impact of rotten cocoa4 ijhaf oct-2017-11-impact of rotten cocoa
4 ijhaf oct-2017-11-impact of rotten cocoa
 
A320115.pdf
A320115.pdfA320115.pdf
A320115.pdf
 
Physical Characterization and Geotechnical Properties of Municipal Solid Waste
Physical Characterization and Geotechnical Properties of Municipal Solid WastePhysical Characterization and Geotechnical Properties of Municipal Solid Waste
Physical Characterization and Geotechnical Properties of Municipal Solid Waste
 
Abstracts of the xxvi annual meeting of onta,
Abstracts of the xxvi annual meeting of onta,Abstracts of the xxvi annual meeting of onta,
Abstracts of the xxvi annual meeting of onta,
 
Njd 64
Njd 64Njd 64
Njd 64
 
The effect of organic mulch on the growth and yield of Spinach (Spinacia oler...
The effect of organic mulch on the growth and yield of Spinach (Spinacia oler...The effect of organic mulch on the growth and yield of Spinach (Spinacia oler...
The effect of organic mulch on the growth and yield of Spinach (Spinacia oler...
 
Alleviation of Water Stress on Photosynthesis in Oilyplants
Alleviation of Water Stress on Photosynthesis in OilyplantsAlleviation of Water Stress on Photosynthesis in Oilyplants
Alleviation of Water Stress on Photosynthesis in Oilyplants
 
Formation Patterns of Acridid Communities in Urban Landscapes of Turkmenistan
Formation Patterns of Acridid Communities in Urban  Landscapes of TurkmenistanFormation Patterns of Acridid Communities in Urban  Landscapes of Turkmenistan
Formation Patterns of Acridid Communities in Urban Landscapes of Turkmenistan
 
CREA: The case of Italy: Monitoring of soil pollution in relation to food pro...
CREA: The case of Italy: Monitoring of soil pollution in relation to food pro...CREA: The case of Italy: Monitoring of soil pollution in relation to food pro...
CREA: The case of Italy: Monitoring of soil pollution in relation to food pro...
 
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...
Sustainable Soil Management in Europe Plan of actions of the Pillar 1 | Jaros...
 
Use of Autochthonous Organic Inputs for Amelioration of Fluoride Toxicity and...
Use of Autochthonous Organic Inputs for Amelioration of Fluoride Toxicity and...Use of Autochthonous Organic Inputs for Amelioration of Fluoride Toxicity and...
Use of Autochthonous Organic Inputs for Amelioration of Fluoride Toxicity and...
 
SYNOPSIS OF SEMINAR
SYNOPSIS OF SEMINARSYNOPSIS OF SEMINAR
SYNOPSIS OF SEMINAR
 
Njd 59 2
Njd 59 2Njd 59 2
Njd 59 2
 
ENEA: Why is soil biodiversity so important in keeping soil healthy? A case s...
ENEA: Why is soil biodiversity so important in keeping soil healthy? A case s...ENEA: Why is soil biodiversity so important in keeping soil healthy? A case s...
ENEA: Why is soil biodiversity so important in keeping soil healthy? A case s...
 
Environmental Education Program for Biodiversity Conservation during the Reha...
Environmental Education Program for Biodiversity Conservation during the Reha...Environmental Education Program for Biodiversity Conservation during the Reha...
Environmental Education Program for Biodiversity Conservation during the Reha...
 
Abuses of agrochemic
Abuses of agrochemicAbuses of agrochemic
Abuses of agrochemic
 
Optimal Salinity, Nitrate and Phosphate Concentrations on Germination and Gro...
Optimal Salinity, Nitrate and Phosphate Concentrations on Germination and Gro...Optimal Salinity, Nitrate and Phosphate Concentrations on Germination and Gro...
Optimal Salinity, Nitrate and Phosphate Concentrations on Germination and Gro...
 
.literdecompositionprocessincofeagroforestysystem
.literdecompositionprocessincofeagroforestysystem.literdecompositionprocessincofeagroforestysystem
.literdecompositionprocessincofeagroforestysystem
 
Effect of soil acidity on some soybean varieties
Effect of soil acidity on some soybean varietiesEffect of soil acidity on some soybean varieties
Effect of soil acidity on some soybean varieties
 
Asma parveen ppt
Asma parveen pptAsma parveen ppt
Asma parveen ppt
 

Similar to Njd 48 1

Rehabilitation of topsoil in production-induced landscapes, Kazakhstan
Rehabilitation of topsoil in production-induced landscapes, KazakhstanRehabilitation of topsoil in production-induced landscapes, Kazakhstan
Rehabilitation of topsoil in production-induced landscapes, KazakhstanQuarry Life Award by HeidelbergCement
 
Sciences of Europe No 82 (2021) Vol. 2
Sciences of Europe No 82 (2021) Vol. 2Sciences of Europe No 82 (2021) Vol. 2
Sciences of Europe No 82 (2021) Vol. 2Sciences of Europe
 
Sciences of Europe No 124 (2023)
Sciences of Europe No 124 (2023)Sciences of Europe No 124 (2023)
Sciences of Europe No 124 (2023)Sciences of Europe
 
Mycorrhizal diversity and root colonization potential of agricultural soils –...
Mycorrhizal diversity and root colonization potential of agricultural soils –...Mycorrhizal diversity and root colonization potential of agricultural soils –...
Mycorrhizal diversity and root colonization potential of agricultural soils –...Agriculture Journal IJOEAR
 
Monitoring of Selected Heavy Metals Uptake by Plant around Fagbohun Dumpsite,...
Monitoring of Selected Heavy Metals Uptake by Plant around Fagbohun Dumpsite,...Monitoring of Selected Heavy Metals Uptake by Plant around Fagbohun Dumpsite,...
Monitoring of Selected Heavy Metals Uptake by Plant around Fagbohun Dumpsite,...iosrjce
 
agronomy-12-02538.pdf
agronomy-12-02538.pdfagronomy-12-02538.pdf
agronomy-12-02538.pdframblicas
 
1384079360project_ideas_(1).pptx
1384079360project_ideas_(1).pptx1384079360project_ideas_(1).pptx
1384079360project_ideas_(1).pptxssuser8afefa
 
Role of Geomicrobiology and Biogeochemistry for Bioremediation to Clean the E...
Role of Geomicrobiology and Biogeochemistry for Bioremediation to Clean the E...Role of Geomicrobiology and Biogeochemistry for Bioremediation to Clean the E...
Role of Geomicrobiology and Biogeochemistry for Bioremediation to Clean the E...CrimsonpublishersEAES
 
Impact of wastewater irrigation on major nutrient status in soil near Bhaluka...
Impact of wastewater irrigation on major nutrient status in soil near Bhaluka...Impact of wastewater irrigation on major nutrient status in soil near Bhaluka...
Impact of wastewater irrigation on major nutrient status in soil near Bhaluka...AbdullaAlAsif1
 
ppt bch cs - EVs.pptx.......................
ppt bch cs - EVs.pptx.......................ppt bch cs - EVs.pptx.......................
ppt bch cs - EVs.pptx.......................Madona Mathew
 

Similar to Njd 48 1 (20)

POLISH JOURNAL OF SCIENCE №60 (2023)
POLISH JOURNAL OF SCIENCE №60 (2023)POLISH JOURNAL OF SCIENCE №60 (2023)
POLISH JOURNAL OF SCIENCE №60 (2023)
 
NJD_82.pdf
NJD_82.pdfNJD_82.pdf
NJD_82.pdf
 
Rehabilitation of topsoil in production-induced landscapes, Kazakhstan
Rehabilitation of topsoil in production-induced landscapes, KazakhstanRehabilitation of topsoil in production-induced landscapes, Kazakhstan
Rehabilitation of topsoil in production-induced landscapes, Kazakhstan
 
Sciences of Europe No 82 (2021) Vol. 2
Sciences of Europe No 82 (2021) Vol. 2Sciences of Europe No 82 (2021) Vol. 2
Sciences of Europe No 82 (2021) Vol. 2
 
POLISH JOURNAL OF SCIENCE №49 (2022)
POLISH JOURNAL OF SCIENCE №49 (2022)POLISH JOURNAL OF SCIENCE №49 (2022)
POLISH JOURNAL OF SCIENCE №49 (2022)
 
Sciences of Europe No 124 (2023)
Sciences of Europe No 124 (2023)Sciences of Europe No 124 (2023)
Sciences of Europe No 124 (2023)
 
Mycorrhizal diversity and root colonization potential of agricultural soils –...
Mycorrhizal diversity and root colonization potential of agricultural soils –...Mycorrhizal diversity and root colonization potential of agricultural soils –...
Mycorrhizal diversity and root colonization potential of agricultural soils –...
 
Monitoring of Selected Heavy Metals Uptake by Plant around Fagbohun Dumpsite,...
Monitoring of Selected Heavy Metals Uptake by Plant around Fagbohun Dumpsite,...Monitoring of Selected Heavy Metals Uptake by Plant around Fagbohun Dumpsite,...
Monitoring of Selected Heavy Metals Uptake by Plant around Fagbohun Dumpsite,...
 
agronomy-12-02538.pdf
agronomy-12-02538.pdfagronomy-12-02538.pdf
agronomy-12-02538.pdf
 
6. UJRRA_22_09.pdf
6. UJRRA_22_09.pdf6. UJRRA_22_09.pdf
6. UJRRA_22_09.pdf
 
In 1
In 1In 1
In 1
 
Ramiran2015 topics 1-8
Ramiran2015 topics 1-8Ramiran2015 topics 1-8
Ramiran2015 topics 1-8
 
Crop production
Crop productionCrop production
Crop production
 
Soil Health in Relation to Soil Biological Indicators
Soil Health in Relation to Soil Biological IndicatorsSoil Health in Relation to Soil Biological Indicators
Soil Health in Relation to Soil Biological Indicators
 
1384079360project_ideas_(1).pptx
1384079360project_ideas_(1).pptx1384079360project_ideas_(1).pptx
1384079360project_ideas_(1).pptx
 
Role of Geomicrobiology and Biogeochemistry for Bioremediation to Clean the E...
Role of Geomicrobiology and Biogeochemistry for Bioremediation to Clean the E...Role of Geomicrobiology and Biogeochemistry for Bioremediation to Clean the E...
Role of Geomicrobiology and Biogeochemistry for Bioremediation to Clean the E...
 
7. UJRRA_22_25[Research].pdf
7. UJRRA_22_25[Research].pdf7. UJRRA_22_25[Research].pdf
7. UJRRA_22_25[Research].pdf
 
Impact of wastewater irrigation on major nutrient status in soil near Bhaluka...
Impact of wastewater irrigation on major nutrient status in soil near Bhaluka...Impact of wastewater irrigation on major nutrient status in soil near Bhaluka...
Impact of wastewater irrigation on major nutrient status in soil near Bhaluka...
 
The Green Fuse: Using Plants to Provide Ecosystem Services
The Green Fuse: Using Plants to Provide Ecosystem ServicesThe Green Fuse: Using Plants to Provide Ecosystem Services
The Green Fuse: Using Plants to Provide Ecosystem Services
 
ppt bch cs - EVs.pptx.......................
ppt bch cs - EVs.pptx.......................ppt bch cs - EVs.pptx.......................
ppt bch cs - EVs.pptx.......................
 

More from Norwegian Journal of development of the International Science

More from Norwegian Journal of development of the International Science (20)

NJD_98.pdf
NJD_98.pdfNJD_98.pdf
NJD_98.pdf
 
NJD_84.pdf
NJD_84.pdfNJD_84.pdf
NJD_84.pdf
 
NJD_94.pdf
NJD_94.pdfNJD_94.pdf
NJD_94.pdf
 
NJD_96.pdf
NJD_96.pdfNJD_96.pdf
NJD_96.pdf
 
NJD_92.pdf
NJD_92.pdfNJD_92.pdf
NJD_92.pdf
 
NJD_87.pdf
NJD_87.pdfNJD_87.pdf
NJD_87.pdf
 
NJD_76_2.pdf
NJD_76_2.pdfNJD_76_2.pdf
NJD_76_2.pdf
 
NJD_73_1.pdf
NJD_73_1.pdfNJD_73_1.pdf
NJD_73_1.pdf
 
NJD_80.pdf
NJD_80.pdfNJD_80.pdf
NJD_80.pdf
 
NJD_83.pdf
NJD_83.pdfNJD_83.pdf
NJD_83.pdf
 
NJD_78_1.pdf
NJD_78_1.pdfNJD_78_1.pdf
NJD_78_1.pdf
 
NJD_86.pdf
NJD_86.pdfNJD_86.pdf
NJD_86.pdf
 
NJD_76_1.pdf
NJD_76_1.pdfNJD_76_1.pdf
NJD_76_1.pdf
 
NJD_81.pdf
NJD_81.pdfNJD_81.pdf
NJD_81.pdf
 
NJD_85.pdf
NJD_85.pdfNJD_85.pdf
NJD_85.pdf
 
NJD_79_1.pdf
NJD_79_1.pdfNJD_79_1.pdf
NJD_79_1.pdf
 
NJD_73_2.pdf
NJD_73_2.pdfNJD_73_2.pdf
NJD_73_2.pdf
 
NJD_75_2.pdf
NJD_75_2.pdfNJD_75_2.pdf
NJD_75_2.pdf
 
NJD_77_3.pdf
NJD_77_3.pdfNJD_77_3.pdf
NJD_77_3.pdf
 
NJD_77_2.pdf
NJD_77_2.pdfNJD_77_2.pdf
NJD_77_2.pdf
 

Recently uploaded

Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 

Recently uploaded (20)

Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 

Njd 48 1

  • 1. №48/2020 Norwegian Journal of development of the International Science ISSN 3453-9875 VOL.1 It was established in November 2016 with support from the Norwegian Academy of Science. DESCRIPTION The Scientific journal “Norwegian Journal of development of the International Science” is issued 24 times a year and is a scientific publication on topical problems of science. Editor in chief – Karin Kristiansen (University of Oslo, Norway) The assistant of theeditor in chief – Olof Hansen • James Smith (University of Birmingham, UK) • Kristian Nilsen (University Centre in Svalbard, Norway) • Arne Jensen (Norwegian University of Science and Technology, Norway) • Sander Svein (University of Tromsø, Norway) • Lena Meyer (University of Gothenburg, Sweden) • Hans Rasmussen (University of Southern Denmark, Denmark) • Chantal Girard (ESC Rennes School of Business, France) • Ann Claes (University of Groningen, Netherlands) • Ingrid Karlsen (University of Oslo, Norway) • Terje Gruterson (Norwegian Institute of Public Health, Norway) • Sander Langfjord (University Hospital, Norway) • Fredrik Mardosas (Oslo and Akershus University College, Norway) • Emil Berger (Ministry of Agriculture and Food, Norway) • Sofie Olsen (BioFokus, Norway) • Rolf Ulrich Becker (University of Duisburg-Essen, Germany) • Lutz Jäncke (University of Zürich, Switzerland) • Elizabeth Davies (University of Glasgow, UK) • Chan Jiang(Peking University, China) and other independent experts 1000 copies Norwegian Journal of development of the International Science Iduns gate 4A, 0178, Oslo, Norway email: publish@njd-iscience.com site: http://www.njd-iscience.com
  • 2. CONTENT AGRICULTURAL SCIENCES Yakovets L. AGRICULTURAL ASSESSMENT OF SOIL CONDITION IN DEPENDENCE ON THE INTENSITY OF AGRICULTURAL CHEMISTRY . ................................................................ 3 EARTH SCIENCES Kosenko Yu. ASSESSMENT OF RECREATIONAL LOAD OF ECO- NETWORK FACILITIES OF CHERKASY REGION . ...........9 Malkova Y., Dolin V. CHEMICAL COMPOSITION OF BRINES OF DOMBROVSKY QUARRY KALUSH-GOLINSKY POTASH DEPOSIT. ...................................................................12 MEDICAL SCIENCES Mushehian М., Litovchenko T. CHANGES IN CEREBRAL HEMODYNAMICS AND BIOELECTRIC ACTIVITY AS A PREDICTOR OF EPILEPTIC SEIZURES . .................................................................19 Berdysh D., Ishchenko O. A LOOK AT INSURANCE MEDICINE. ..........................25 PHARMACEUTICS Khvorost O., Fedchenkova Yu., Skrebtsova К., Popik A. COMPARATIVE PHARMACOGNOSTIC STUDY OF FRUIT CALYX OF DISTRIBUTED VARIETIES OF FRAGARIA ANANASSA AND WILD FRAGARIA VIRIDIS. ............... 28 Gordey K., Gontova T., Gaponenko V., Vusik D. COMPARATIVE STUDY OF THE ELEMENTAL COMPOSITION OF THE FEVERFEW CULTIVARS ‘PHLORA PLENO’ AND ‘WHITE GEM’ . .......................34 Zuikina S., Vyshnevska L. APPLICATION OF DIVISIVE CLUSTER ANALYSIS IN PHARMACEUTICAL DEVELOPMENT OF COMBINED MEDICAL PHYTOPREPARATIONS FOR COMPLEX THERAPY OF MASTOPATHY. .....................................37 Nefedova L., Sahaidak-Nikitiuk R., Blazheyevskiy M., Barnatovich S. SCIENTIFIC SUBSTANTIATION OF THE FORMULATION AND TECHNOLOGY OF A NEW COMPLEX NASAL DRUG COMPOSITION FOR LOCAL TREATMENT OF INFLUENZA AND ACUTE RESPIRATORY VIRAL INFECTIONS . .............................................................42 Semchenko K., Vyshnevska L. SELECTION OF Excipients AND ANALYSIS OF CRITICAL PARAMETERS OF THE TECHNOLOGICAL PROCESS OF PRODUCTION OF CAPSULES WITH ANTHELMINTIC ACTIVITY. ..................................................................47 Kononenko N., Mirzaliev M., Chikitkina V. STUDY OF ALLERGENIC PROPERTIES OF DRY EXTRACT OF CABBAGE GARDEN. .............................................50 Yakovenko O., Ruban O., Devyatkina N., Devyatkina T. STUDY OF THE STRESS-PROTECTIVE EFFECT OF THE COMBINATION OF GLYCINE WITH MAGNESIUM CITRATE . ...................................................................52 PHYSICAL SCIENCES Vinogradova M., Scopich N. FROM VACUUM INDIFFERENT TO ATOM –ТO ETHER INTERACTING WITH ATOM . .....................................59
  • 3. Norwegian Journal of development of the International Science No 48/2020 3 AGRICULTURAL SCIENCES AGRICULTURAL ASSESSMENT OF SOIL CONDITION IN DEPENDENCE ON THE INTENSITY OF AGRICULTURAL CHEMISTRY Yakovets L. Candidate of Agricultural Sciences, senior lecturer of the Department of Botany, Genetics and Plant Pro- tection, Faculty of Agronomy and Forestry, Vinnytsia National Agrarian University Abstract The article presents studies on agroecological assessment of the state of the forest-steppe soil, depending on the intensity of agriculture chemistry. The purpose of the research was to identify changes in the agro-ecological state of the soil, depending on the intensity of agriculture, as a factor of the transition of pollutants accumulated in the soil into grain and seeds of the main field crops. The researches were carried out in the farms of Vinnytsia region, using resource-saving and intensive technologies of growing crops. The studies were aimed at identifying the tendency of change of agrocological indicators of dark gray podzolized soil depending on the intensity of the use of means of chemisation. Laboratory analyzes of the investigated soils were carried out in a certified laboratory of the testing center of the Vinnytsia Branch of the State Institution «Institute for Soil Conservation of Ukraine». It was established that the content of mobile metals of heavy metals in the forest-steppe agro-ecosystems of the right bank at different levels of agriculture chemistry, the residues of organochlorine pesticides differed within the error and did not exceed their maximum permissible concentrations. Keywords: mineral fertilizers, pesticides, soil, intensity, pollution, agriculture, heavy metals. The current crisis state of the land resources of Ukraine, the deterioration of the ecological state of the lands of intensive agricultural use, the decline in soil fertility and the large-scale spread of soil degradation processes necessitate significant changes in human eco- nomic activity and environmental management. In this regard, it is extremely important and relevant to use an integrated approach to assessing the current agroeco- logical state of agricultural land [1]. Agroecological land assessment is carried out in order to determine the level of soil fertility for growing certain groups of crops, comparing the requirements of agricultural crops to growing conditions with the agroecological condi- tions of a particular territory [2]. An important indicator that is taken into account in the agroecological assess- ment of a site is its geomorphology. An agroecological assessment of geomorphology is needed for crop selec- tion and main processing strategies. Agroecological as- sessment of land in a certain way correlates with eco- nomic assessment, socio-ecological and environmen- tal-economic [2]. Environmentally unjustified agricultural produc- tion led to significant losses of the humus layer of the soil, the development of erosion processes, an increase in areas of acidic and saline soils, a decrease in the con- tent of nutrients and beneficial microflora, pollution with pesticide residues, heavy metals, radionuclides [4, 5, 6]. Therefore, in order to solve the problems that have arisen in the field of land use, as well as for the devel- opment and implementation of scientifically based measures for the ecologically balanced use of agricul- tural land, it is necessary to have information on the agro-ecological state of soils. Soil is a thin upper layer of the earth's crust, which arose as a result of its transformation under the influ- ence of water, air, organisms and has natural fertility. Soils consist of solid, liquid and gaseous parts, plants, animals, microorganisms and is one of the components of the biosphere, the basic component of any landscape [7]. Soil is a unique, irreplaceable natural resource, so- lar energy storage, the basis of plant, animal and human life, as well as a natural indicator of environmental pol- lution [8]. Soils function as a habitat, accumulator and sources of matter and energy for organisms, an inter- mediate chain between biological and geological circu- lation, a protective barrier and conditions for the nor- mal functioning of the biosphere as a whole, and the like. The named functions of soils form their ecological potential [9]. Agroecological potential, that is, the ability of soils to perform the function of agricultural land, create optimal conditions for the growth and development of agricultural plants, as well as maintain ecological bal- ance in agricultural landscapes and the natural environ- ment, was determined by indicators characterizing: the thickness of the humus layer of the soil; nutrient con- tent; groundwater level and salinity; biotic potential or bioproductivity of land (average annual productive moisture, growing season, average annual radiation balance) resistance of soils to pollution (sums of active temperatures, steepness of slopes, rockiness, structure, resistivity, mechanical composition, humus content, type of water regime, pH reaction, ion capacity, silting, plowing, economic development) contamination with radionuclides (cesium, strontium, plutonium, ameri- cium), heavy metals (total content of boron, molyb- denum, manganese, zinc, cobalt, nickel, copper, chro- mium, lead and others), pesticides and mineral fertiliz- ers, taking into account the natural characteristics of soils; unfavorable natural and anthropogenic processes [9].
  • 4. 4 Norwegian Journal of development of the International Science No 48/2020 Technogenic pollution causes significant environ- mental damage to soils. It depends on the type of soil, the amount of industrial waste, heavy metals, radionu- clides, pesticides and mineral fertilizers. Soil pollution by industrial emissions and chemi- calization of agriculture is one of the potential contam- inants of land resources. In cities, the common source of soil pollution with heavy metals are enterprises of ferrous and non-ferrous metallurgy, light industry. The danger of soil pollution is determined not only by the content of heavy metals, but also by the hazard class of certain toxicants. The first hazard class includes arse- nic, cadmium, mercury, selenium, lead, zinc, fluorine, benz (a) pyrene; to the second - boron, cobalt, nickel, copper, molybdenum, antimony, chromium; to the third - barium, vanadium, tungsten, manganese, strontium. Their content in soils can be estimated both by gross and mobile forms of elements. Many of them can lead to morbidity in humans [7]. Soil pollution with chemical plant protection prod- ucts is complex. A several-fold decrease in the use of pesticides in recent years, although it contributed to a decrease in soil and agricultural products pollution with pesticides, has not significantly changed the situation. This is due to the fact that the residual amount of pesti- cides is in the soil for a long time [7]. During the period of the most intensive use of chemicals, when 5.5 kg of pesticides were used per hec- tare of arable land, their residues ended up in 50-60% of soil samples and in 30-35% of plant samples, incl. 2.5% with an excess of MPC in soil and 3.5% with an excess of maximum permissible levels in food products and 2.5% in feed. For some preparations from the group of persistent organochlorine compounds (polychloro- pinene, polychlorinated fel, celtan), the frequency of detection of residues in the treated fields reached 90- 98%, incl. up to 10% with an excess of MPC. An even more unfavorable situation was observed with respect to contamination with symmetriazine herbicides, the remains of which appeared in the soils 3-4 years after treatment in 56% of the samples. Their high persistence and phytotoxicity led to the death of sensitive crops in large areas. The greater the pesticide load on soils, the higher their harmfulness to the popu- lation [5]. About 50% of the total yield increase is provided by mineral fertilizers, 25% - by cultivation technolo- gies. However, do not forget that the improper use of mineral fertilizers - nitrogen, phosphorus, potassium, complex and others - is accompanied by undesirable side effects: pollution of the natural environment and is explained by the unbalanced use of fertilizers, deviation from the norms of their application. Some types of min- eral fertilizers can increase the acidity of soils, the ac- cumulation of hazardous residues in them. It is known that plants absorb only 50% of nitrogen and 10-20% of phosphorus fertilizers, the rest is washed out by atmos- pheric precipitation. If mineral fertilizers are used im- properly in the natural environment, nitrogen, phospho- rus, potassium can accumulate in increased amounts. This leads to acidification of the soil solution, pollution of groundwater as a result of filtration of fertilizers (es- pecially nitrogen), an increase in the content of nitrates, sulfates, chlorides in well water, the accumulation of residual reserves of nitrate nitrogen in crop production, pollution of reservoirs, rivers with fertilizer residues due to erosion processes, etc.d., causing harm to the health of people, animals, fisheries [9]. In recent years, the agricultural landscapes of Ukraine have been constantly exposed to various types of radiation pollution - atmospheric emissions of radi- onuclides as a result of nuclear weapons testing, waste from processing raw materials at nuclear fuel cycle en- terprises, and the like. Collection, analysis and generalization of radio- logical survey data of arable land in Ukraine showed that the contamination of cesium-137 above 37 kBq / m2 on agricultural land in Ukraine is spread over 461.7 thousand hectares, of which arable land is 345.9 thou- sand hectares. The contaminated areas are stored on the territory of 12 regions, where 8.8 mln. ga [10]. Strontium contamination of soil on agricultural land in Ukraine is observed on a much larger scale than cesium. Within 0.74-5.55 kBq / m2 , strontium-90 con- taminated 4.6 million hectares, which is 52% of the sur- veyed area. Such an intensive spread of this radionu- clide on the territory of Ukraine is due, first of all, to the global emissions of strontium-90 during tests of nu- clear weapons in the atmosphere [9]. The research was carried out in the farms of the Right-Bank Forest-Steppe, using resource-saving and intensive technologies for growing grain crops. The re- search was aimed at identifying the tendency of changes in agreological indicators of dark gray podzo- lized soils, depending on the intensity of the use of chemicals. The studies were supposed to study the influence of the intensification of agriculture on the change in the content of salts of heavy metals and pesticides in grain and seeds of the main field crops: winter wheat, spring barley, winter rape, corn, sunflower, soybeans, peas and buckwheat. The effect of the intensity of the chemicalization of farming systems in the cultivation of basic agricul- tural crops on the agroecological state of the soil was aimed at revealing the change in the agroecological state of the soil, depending on the intensity of agricul- ture, as a factor in the transfer of pollutants accumu- lated in the soil into grain and seeds of the main field crops. Soil samples were taken from the 0-20 cm layer in accordance with DSTU ISO 10381-1: 2004 [11]; deter- mination of the content of humus in the soil - using the Tyurin method in accordance with DSTU 4289: 2004 [12]; determination of the content of mobile forms of heavy metals (Pb, Cd, Zn, Cu) - after removal with an acetate-ammonium buffer solution pH 4.8 by atomic absorption spectrophotometry in accordance with DSTU 4770 [13]; determination of the reaction of soil pH salt - ionometric in accordance with DSTU ISO 10390-2001 [14, 15]; determination of hydrolytic acid- ity - by the Kappen method in accordance with DSTU 7537: 2014 [14, 15]; determination of the content of hy- drolyzed nitrogen in the soil - by the Cornfield method according to GOST 7863: 2015 [16, 18, 20,]; determi- nation of the content of mobile forms of phosphorus
  • 5. Norwegian Journal of development of the International Science No 48/2020 5 and potassium in the soil - by Chirikov's methods ac- cording to DSTU 4115-2002 [14, 16, 19]. The dark gray podzolized soils were formed mainly in liquefied lighted forests with a well-devel- oped herbaceous cover. Signs of podzolization in com- parison with gray soils are weakly expressed, and the processes of humus accumulation are intensified. The dark gray podzolized soil is characterized by the following properties: the humus-eluvial horizon is dense, and all the horizons below are very compacted. According to their granulometric composition, they are light and medium loamy [21]. Soil porosity is closely related to density. In dark gray podzolized soil, it is satisfactory for the arable layer (51%) and then drops to 44-50% [21]. Agrophysical properties of dark gray podzolized soils are satisfactory and good, characterized by a fairly stable water regime. In them, the number of waterproof aggregates noticeably increases, soils float less, and a crust forms less often. The moisture content increases significantly, but at the same time the amount of inac- cessible moisture also increases. They have high natu- ral fertility [21]. The potential fertility of dark gray podzolized soils is quite high. Their bonitet ranges from 37 in sandy loam to 55 points in heavy loamy varieties [21]. Our research has established that in the conditions of the Right-Bank Forest-Steppe within the Vinnytsia region on dark gray podzolized soils, where intensive chemicalization technologies are used, a high humus content was in the field where winter rape was grown – 4.4%. On the plot where sunflower was grown, the hu- mus content was 0.2% less, where corn was grown - 0.7% less, spring barley – 0.9% less and where winter wheat was grown – 2.1% less and amounted to 2.3%. The high content of hydrolyzed nitrogen was in the soil where sunflower was grown - 98.0 mg/kg. In the area where barley and corn were grown, the content of hydrolyzed nitrogen was 2.1% less, where winter wheat was grown – 2.8% less and where winter rape was grown – 3.5% less and amounted to 70.0 mg/kg. A high content of mobile phosphorus was in the soil where corn was grown – 319.0 mg/kg. In the area where winter wheat was grown, the content of mobile phosphorus was 1.2% less, where barley was grown – 3.8% less, where sunflower was grown - 3.9% less and where winter rape was grown – by 16.0% less and amounted to 159.0 mg/kg. The high content of mobile potassium was in the soil where winter wheat was grown – 239.0 mg/kg. On the plot where barley was grown, the content of mobile potassium was 4.2% less, where sunflower was grown – 6.9% less, where maize was grown – 12.7% less and where winter rape was grown – 13.9% less and amounted to 100.0 mg/kg. A high content of calcium was in the soil where winter rape was grown – 164.0 mg.eq/kg. On the plot where sunflower was grown, the calcium content was 0.4% less, where barley and corn were grown – 1.6% less and where winter wheat was grown – 4.8% less and amounted to 116.0 mg.eq/kg. The highest hydrolytic acidity was in the soil where winter rape was grown – 1.60 mg.eq/100 g. In the area where wheat was grown, the hydrolytic acidity was 0.63% less, where sunflower was grown – 1.24% less where maize was grown – by 1.25% less and where barley was grown - by 1.32% less and amounted to 0.28 mg.eq/100 g. The saline pH was higher in the soil where the bar- ley was grown - pH 7.0. On the plot where corn and sunflower were grown, the salt pH was 0.2% lower, where winter wheat was grown - 0.9% less and where winter rape was grown – 1.2% less and amounted to 5.8. So, the soil where winter wheat was grown had the least humus and calcium content, but the largest – po- tassium. The soil where the winter rape was grown was characterized by a high content of humus and calcium, high hydrolytic acidity, but a low content of hydrolyzed nitrogen, mobile forms of phosphorus and potassium, and low pH. The area where the corn was grown had a high content of mobile phosphorus, and the sunflower had a high content of hydrolyzed nitrogen. With the use of resource-saving chemicalization technologies, a high humus content was observed in the soil where winter wheat was grown – 3.4%. In the area where sunflower was grown, the humus content was 0.2% less, where peas were grown – 0.4% less, barley – 0.5% less and where soybeans were grown – 1.1% less and amounted to 2, 3%. The soil on which the barley was grown had the lowest hydrolytic acidity and the highest pH. The high content of hydrolyzed nitrogen was in the soil where winter wheat, barley and sunflower were grown – 77.0 mg/kg. In the area where peas were grown, the content of hydrolyzed nitrogen was 0.7% less and where soybeans were grown – 1.4% less and amounted to 63.0 mg/kg. The high content of mobile phosphorus was in the soil where peas were grown – 249.0 mg/kg. In the area where soybeans were grown, the content of mobile phosphorus was 1.3% less, where sunflower was grown – 8.3% less, where barley was grown - 16.6% less and where winter wheat was grown – 19.5% less and amounted to 54.0 mg/kg. The high content of mobile potassium was in the soil where sunflower was grown – 94.0 mg/kg. In the area where peas were grown, the content of mobile po- tassium was 0.4% less, where soybeans were grown – 2.9% less, where winter wheat was grown – 4.5% less and where barley was grown – 4.6% less and amounted to 48.0 mg/kg. A high content of calcium was in the soil where winter wheat was grown – 96.0 mg.eq/kg. In the area where peas were grown, the calcium content was 0.1% less, where sunflowers were grown - 0.6% less, where soybeans were grown – by 1.0% and where barley was grown – 2.6% less and amounted to 70, 0 mg. eq./kg. The highest hydrolytic acidity was in the soil where barley was grown - 3.48 mg. eq./100 g. In the area where winter wheat and sunflower were grown, hydrolytic acidity was 2.7% less, where soybeans were grown - by 3.0% less and where peas were grown – by 3.2% less and amounted to 0.31 mg. eq./100 g.
  • 6. 6 Norwegian Journal of development of the International Science No 48/2020 The saline pH was higher in the soil where the peas were grown – 7.2. In the area where soybeans were grown, the saline pH was 0.8% lower, where winter wheat and sunflower were grown – 1.0% less and where barley was grown – 2.2% less and amounted to 5.0. So, the soil where winter wheat was grown had the lowest content of mobile phosphorus, but the highest – calcium. The soil where the barley was grown was charac- terized by a high value of hydrolytic acidity, but a low content of mobile potassium. The soil on which the sunflower was grown had a high content of mobile potassium. The soil on which soybeans were grown had the lowest humus and hydro- lyzed nitrogen content. The soil on which the peas were grown had the lowest hydrolytic acidity, but the highest pH and mo- bile phosphorus content. So, in fact, fluctuations in the agrochemical pa- rameters of soils depended on the culture of the field and the predecessor in the crop rotation. In particular, in terms of agrochemical parameters, the soil of the field where winter wheat was grown at a resource-sav- ing level of chemicalization of agriculture had the low- est humus and calcium content, but the highest content of mobile potassium. This indicates the processes of soil degradation, depletion of organic matter. The soil of the field where winter rape was grown, on the con- trary, was characterized by a high content of humus, calcium, high hydrolytic acidity, but low nitrogen con- tent, easily hydrolyzed by mobile forms of phosphorus and exchangeable potassium, which indicates the pecu- liarities of the rapeseed culture and its effect on the soil condition. The ecological state of the soil of the field where winter wheat was grown due to the intensive level of chemicalization of agriculture had the lowest content of mobile phosphorus, but the highest - calcium, which led to an effect on the pH of the soil environment. It was found that the soil on which the sunflower was grown had a high content of mobile potassium and the lowest content of available forms of phosphorus, which indi- cates a high requirement of this crop for phosphorus nu- trition. But this negatively affects the condition of the soil and subsequent crops. Maximum concentration limit for lead in soil is 6.0 mg/kg. Under conditions of intensive chemicalization, a high content of lead was found in the soil where win- ter rape and corn were grown - 0.03 mg/kg, which is 200 times less than the MPC, and in other cases – 0.02 mg/kg, which is 300 times less MPC (Table 1). MPC of cadmium in soil is 0.7 mg/kg. A high con- tent of cadmium was found in the soil where winter rape was grown - 0.11 mg/kg, which exceeded the MPC by 1.6 times, and in other cases, the cadmium content was 0.02 mg/kg, which is 35 times less than the MPC. Maximum concentration limit of copper in soil is 3.0 mg/kg. A high copper content was found in the soil where winter rape was grown - 0.2 mg/kg, which is 15 times less than the MPC, and in other cases – 0.1 mg/kg, which is 30 times less than the MPC. The maximum concentration limit for zinc in soil is 23.0 mg/kg. A high zinc content was found in the soil where winter rape was grown – 2.36 mg/kg, which is 9.7 times less than the MPC, where winter wheat was grown – 1.59 mg/kg, which is 14.5 times less than the MPC. where corn was grown – 1.35 mg/kg, which is 17.0 times less than the MPC, where sunflower was grown – 1.23 mg/kg, which is 18.7 times less than the MPC and where barley was grown – 0.86 mg kg , which is 26.7 times less than the MPC. Table 1. The content of mobile forms of heavy metals in soils of agrocenosis (averaged data, 2018–2019) Culture name Heavy metal content, mg / kg Pb Cd Cu Zn fact. MPC fact. MPC fact. MPC fact. MPC Winter wheat 0,02 6,0 0,02 0,7 0,1 3,0 1,59 23,0 Winter rape 0,03 0,11 0,2 2,36 Spring barley 0,02 0,02 0,1 0,86 Corn 0,03 0,02 0,1 1,35 Sunflower 0,02 0,02 0,1 1,23 So, the soil where winter wheat was grown had the permissible content of lead, cadmium, copper and zinc, did not exceed the MPC. The soil where the winter rape was grown was characterized by a high content of cadmium, copper and zinc. The soil on which the barley was grown had the lowest zinc content. The soil on which the corn and sunflower were grown had the permissible content of lead, cadmium, copper and zinc, did not exceed the MPC. Under the conditions of resource-saving chemical- ization on all soils, the lead content in the soil was 0.01 mg / kg, which is 600 times less than the MPC (Table 2). A high content of cadmium was found in the soil where barley and sunflower were grown - 0.08 mg/kg, which is 8.8 times less than the MPC, where soybeans were grown – 0.02 mg/kg, which is 35 times less than the MPC, and other options – 0.1 mg/kg, which is 70 times less than the MPC. A high copper content was found in the soil where soybeans were grown – 1.0 mg/kg, which is 3 times less than the MPC, where sunflower was grown – 0.86 mg/kg, which is 3.5 times less than the MPC where winter wheat was grown – 0.82 mg/kg, which is 3.6
  • 7. Norwegian Journal of development of the International Science No 48/2020 7 times less than the MPC, where barley was grown – 0.77 mg/kg, which is 3.9 times less than the MPC and where peas were grown – 0.68 mg/kg, which is 4.4 times less than the MPC. Table 2. The content of mobile forms of heavy metals in soils of agrocenosis (averaged data, 2018–2019) Culture name Heavy metal content, mg / kg Pb Cd Cu Zn fact. MPC fact. MPC fact. MPC fact. MPC Winter wheat 0,02 6,0 0,02 0,7 0,1 3,0 1,59 23,0 Spring barley 0,03 0,11 0,2 2,36 Sunflower 0,02 0,02 0,1 0,86 Soy 0,03 0,02 0,1 1,35 Peas 0,02 0,02 0,1 1,23 A high zinc content was found in the soil where barley was grown – 6.8 mg/kg, which is 3.4 times less than the MPC where sunflower was grown – 6.5 mg/kg, which is 3.5 times less than the MPC where they were grown soybeans – 4.7 mg/kg, which is 4.9 times less than the MPC, where peas were grown – 3.8 mg/kg, which is 6.0 times less than the MPC and where winter wheat was grown – 3.6 mg/kg, which is 6.4 times less than the MPC. So, the soil where winter wheat was grown had the lowest cadmium and zinc content. The soil where the barley was grown was charac- terized by a high content of cadmium and zinc. The soil on which the sunflower was grown had a high cadmium content. The soil on which the soybeans were grown had a high copper content. The soil on which the peas were grown had the lowest cadmium and copper content. Comparison of fertility and toxicity indices of dark gray podzolized soils, where measures of intensive and resource-saving chemicalization were used in the culti- vation of agricultural plants, showed the following: - the content of humus in dark gray podzolized soils under conditions of intensive chemicalization was 2.3-4.4%, and by resource-saving chemicalization it was 1.3% less; - the content of hydrolyzed nitrogen in dark gray podzolized soils under conditions of intensive chemi- calization was 63.0-98.0 mg/ g, and for resource-saving chemicalization it was 2.1% less; - the content of mobile phosphorus in dark gray podzolized soils under conditions of intensive chemi- calization was 159.0-319.0 mg/kg, and for resource- saving chemicalization it was 8.8% less; - the content of mobile potassium in dark gray podzolized soils under conditions of intensive chemi- calization was - 100.0-239.0 mg/kg, and for resource- saving chemicalization by 9.9%; - the calcium content in dark gray podzolized soils under conditions of intensive chemicalization was 116.0-164.0 mg.eq/kg, and with moderate chemicaliza- tion it was 5.3% less; - the value of hydrolytic acidity in dark gray pod- zolized soils under conditions of intensive chemicaliza- tion was 0.35-1.60 mg.eq/100 g, and for resource-sav- ing chemicalization by 0.75% more; - pH value in dark gray podzolized soils under conditions of intensive chemicalization was 5.8-7.0, and for resource-saving chemicalization by 0.3% more; - lead content in dark gray podzolized soils under conditions of intensive chemicalization was 0.02-0.03 mg/kg, and for resource-saving chemicalization by 0.1% more; - the content of cadmium in dark gray podzolized soils under conditions of intensive chemicalization was 0.02-0.11 mg/kg, and for resource-saving chemicaliza- tion by 0.1% less; - the copper content in dark gray podzolized soils under conditions of intensive chemicalization was 0.1- 0.2 mg / kg, and for resource-saving chemicalization by 0.1% more; - the zinc content in dark gray podzolized soils un- der conditions of intensive chemicalization was 0.86- 2.36 mg/kg, and for resource-saving chemicalization – 3.6-6.8 mg/kg, which is 3.5% more. The residual content of pesticides (γ - HCH, DDT) in dark gray podzolized soils during the cultivation of winter wheat, spring barley, sunflower, soybeans and peas was determined (Table 3). Table 3. The residual content of pesticides in dark gray podzolized soils during the cultivation of basic agricultural crops under the conditions of intensive and resource-saving chemicalization of the Right-Bank Forest-Steppe (average for 2018–2019) Culture name Pesticide content, mg/kg γ – GHCG DDT fact. MPC fact. MPC Winter wheat ˂0,02 0,5 ˂0,02 0,2 Spring barley ˂0,02 ˂0,02 Sunflower ˂0,02 ˂0,02 Soy ˂0,02 ˂0,02 Peas ˂0,02 ˂0,02
  • 8. 8 Norwegian Journal of development of the International Science No 48/2020 According to the research results, it was found that the residual amount of pesticides in dark gray podzo- lized soils during the cultivation of basic agricultural crops under conditions of intensive and resource-saving chemicalization of agriculture was significantly lower than the MPC - less than 0.02 mg/kg γ – HCH at the MPC 0.5 mg/kg and less than 0.02 mg/kg DDT with an MPC of 0.2 mg/kg, which is less than the device error. It was found that in the conditions of intensive and resource-saving chemicalization of agriculture, the ac- cumulation of pesticide residues γ - HCH and DDT in dark gray podzolized soils was not found. So, according to the results of assessing the state of food photographs of agroecosystems of the Right- Bank Forest-Steppe at different levels of chemicaliza- tion of agriculture, it was found that, in fact, fluctua- tions in agrochemical parameters of the soil depended on the specific agrocenosis of the crop and the prede- cessor in crop rotation, and the content of mobile forms of heavy metals (lead, copper, cadmium, zinc), residues organochlorine pesticides differed within the margin of error and did not exceed their maximum permissible concentration. REFERENCES: 1.Dobryak D.A., Classification and ecological use of agricultural lands / DA Dobryak. Good man. M .: Knowledge, 2001. 309 p. 2.Ride N.M., Environmental assessment of agro- biocenoses: theory, methodology, practice / NM. Ride, V.P. Strokal, Yu.V. Rybalko. - Kherson: Publishing house "Oldie-plus", 2011. 568 p. 3.On the state of soil fertility in Ukraine. Kiev, 2010. URL: file: /// C: /Users/admin/Desk- top/stan_gruntiv.pdf. 4.Klimenko N. A., Borisyuk B. V., Kolesnik T. N. Balanced use of land resources: textbook. allowance. Kherson: OLDI-PLUS, 2014.552 p. 5.Furdychko A.I. Ecological foundations of bal- anced development of the agrosphere in the context of the European integration of Ukraine: monograph. Kiev: DIA, 2014. 432 p. 6.Tarariko A.G., Emelnova Zh. L., Ilyenko T.V., Kuchma T.L. Formation of the agrosphere of Ukraine according to the principles of the Rio conference. Eco- logical Bulletin. 2014. No. 4. S. 26-28. 7.Khilko M.I. Environmental safety of Ukraine: textbook. Kiev, 2017. 267 p. 8.Mazur V.A., Vradiy A.I. Monitoring of soil pol- lution by heavy metals at the research site in the NDG "Agronomichnoe", Vinnytsia National Agrarian Uni- versity. Agriculture and forestry. 2019. No. 13. S. 16- 24. 9.Radionuclide contamination of agricultural land, URL: http://www.iogu.gov.ua/monitorynh-ob- jektiv-dovkillya/radionuklidy. 10. Gutorov A.I. Problems of sustainable land use in agriculture: theory, methodology, practice: mono- graph. Kharkov: KhNAU, 2010. 405 p. 11. DSTU ISO 10381-1: 2004. Soil quality. Sam- ple selection. Part 1. Guidance on the design of sam- pling programs. [Introductions 2006.04.01]. K.: Derzh- spozhivstandart of Ukraine, 2006. 36 p. 12. DSTU 4289: 2004. Soil quality. Methods for the determination of organic matter. [Introductions 2008.01.01]. K.: State Consumer Standard of Ukraine, 2008. 16 p. 13. DSTU 4770: 2007 Soil quality. Determination of the content of mobile manganese compounds (zinc, cadmium, iron, cobalt, copper, nickel, chromium, lead) in the soil in a buffered ammonium acetate extract with pH 4.8 by atomic absorption spectrophotometry. [Intro- ductions 2009.01.01]. K.: Derzhspozhivstandart of Ukraine, 2009. 117 p. 14. Methods for determining the composition and properties of soils. S. A. Balyuk, V. A. Barakhtyan, M. E. Lazebnaya; ed. Balyuka S.A. Kh., 2004.S. 193- 210.376. 15. 15. DSTU ISO 10390: 2001 Soil quality. De- termination of pH. [Introductions 2003.01.01]. K. Gosstandart of Ukraine, 2003. 14 p. 16. Gritsaenko S.M., Gritsaenko A.A., Karpenko V.P. Methods of biological and agrochemical studies of plants and soils. Moscow: ZAO Nachalova, 2003. 320 p. 17. DSTU 7537: 2014 Soil quality. Determination of hydrolytic acidity. [Introductions 2015.01.01]. K. Ministry of Economic Development of Ukraine, 2015. 10 p. 18. DSTU 7863: 2015 Soil quality. Determination of easily hydrolyzed nitrogen by the Cornfield method. [Introductions 2016.01.01]. K. UkrNDNTS, 2016. 9 p. 19. DSTU 4115-2002 Soils. Determination of mo- bile compounds of phosphorus and potassium accord- ing to the modified Chirikov method. [Introductions 2003.01.01]. K. Gospotrebstandart of Ukraine, 2003. 12 p. 20. Yakovets L.A., Vatamanyuk A.V. Peculiari- ties of the accumulation of lead and cadmium in grain of cereal crops during storage. Organic agricultural pro- duction: education and science: Collection of abstracts of the International Scientific and Practical Conference (Kiev, November 1, 2018). Kiev, 2018.S. 69-71. 21. Musluva T.N. Copper in the soils of Zhytomyr Polesie. Bulletin of the Zhytomyr National Agroeco- logical University. Scientific and theoretical collection. 2010. No. 2 (27). S. 30-45.
  • 9. Norwegian Journal of development of the International Science No 48/2020 9 EARTH SCIENCES ASSESSMENT OF RECREATIONAL LOAD OF ECO-NETWORK FACILITIES OF CHERKASY REGION Kosenko Yu. lecturer at the Department of Ecology and Life Safety of Uman National University of Horticulture ОЦІНКА РЕКРЕАЦІНОГО НАВАНТАЖЕННЯ ОБʼЄКТІВ ЕКОМЕРЕЖІ ЧЕРКАСЬКОЇ ОБЛАСТІ Косенко Ю.Ю. викладач кафедри екології та безпеки життєдіяльності Уманського національного університету садівництва Abstract The article considers the degree of recreational load of the territory by the objects of the nature reserve fund (insularization) of the elements of the network of specially protected natural territories of Cherkasy region. The method of calculating the insularization index is given. The connection of this indicator with some traditional parameters, such as "percentage of reserves" is analyzed. Territorial differences in the degree of insularization of protected areas in terms of administrative districts are shown. Анотація У статті розглядається ступінь рекреаціного навантаження території об’єктами ПЗФ (інсуляризації) елементів мережі особливо охоронюваних природних територій Черкаської області. Наведено методику обчислення індексу інсулярізації. Проаналізовано зв'язок цього показника з деякими традиційними пара- метрами, такими як «відсоток заповідності». Показані територіальні відмінності ступеня інсулярізації при- родоохоронних територій в розрізі адміністративних районів. Keywords: insularization; specially protected natural area; insularization index; percentage of reserves; Cherkasy region. Ключові слова: інсуляризація; особливо охоронювана природна територія; індекс інсуляризації; від- соток заповідності; Черкаська область. Проблема інсулярізації особливо охоронюва- них природних територій (ООПТ) і об'єктів в Чер- каській області стоїть дуже гостро. Краще, коли за- повідна територія повністю охоплює межі природ- ного комплексу, - тоді забезпечуються всі необхідні умови для його повноцінного існування, а найго- ловніше, така ділянка буде відрізнятися стійкістю і саморегуляцією. На жаль, в нашій області заповідні території часто охоплюють тільки частину природного ком- плексу або взагалі тільки один унікальний, рідкісний компонент - «природний об'єкт» (дже- рело, окреме дерево, група дерев чи криниця та т.п.). Така розчленованість природоохоронної тери- торії на окремі фрагменти називається «інсуляриза- цією». Інсуляризовані (дрібні і ізольовані) одиниці згодом швидко втрачають природну цінність. Оптимальний розмір заповідної території в літературних джерелах остаточно не обґрунтова- ний. Складність полягає в тому, що для кожного об’єкту або природного комплексу оптимальний розмір території буде різним, крім того, він зале- жить і від природної зони або географічного поясу, в яких знаходиться заповідний об'єкт, а також рівня його замкненості (болото, озеро або ліс). Напри- клад, з огляду на різні підходи, можна вважати, що оптимальна територія для заповідника в країнах помірного поясу буде близька до 1 млн. га, мінімальною територією заповідника можна вва- жати площу близько 250 тис. га в зоні хвойних і мішаних лісів і пустелях, близько 50-100 тис. га в зоні широколистяних лісів і лісостепу, 10 тис. га в степу. Звичайно, в межах області виділити такі площі немає можливості і в багатьох випадках це недоцільно. До двох загальноприйнятих критеріїв (кілько- сті об’єктів, що охороняються, та розміру території, яка знаходиться під охороною) в абсолютному та процентному вираженні, виділяють третій критерій – ступінь розчленованості заповідних територій, тобто інсуляризованості природних об’єктів. Ві- домо, що природна територія тільки тоді буде стій- кою, коли вона є цілісною і має достатню площу для підтримання самовідновлення популяцій рос- лин і тварин. Індекс інсуляризованості (I) включає в себе два компоненти. Перший із компонентів (I1) обчислюється із врахуванням загальної площі регіону (S) і площі всіх відносно стійких (площею більше 50 га) та нестійких (площею менше 50 га) заповідних об’єктів. Площа останніх позначається як (Sн). Цей компонент розраховується за формулою: Значення I1 знаходяться в межах від 0 (інсуля- ризованість повністю відсутня) до 1 (інсуляризова- ність максимальна і територія під охороною скла- дається з найдрібніших ділянок).
  • 10. 10 Norwegian Journal of development of the International Science No 48/2020 Другий компонент індексу інсуляризованості (I2) базується на кількості заповідних об’єктів регі- ону (N) та кількості нестійких об’єктів у цьому ж регіоні (Nн). Тоді: Значення цього компоненту також лежать у межах від 0 (інсуляризація відсутня) до 1. В цілому, індекс інсуляризованості території (I) буде: Чим більше значення I, тим більш значну роль у загальній території, що охороняється, відіграють дрібні ділянки, що не мають екологічної стабільно- сті. Кількісне оцінення природо-заповідних об’єктів у межах адміністративних районів Черкаської області №п/п Назва району Площа району (тис.кв. км) Загальна площа ПЗФ Зага- льна кі- лькість ПЗО <50,га ПЗО >50,га Індекс інсуля- ризова- ності га % од. га од. га 1 Городищенський м. Городище 0,9 492 0,54 15 11 124 4 368 0,367 2 Драбівський смт. Драбів 1,2 473 0,39 10 7 175 3 298 0,352 3 Жашківський м. Жашків 1,0 1955 1,95 7 3 85 4 1870 0,224 4 Звенигородський м. Звенигородка 1,0 1144 1,14 57 49 537 8 607 0,43 5 Золотоніський м. Золотоноша 1,5 14997 9,99 23 18 224 5 14753 0,44 6 Кам’янський м. Кам’янка 0,7 159 0,22 19 19 159 - - 1 7 Канівський м. Канів 1,3 22544 17,3 60 52 22093 8 451 0,431 8 Катеринопільський смт. Катеринопіль 0,7 130 0,18 10 10 130 - - 1 9 Корсунь-Шевчен- ківський м. Корсунь-Шевче- нківський 0,9 4184,9 4,65 48 44 59,3 4 4125,6 0,461 10 Лисянський смт. Лисянка 0,7 247,75 0,35 28 27 195,65 1 52,1 0,481 11 Маньківський смт. Маньківка 0,8 1950,8 2,43 35 31 396,44 4 1554,7 0,442 12 Монастирищенсь- кий м. Монастирище 0,7 1024,4 1,46 9 5 76,7 4 947,7 0,275 13 Смілянський м. Сміла 0,9 2725,8 3,02 24 20 153,295 4 2572,5 0,415 14 Тальнівський м. Тальне 0,9 618,6 0,68 12 10 132,6 2 486 0,415 15 Уманський м. Умань 1,4 194,71 0,14 8 7 34,71 1 160 0,43 16 Христинівський м. Христинівка 0,6 281,5 0,46 7 5 98,8 2 182,7 0,355 17 Черкаський м.Черкаси 1,6 7335,49 4,58 60 47 447,79 13 6887,7 0,412 18 Чигиринський м.Чигирин 1,2 1867,347 1,55 21 15 32,77 6 1834,577 0,355 19 Чорнобаївський смт. Чорнобаїв 1,6 26992,97 16,8 21 15 217,6669 6 26775,3 0,355 20 Шполянський м. Шпола 1,1 354,54 0,32 15 13 165,94 2 188,6 0,43
  • 11. Norwegian Journal of development of the International Science No 48/2020 11 Нашими дослідженнями встановлено, що майже відсутня інсуляризація в Жашківському рай- оні (0,224), що пояснюється майже повною від- сутністю в його межах дрібних заповідних об'єктів (3 об’єкти). Незначні показники спостерігаються в Монастирищенському районі (0,275), де є 5 об'єктів які мають площу менше 50 га. У той же час високий рівень інсулярізації в Камʼянському (1) та Катери- нопільському (1) районах. Так як там присутні лише дрібні заповідні об’єкти. Підрахований індекс інсулярізації підтверджує недоліки і деформації в структурі ООПТ області, його значення колива- ються в межах адміністративних районів. Порів- нюючи значення індексу інсулярізації і «відсоток заповідності» отримуємо певні неузгодження. Прикладом такого неузгодження може слу- жити Чорнобаївський район - при високому показ- нику заповідності 16,8% тут спостерігається доволі високий рівень інсулярізаціі (0,355). Аналізуючи всі обрахунки, можна зробити висновки, що показ- ники інсуляризації по адміністративним районам є майже на одному рівні. З огляду на всі недоліки в кількісній та якісній структурі ООПТ Черкаської області, можна ска- зати, що процес оптимізації цієї системи є надзви- чайно актуальною проблемою. Розширюючи еко- логічну мережу, природно-заповідний фонд, необ- хідно не забувати про їх якість, і намагатися створювати такі об'єкти, які здатні до саморегуля- ції, самовідновлення і до протистояння антропоген- ному впливу. СПИСОК ЛІТЕРАТУРИ: 1.Екологічна мережа Центрального При- дніпров’я / Бащенко М. І., Гончар О. Ф., Лавров В. В., Дерій С. І. – К. : Центр екол. освіти та інфор- мації, 2009. – 386 с. 2.Застосування географічних інформаційних систем у ґрунтознавстві: Навчальний посібник. / Т. С. Ямелинець. – Львів: Видавничий центр ЛНУ імені Івана Франка, 2008. – 196 с. 3.Заповідна Черкащина : історія, сьогодення, майбутнє / під заг. ред. М. Г. Чорного. – Черкаси : Вертикаль, 2012. – 200 с. 4.Заваріка Г.М. Туризм на охоронних природ- них територіях./ Географія та туризм.- 2014.- Ви- пуск 28.- С.С. 45-49. 5.Конякін С. М. Оцінка репрезентативності природнозаповідного фонду Черкаської області як основи функціонування регіональної екомережі / С. М. Конякін // Наук. вісник Чернівецького нац. ун- ту. – 2012. – Вип. 614-615. – С. 58-65. 6.Никифоров В. В. Экологическая сеть Сред- него Приднепровья: современное состояние и пути оптимизации / В. В. Никифоров. – Днепропетровск : изд-во Днепропетровського ун-та, 2003. – 188 с. 7.Регіональна доповідь про стан навколишнь- ого природного середовища в Черкаській області у 2017 році / Держуправління екології та природних ресурсів в Черкаській обл. – Черкаси, 2018. – 204 с. 8.Розбудова екомережі України / за ред. Ю. Р. Шеляг-Сосонка. – К.: Програма розвитку ООН. Проект «Екомережі», 1999. – 127 с.
  • 12. 12 Norwegian Journal of development of the International Science No 48/2020 CHEMICAL COMPOSITION OF BRINES OF DOMBROVSKY QUARRY KALUSH-GOLINSKY POTASH DEPOSIT Malkova Y. Junior Research Fellow, State Institution "Institute of Environmental Geochemistry of National academy of sciences of Ukraine" Dolin V. Doctor of Geological Sciences, Professor, State Institution "Institute of Environmental Geochemistry of Na- tional academy of sciences of Ukraine" ХІМІЧНИЙ СКЛАД РОЗСОЛІВ ДОМБРОВСЬКОГО КАР’ЄРУ КАЛУШ-ГОЛИНСЬКОГО РОДОВИЩА КАЛІЙНИХ СОЛЕЙ Малькова Я. Молодший науковий співробітник, Державна установа «Інститут геохімії навколишнього середо- вища Національної академії наук України» Долін В. Доктор геологічних наук, професор, Державна установа «Інститут геохімії навколишнього середо- вища Національної академії наук України» Abstract The chemical composition of brines was analyzed. It is established that variations in the relative equivalent composition of brine components during 46 years of the quarry operation, on the average, are ± 50%. The content of heavy metals in brines has been analyzed. It is established that concentrations of elements (Zn, Pb, Fe, Mn, Cr, Ni) exceed the maximum permissible concentrations. The quality of water that fills the quarry, taking into account the concentrations of chlorides and sulfates, and macroelements, can be attributed to Class 4. The relative equiva- lent composition of brines has been analyzed. Regression dependencies have been calculated and the conclusion about brine mineralization growth with time has been made. Анотація Проаналізовано хімічний склад розсолів. Встановлено, що варіації відносного еквівалентного складу компонентів розсолу протягом 46 років експлуатації кар’єру, в середньому, становлять ±50 %. Проаналізо- вано вміст важких металів у розсолах. Встановлено, що концентрації елементів (Zn, Pb, Fe, Mn, Cr, Ni) перевищують гранично допустимі концентрації. Якість води, яка наповнює кар’єр, враховуючи концен- трації хлоридів і сульфатів, а також макроелементів, може бути віднесена до 4 класу. Проаналізований відносний еквівалентний склад розсолів. Розраховано регресійні залежності та зроблено висновок про зро- стання мінералізації розсолу з часом. Keywords: chemical composition of brines, concentration, brine, mineralization, density. Ключові слова: хімічний склад розсолів, концентрація, розсіл, мінералізація, густина. Впродовж останнього десятиріччя негативний вплив розробки та екологічно недосконалої ліквідації гірничодобувних підприємств Карпатсь- кого регіону перетворився на чинник виникнення трансграничних надзвичайних ситуацій у басейнах рр. Дністер та Тиса. Специфікою використання надр у межах Ка- луш-Голинскього родовища є порушення гідрогео- фільтраційної ізольованості соляних тіл, розвиток карстових процесів унаслідок утворення порожнин у породному масиві та порушення геомеханічної рівноваги солевміщуючих порід, що призводить до руйнації міжкамерних ціликів, утворення зрушень земної поверхні, карстових воронок, забруднення підземних вод. Загроза забруднення джерел питного водопо- стачання Дністровського басейну істотною мірою визначається неконтрольованим затопленням Дом- бровського кар’єру (52.5 млн. м3 ) та ката- строфічним витоком розсолів з концентрацією 60– 450 г/дм3 в річкову мережу. Об’єм розсолів на по- чаток 2020 р. становить 26,89 млн. м3 . Міне- ралізація в придонній частині 400 г/дм3 . Макси- мально можливий об’єм наповнення 41 млн. м3 . Перед авторами стояла задача детально до- слідити еволюцію хімічного складу розсолів для подальших прогнозних розрахунків. Об’єкт дослідження та методика Авторами проаналізовано дані ДП «Калійний завод» та ДП НДІ «Галургія» щодо хімічного складу поверхневого шару розсолів. Варіації вмісту солей спостерігаються у широких межах (77—375 г×дм-3 ) зі стійкою тенденцією щодо зниження міне- ралізації починаючи з 2007 р. Проф. Семчук Я.М. [3, с. 304], а пізніше його учні [2, с. 125] експери- ментально довели, що насичений водний розчин со- леносних порід Домбровського кар’єру має міне- ралізацію 420-430 г×дм–3 . За головними компонентами води відносяться до хлоридно-натрієвого типу, за класифікацією Курлова – до хлоридно-магній-натрієвого, Пітьєвої – до хлоридно-сульфатного-натрій-магнієвого з підвищеним вмістом калію.
  • 13. Norwegian Journal of development of the International Science No 48/2020 13 Варіації відносного еквівалентного складу компонентів розсолу протягом 46 років експлуата- ції кар’єру, в середньому, становлять ±50 % (табл.1). [1, с. 71] При цьому відносний еквівалент- ний склад компонентів розсолу практично не змінювався. (рис.1). Таблиця 1. Варіації хімічного складу розсолів протягом 1968–2007 рр. Одиниці K Mg SO4 Na Cl г×дм–3 12,0–43,0 21,3 7,83–27,4 15,8 13,25–113 45,8 48,7–78,2 63,0 86,9–170 131 % від Sum 4,8–12,9 7,8 18,7–34,2 23,3 36,0–66,8 48,2 3,6–7,9 5,7 5,5–30,2 16,5 М×дм–3 0,31–1,1 0,55 0,33–1,1 0,66 0,14–1,2 0,48 2,1–3,4 2,7 2,5–4,8 3,7 y = -0,0411x + 41,2 R2 = 0,0148 0 10 20 30 40 50 0 10 20 30 40 50 Період, роки Cl - , мг-екв% y = 0,0432x + 8,98 R2 = 0,0159 0 5 10 15 20 25 0 10 20 30 40 50 Період, роки SO 4 2- , мг-екв% y = 0,0409x + 29,6 R2 = 0,0162 0 5 10 15 20 25 30 35 40 45 0 10 20 30 40 50 Період, роки Na + , мг-екв.% y = -0,0083x + 5,91 R2 = 0,0065 0 2 4 6 8 10 12 0 10 20 30 40 50 Період, роки К + , мг-екв.% y = -0,0347x + 14,3 R2 = 0,014 0 5 10 15 20 25 0 10 20 30 40 50 Період, роки Mg 2+ , мг-екв.% Рис. 1. – Часова динаміка відносного еквівалентного складу компонентів розсолу.
  • 14. 14 Norwegian Journal of development of the International Science No 48/2020 За даними кореляційного аналізу спо- стерігається тенденція до зменшення концентрації основних компонентів розсолу зі зростанням об’єму тіла наповнення кар’єру (Ккор. близько 0,5). (табл. 2, рис. 2). Ця тенденція характеризує другий умовний період, що розпочався після повені 2008 р. [4, с.1] Спостережувана тенденція зниження міне- ралізації поверхневого шару розсолів з часом та зі зростанням їх об’єму з високою достовірністю (R2 ~ 0,9) описується експоненційною залежністю ви- гляду: ) , ( V t k e a S    (1) де S – мінералізація розсолу, г×дм-3 , k – кон- станта, яка характеризує динаміку процесу фор- мування хімічного складу протягом певного часу (точка 2007 р. відповідає 1 на осі абсцис, рис. 3. а) або зі зростанням об’єму розсолу (шкала осі абсцис у млн. м3 , рис. 3. б) та має відповідну розмірність рік-1 та м-3 . Параметри рівнянь наведено на графіках (рис.3.). Таблиця 2. Результати кореляційного аналізу даних K, mg- eq/l K, mg- eq.% Na, mg- eq/l Na, mg- eq.% Mg, mg- eq/l Mg, mg- eq.% SO4, mg-eq/l SO4, mg- eq.% Cl, mg- eq/l Cl, mg- eq.% S, mg- eq/l K, mg- eq/l 1,00 K, mg- eq.% 0,90 1,00 Na, mg- eq/l 0,63 0,35 1,00 Na, mg- eq.% - 0,61 -0,44 - 0,32 1,00 Mg, mg-eq/l 0,55 0,24 0,50 -0,91 1,00 Mg, mg- eq.% 0,38 0,16 0,25 -0,95 0,92 1,00 SO4, mg-eq/l 0,23 -0,08 0,48 -0,46 0,65 0,53 1,00 SO4, mg- eq.% - 0,03 -0,25 0,22 -0,27 0,40 0,37 0,92 1,00 Cl, mg- eq/l 0,82 0,62 0,79 -0,63 0,67 0,50 0,17 -0,17 1,00 Cl, mg- eq.% 0,00 0,23 - 0,24 0,29 -0,41 -0,38 -0,92 -1,00 0,15 1,00 S, mg- eq/l 0,77 0,46 0,86 -0,73 0,85 0,65 0,62 0,31 0,88 -0,33 1,00 d 0,82 0,59 0,74 -0,67 0,72 0,55 0,26 -0,06 0,94 0,04 0,88 t - 0,04 -0,08 - 0,20 0,13 -0,05 -0,12 0,05 0,13 -0,20 -0,12 - 0,13 V - 0,30 -0,23 - 0,52 0,42 -0,36 -0,40 -0,23 -0,10 -0,48 0,12 - 0,49
  • 15. Norwegian Journal of development of the International Science No 48/2020 15 y = -0,0411x + 41,2 R2 = 0,0148 0 10 20 30 40 50 0 10 20 30 40 50 Період, роки Cl - , мг-екв% y = 0,0432x + 8,98 R2 = 0,0159 0 5 10 15 20 25 0 10 20 30 40 50 Період, роки SO 4 2- , мг-екв% y = -0,0002x + 9642,4 R2 = 0,2436 0 2000 4000 6000 8000 10000 12000 14000 0 5000000 10000000 15000000 20000000 V, м3 S, mg-eq/l y = -9E-05x + 3845,3 R2 = 0,2302 0 1000 2000 3000 4000 5000 6000 0 5000000 10000000 15000000 20000000 V, м3 Cl, mg-eq/l y = -6E-05x + 2856,6 R2 = 0,2699 0 500 1000 1500 2000 2500 3000 3500 4000 0 5000000 10000000 15000000 20000000 V, м3 Na, mg-eq/l Рис. 2. – Регресійні залежності між концентрацією компонентів та об’ємом розсолу
  • 16. 16 Norwegian Journal of development of the International Science No 48/2020 S=408e-0,221t 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Період, роки 0 50 100 150 200 250 300 350 400 S, г * дм -3 S=686e-0,110V 6 8 10 12 14 16 18 20 22 V, млн. м 3 0 50 100 150 200 250 300 350 400 S, г * дм -3 а б Рис. 3. – Динаміка мінералізації розсолу протягом сучасного періоду формування його хімічного складу: а – у часі, б – залежно від об’єму. У таблиці коефіцієнтів кореляції (табл. 2) штриховкою виділено значимі (понад 0,5 по мо- дулю) коефіцієнти кореляції. Білими цифрами на темнішому фоні виділено значення коефіцієнтів ко- реляції між величинами, що являють певний інте- рес для вивчення процесів формування хімічного складу розсолів та прогнозування. Величина коефіцієнту кореляції між рядами даних визначає імовірність (у частках одиниці) збільшення зна- чення одного параметра при збільшенні іншого (по- зитивна кореляція) та навпаки, зменшення зна- чення одного параметра при збільшенні іншого (негативна кореляція). Густина розсолів великою мірою визначається їхнім хімічний складом: Ккор становить 0,72—0,94 для всіх, за виключенням сульфат-аніону, компо- нентів розсолу. Отже, вимірюючи лише густину можна з високою достовірністю прогнозувати хімічний склад розсолів за лінійною залежністю: B x A y    , (1) параметри якої визначено шляхом ре- гресійного аналізу і наведено в табл. 3. Таблиця 3. Параметри регресійної залежності між величинами густини та концентрацією компонентів розсолу Компонент (змінна у) А, мг-екв×дм—3 В, мг-екв×дм—3 R2 Мінералізація, S 38546 —36311 0,77 Хлориди, Cl— 16390 —15666 0,88 Натрій, Na+ 8083 —6819 0,54 Калій, K+ 3441 —3516 0,67 Магній, Mg2+ 7761 —7854 0,52 Аналіз вмісту важких металів у поверхневому шарі розсолу здійснювали на атомно-аб- сорбційному спектрометрі С – 115 М1 за стандарт- ною методикою. За низкою показників (вміст Ni, Fe, Mn, Pb, Cr) визначено перевищення ГДК, вста- новлених СанПиН 4630-88, які діяли в Україні до 2007 р. Зокрема, вміст свинцю у розсолі перевищує ГДК більше, як у 40 разів (табл.4). Неважко ро- зрахувати, що при випаровуванні розсолу сухий за- лишок міститиме понад 3 мг×кг–1 водорозчинного свинцю. У перерахунку на найбільш цінну сиро- вину питомий вміст водорозчинного свинцю в 1 кг сухого KCl становитиме майже в 7 разів більше — близько 20 мг×кг–1 . За нині діючим ДСТУ якість води, яка наповнює кар’єр, враховуючи концентра- ції хлоридів і сульфатів, а також макроелементів, може бути віднесена до 4 класу. Таблиця.4. Вміст важких металів у розсолі Метал Концентрація , мг×дм–3 СанПиН 4630-88 (для водойм культурно-по- бутового та питного водо- постачання) ПДК и ОБУВ 12-04-11 (1990) (для водойм рибо- господарського призна- чення) Клас якості води (за ДСТУ 4808:2007) Цинк 0,18 1,03 0,05 2 (0,1-0,5) Нікель 0,55 0,1 0,01 4 (> 0,1) Залізо 0,78 0,33 Не встановлено 2 (0,3-1,0) Марганець 0,43 0,13 Не встановлено 3 (0,1-0,5) Свинець 1,23 0,03 0,01 4 (>0,1) Мідь 0,11 1,03 0,005 4 (>0,003) Хром 0,79 0,5 0,001 4 (>0,5) Примітка: червоним кольором виділено перевищення допустимих концентрацій
  • 17. Norwegian Journal of development of the International Science No 48/2020 17 Концентрації компонентів розсолу і густина незначною мірою змінюються у часі, що характери- зується невеликими значеннями коефіцієнтів коре- ляції. У зв’язку зі значним розкидом даних вірогідність регресійної залежності часової зміни густини розсолу надзвичайно низька (рис. 4). Отримані регресійні залежності описуються рівняннями: [Na+ ] = 0.15×t + 59.3 (2), [K+ ] = 0.13×t + 18.2 (3), [Mg2+ ] = 0.094×t + 13.6 (4), [Cl– ] = 0.21×t + 125 (5), [SO4 2– ] = 0.56×t + 33.4 (6), d = 0.0004×t + 1.169 (7), Sum = 1.14×t + 250 (8). Оскільки основними чинниками формування хімічного складу розсолу є природно-техногенні умови, рівняння 2-8 не є основними для прогно- зування стану об’єкту дослідження. Зміна концентрації натрію в часі [Na] = 0,15t + 59,3 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 t, роки Na, г/л Зміна концентрації калію у часі [K] = 0,13t + 18,2 0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 t, роки K, г/л Зміна концентрації магнію у часі [Mg] = 0,094t + 13,6 0 5 10 15 20 25 30 0 10 20 30 40 50 t, роки Mg, г/л Зміна концентрації хлоридів у часі [Cl] = 0,21t + 125 0,00 20,00 40,00 60,00 80,00 100,00 120,00 140,00 160,00 180,00 0 10 20 30 40 50 t, роки Cl, г/л Зміна концентрації сульфатів у часі [SO4 ] = 0,56t + 33,4 0,00 20,00 40,00 60,00 80,00 100,00 120,00 0 10 20 30 40 50 t, роки SO4, г/л Зміна густини розсолу в часі d = 0,0004t + 1,169 1,1 1,12 1,14 1,16 1,18 1,2 1,22 1,24 1,26 1,28 0 10 20 30 40 50 t, роки d, г/см 3 Зміна мінералізації у часі Sum = 1,14t + 250 0 50 100 150 200 250 300 350 400 0 10 20 30 40 50 t, роки Sum, г/л Рисунок 4. – Зміна фізико-хімічних властивостей розсолу в часі Висновки Відносний еквівалентний склад розсолів прак- тично не змінюється протягом 60 років, що свід- чить про квазістабільний стан об’єкту дослідження та визначається гідрогеохімічними закономірно- стями формування хімічного складу розсолів. Відносно стабільний еквівалентний склад розсолів є підставою для прогнозування хімічного складу розсолів за простими лінійними залежностями. Зменшення мінералізації поверхневого шару розсолів у період після повені 2008 р. з високою до- стовірністю описується експоненційною залеж- ністю. Проаналізовано дані кореляційного аналізу,
  • 18. 18 Norwegian Journal of development of the International Science No 48/2020 спостерігається чітка тенденція до зменшення кон- центрації основних компонентів розсолу зі зростан- ням об’єму тіла наповнення кар’єру (Ккор близько 0,5). Розрахунки свідчать про стійку тенденцію до зростання мінералізації розсолу з часом. Вміст важ- ких металів перевищує ГДК до 40 разів. Запропоновано експрес-метод визначення хімічного складу розсолів за фізичними властиво- стями (густиною та мінералізацією) з уточненням розрахованих концентрацій за співвідношенням еквівалентного вмісту компонентів. СПИСОК ЛІТЕРАТУРИ: 1.Долін В.В., Яковлєв Є.О., Кузьменко Е.Д., Бараненко Б.Т. Прогнозування екогідрогеохімічної ситуації при затопленні Домбровського кар’єру калійних руд // Екологічна безпека та збалансоване ресурсокористування. – 2010. - № 1. – с. 74-87. 2.Манюк О.Р. Науково-практичні засади захи- сту довкілля від забруднення високомінералізова- ними розсолами (на прикладі Калуш-Голинського родовища калійних солей): Дис. ... канд. геол. наук: 21.06.01 / Івано-Франківський національний тех- нічний університет нафти і газу. – Івано- Франківськ, 2008. – 125 с. 3.Семчук Я.М. Наукові та методичні основи охорони геологічного середовища в районах ро- зробки калійних родовищ (на прикладі Передкар- паття): Дис. ... д-ра техн. наук: 11.00.11 / Державний НДІ галургії. — Калуш, 1994. — 304 с. 4.Y. Malkova, V. Dolin, Y. Yakovlev, 2020. For- mation regularities of liquid body of Dombrovsky quarry // Conference Proceedings, Geoinformatics: Theoretical and Applied Aspects 2020, May 2020, p.1 – 5. DOI: https://doi.org/10.3997/2214- 4609.2020geo079
  • 19. Norwegian Journal of development of the International Science No 48/2020 19 MEDICAL SCIENCES CHANGES IN CEREBRAL HEMODYNAMICS AND BIOELECTRIC ACTIVITY AS A PREDICTOR OF EPILEPTIC SEIZURES Mushehian М. Postgraduate (PhD) student, the Department of neurology and child neurology, Kharkiv Medical Academy of Post-Graduate Education, Kharkiv, Ukraine Litovchenko T. Doctor of medical sciences, professor, the Department of neurology and child neurology, Kharkiv Medical Academy of Post-Graduate Education, Kharkiv, Ukraine Abstract With the aim to improve the diagnosis of epilepsy due to cerebrovascular disease by establishing the features of the hemodynamics and bioelectrical activity of brain in the patients with ischemic stroke and the subsequent development of epileptic seizures, a cross-sectional randomized cohort comparative study with retrospective and prospective stages was performed in 60 patients (men and women) with ischemic stroke aged 65 [57.0; 74.0] years, in 30 of which epileptic seizures were detected. Vascular deformities in patients with acute cerebrovascular disease are observed in at least a one-third of cases (S-shaped tortuosity of the left spinal artery in 36.7±29.2 %), reaching a maximum regarding pathological tortuosity of the left common carotid artery (63.3±38.4 %) and do not have the characteristics of the frequency response in the presence of epileptic seizures after ischemic stroke. The severity of stenosis of the right and left internal and common carotid arteries in patients with ischemic stroke is not specific with the development of epileptic seizures. Studies of cerebral hemodynamics in patients with epileptic seizures on the background of ischemic stroke can improve the diagnosis of epilepsy on the in combination with cerebro- vascular diseases. For patients with epileptic seizures after ischemic stroke the electroencephalogram is character- ized by a tendency to increase the amplitude of delta waves (20.1 [15.8; 23.1] μV), alpha waves (23.3 [20.3; 27.0] μV). The median frequency on the electroencephalogram among patients with epileptic seizures after ischemic stroke has the following parameters: generalized – 8.7 [7.4; 9.8] Hz; in the leads from the left hemisphere – 8.6 [7.4; 10.3] Hz, in the leads from the right hemisphere – 8.9 [7.5; 9.4] Hz, which is significantly (p<0.01) lower than among patients with ischemic stroke without epileptic seizures. Patients with epileptic seizures after ischemic stroke have a significantly higher chance of focal changes (70.0±38.3 %; φ=3.2; p<0.01), paroxys- mal activity on the encephalogram than in patients without epilepsy (26,7±22.8 %; φ=4.2; p<0.01), dysfunction of the median structures (63.3±38.4 %; φ=2.6; p<0.01). The established features of the bioelectrical activity of the brain in patients with ischemic stroke and the subsequent development of epileptic seizures allow to improve the diagnosis of epilepsy on the background of cerebrovascular diseases. The prospect of further research is to study the association of cerebral hemodynamics with the development of epileptic seizures in patients with ischemic stroke. Keywords: epilepsy, ischemic stroke, electroencephalography, ultrasound, sonography, doppler, diagnosis. Background. According to the guidelines of the International League Against Epilepsy (ILAE), one of the important diagnostic criteria for epilepsy is imaging methods of brain examination in addition to clinical symptoms, history, evaluation of electroencephalog- raphy, etc. [1]. Late seizures are the most common cause of post- stroke epilepsy – a chronic disease that impairs the quality of life of patients and has no other objective causes than a history of acute disturbance of cerebro- vascular circulation [2, 3, 4]. Depending on the under- lying cerebrovascular pathology, post-stroke epilepsy may develop in 2–4 % of patients [4, 5, 6, 7]. In addition to epileptic seizures, elderly patients may experience acute symptomatic (reactive, pro- voked) seizures that occur within a week after a regis- tered metabolic, toxic, structural, infectious, or inflam- matory brain injury [8]. Cerebrovascular diseases, including stroke, are considered to be the leading cause of epilepsy in the el- derly population, 30–50 % of diagnosed new cases of epilepsy in this age group [9]. The degree of correlation of symptoms, EEG data and CT and MRI data depends on the time of onset of seizures. Thus, most often the clinical picture of sei- zures corresponds to the side of the zone of ischemia in the acute period of stroke, and the more time passes from the onset of acute brain circulation disorder to the first seizures, the greater dissociation occurs, which probably indicates the formation of areas of epilepto- genesis not associated with primary necrosis. However, despite numerous studies of epidemio- logical, clinical history and other aspects of epilepsy, the specifics of the bioelectrical activity of the brain in patients with ischemic stroke and the subsequent devel- opment of epileptic seizures specific data in the scien- tific literature is still insufficiently covered. Aim: to improve the diagnosis of epilepsy due to cerebrovascular diseases by establishing the features of cerebral hemodynamics and bioelectrical activity of the brain in patients with ischemic stroke with prediction of an epileptic seizure subsequent development. Material and methods. The cross-sectional ran- domized cohort comparative study with retrospective
  • 20. 20 Norwegian Journal of development of the International Science No 48/2020 and prospective stages was performed in 60 patients (men and women) with ishemic stroke aged 65 [57.0; 74.0] years, in 30 of which epileptic seizures were detected. The total number of study participants – 60 people of both sexes aged 65.0 [57.0; 74.0] years, who were examined and treated in the Department of Vascular Pathology of the Brain of the Kharkiv Railway Clinical Hospital #1 of Branch "Health Center" of Joint Stock Company "Ukrainian Railway" in 2008–2019, of which: 30 people aged 70.5 [62.0; 78.0] years with is- chemic stroke in combination with epilepsy as the main group (group 1a); 30 patients aged 69.5 [57.0; 76.0] years with ischemic stroke without epileptic seizures as a comparison group (group 1b). Standardized criteria for inclusion and non-inclu- sion of participants in the study were applied. Doppler echoencephalography was performed on the ultrasound system Sigmairis 880 CE CD (France) according to standard methods in order to assess the condition of cerebral vessels and cerebral blood flow. In the main vessels (right and left common carotid ar- teries, right and left internal carotid arteries) following indicators were recorded: thickness of the intima-media complex (mm), maximum blood flow velocity (cm/s), minimum blood flow velocity (cm/s), average velocity blood flow (cm/s), resistive index, pulsatility index. In addition, S-shaped tortuosity and hypoplasia were as- sessed to characterize the condition of the right and left vertebral arteries; pathological tortuosity, severity of stenosis (% of normal) – to assess the condition of the right and left internal and common carotid arteries. The study was performed according to standard methods of electroencephalography with identification of neurophysiological semiotics and differentiation of EEG types. The following indicators were subject to registration. Wave amplitudes (μV): doubled average; bands: delta (1.5–4.0 Hz), theta (4–8 Hz), alpha (8– 13 Hz), beta1 (14–20 Hz), beta2 (20–30 Hz). Zonal dif- ferences. Interhemispheric asymmetry in amplitude (%). The median frequency of the spectrum general, in the left hemisphere leads, in the right hemisphere leads. Sharp waves. Spike waves. Generalized characteristics of EEG: diffuse, focal changes, paroxysmal activity, dysfunction of a deep structures. Following types of EEG have been distinguished. Type I – organized ("normal" EEG) –alpha rhythm dominates as the main EEG component, it is regular in frequency, clearly modulated in the spindles, with a medium and high index, well-expressed zonal differ- ences. The shape of the waves is usually smooth. Beta activity of high and medium frequency, small ampli- tude. Slow waves are almost not expressed. Less or- dered structural and spatial organization of alpha activ- ity and the presence of irregular slow activity, mainly in the anterior parts of the brain, usually with a smaller amplitude than in alpha activity, are possible. Type II – hypersynchronous. The main thing in the structure of this type is a high index of regular fluctua- tions of biopotentials with loss of their zonal differ- ences. There are various options for such an increase in activity synchronization: with the preservation and even increase of oscillations of the alpha range, with the disappearance of alpha activity and its replacement by low-frequency beta activity or theta activity. Type III – desynchronous ("flat" EEG) – is char- acterized by the absence or sharp decrease in the num- ber of alpha waves with a relative increase in the num- ber of beta and theta oscillations of not high, low or very low amplitude without zonal differences. Type IV – disorganized, with a predominance of alpha activity. On the EEG, the main one is an alpha activity, but it is not regular enough or completely ir- regular in frequency. Such a rather disorganized alpha rhythm is not high enough in amplitude and may even dominate in all parts of the brain. Beta activity is also often enhanced, often represented by low-frequency os- cillations of increased amplitude. In addition, on the EEG theta and delta waves of a fairly high amplitude may be present. Type V – disorganized, with a predominance of theta and delta activity. The structure of this type of EEG is characterized by a weak representation of alpha activity. Fluctuations in the biopotentials of the alpha, beta, theta and delta bands are recorded without any clear sequence. This non-dominant type of curve can have both medium and high amplitude levels. Types of EEG were distinguished according to the classification of Zhirmunska A. A. (1984, 1991). Logical and statistical analysis was performed by nonparametric methods. Thus, the central regularity of the studied traits in the assessment of the group of sub- jects was expressed using the median (Me), and the var- iability - the lower, 25 percent, quartile (LQ) and upper, 75 percent quartile (UQ), for brevity, expressing the de- scription in : Me [LQ; UQ]. Qualitative, binary, ordinal indicators were described in frequency values - abso- lute and relative (percentage) with SD guidance. The groups were compared in pairs using Fisher's angular transformation, the value of the empirical angle and the corresponding p-level were given; more than two groups — with construction of conjugacy tables and ap- plication of the method of maximum likelihood of Pear- son's chi-square criterion. In all types of statistical anal- ysis, trends at the p-level less than 0.05 were considered statistically significant. Results. The frequency characterization of vascular de- formities in patients with acute cerebrovascular disease was performed (Table 1).
  • 21. Norwegian Journal of development of the International Science No 48/2020 21 Table 1 Frequency characteristics of vascular deformities in patients with acute cerebrovascular disease Vascular deformities Group 1а, n=30 Group 1b, n=30 Abs. % SD Abs. % SD S-shaped tortuosity of the right vertebral artery 14 46.7 34.1 13 43.3 32.6 S-shaped tortuosity of the left vertebral artery 11 36.7 29.2 12 40.0 31.0 Hypoplasia of the right vertebral artery 13 43.3 32.6 14 46.7 34.1 Pathological tortuosity of the left internal carotid artery 16 53.3 36.4 16 53.3 36.4 Pathological tortuosity of the right internal carotid artery 18 60.0 37.9 15 50.0 35.4 Pathological tortuosity of the right common carotid artery 13 43.3 32.6 16 53.3 36.4 Pathological tortuosity of the left common carotid artery 19 63.3 38.4 12 40.0 31.0 Note. * – the difference in comparison with group 1b is significant at p <0.05. Vascular deformities in patients with acute cerebrovascular disease were observed in at least a third of cases (S-shaped tortuosity of the left vertebral artery in 36.7±29.2 %), reaching a maximum in the pathological tortuosity of the left common carotid artery (63.3±38.4 %) and there is no peculiarities of the frequency characteristics in the presence of epileptic seizures after ischemic stroke. The severity of stenosis in the right and left internal and common carotid arteries was assessed (Table 2). Table 2 Stenosis severity of the right and left internal and common carotid arteries in patients with acute cerebrovascular disease Артерії, виразність стенозу Group 1а, n=30 Group 1b, n=30 Me LQ UQ Me LQ UQ Right common carotid artery,% 48.0 38.0 55.0 42.0 38.0 48.0 Left common carotid artery,% 42.5 38.0 50.0 45.5 36.0 53.0 Right internal carotid artery,% 46.0 40.0 54.0 46.5 40.0 55.0 Left internal carotid artery,% 44.0 40.0 50.0 48.0 38.0 55.0 Note. * – the difference in comparison with group 1b is significant at p <0.05. The severity of stenosis of the right and left inter- nal and common carotid arteries in patients with is- chemic stroke was not specific in case of epileptic sei- zures development. Thus, taking into account the peculiarities of cere- bral hemodynamics in patients with epileptic seizures on the background of ischemic stroke can improve the diagnosis of epilepsy on the background of cerebrovas- cular diseases. The amplitude characteristic of EEG waves has been evaluated (Table 3). Table 3 Amplitude characteristics of electroencephalographic waves in patients with acute cerebrovascular disease Amplitude Group 1а, n=30 Group 1b, n=30 Me LQ UQ Me LQ UQ - average doubled, μV 11.0 9.0 15.4 10.4 7.6 16.3 - delta waves, μV 20.1* 15.8 23.1 15.0 10.8 18.2 - theta waves, μV 26.1 21.4 31.7 22.5 20.2 27.2 - alpha waves, μV 23.3* 20.3 27.0 30.8 26.1 38.6 - beta1-waves, μV 15.5 13.7 17.2 16.5 14.7 18.6 - beta2-waves, μV 13.1 10.1 16.8 13.4 8.9 16.2 Note. * – the difference in comparison with group 1b is significant at p <0.05. Patients in group 1a had a significantly higher am- plitude of delta waves (p<0.01), alpha waves (p<0.01). The median frequency of an EEG spectrum among patients of group 1a is significantly lower than in group 1b by the following parameters: generalized (p<0.01), in the leads from the left (p<0.01) and right (p<0.01) hemispheres (Table 4).
  • 22. 22 Norwegian Journal of development of the International Science No 48/2020 Table 4 Median frequency of electroencephalographic wave spectrum in patients with acute cerebrovascular disease Median frequency Group 1а, n=30 Group 1b, n=30 Me LQ UQ Me LQ UQ - generalized, Hz 8.7* 7.4 9.8 10.1 8.8 10.7 - in leads from the left hemisphere, Hz 8.6* 7.4 10.3 10.3 9.0 10.9 - in leads from the right hemisphere, Hz 8.9* 7.5 9.4 10.1 9.0 10.5 Note. * – the difference in comparison with group 1b is significant at p <0.05. The frequency characteristic of qualitative indicators of EEG is carried out (Table 5). Table 5 Frequency characteristics of electroencephalography in patients with acute cerebrovascular disease Parameters Group 1а, n=30 Group 1b, n=30 Abs. % SD Abs. % SD Sharp waves 9 30.0 25.1 15 50.0 35.4 Peak waves 5 16.7 15.2 4 13.3 12.4 Diffuse changes 30 100.0 0.0 30 100.0 0.0 Focal changes 21 70.0* 38.3 9 30.0 25.1 Paroxysmal activity 8 26.7* 22.8 0 0.0 0.0 Dysfunction of the deep structures 19 63.3* 38.4 9 30.0 25.1 Note. * – the difference in comparison with group 1b is significant at p <0.05. The group of patients with epileptic seizures after ischemic stroke had a higher frequency of focal changes (φ=3.2; p<0.01), paroxysmal activity (φ=4.2; p<0.01), dysfunction of the deep brain structures (φ=2.6; p<0.01). The frequency response of EEG types showed the predominance of IV and V EEG types (Table 6). Table 6 Frequency characteristics of EEG types in patients with acute cerebrovascular disease Type of electroencephalogram Group 1а, n=30 Group 1b, n=30 Abs. % SD Abs. % SD Type І 0 0.0 0.0 1 3.3 3.3 Type ІІ 4 13.3 12.4 6 20.0 17.9 Type ІІІ 3 10.0 9.5 3 10.0 9.5 Type ІV 13 43.3 32.6 12 40.0 31.0 Type V 10 33.3 27.2 8 26.7 22.8 Note. * – the difference in comparison with group 1b is significant at p <0.05. Thus, the established features of the bioelectrical activity of the brain in patients with ischemic stroke and the subsequent development of epileptic seizures allow to improve the diagnosis of epilepsy on the background of cerebrovascular diseases. The consideration of the basic criteria for as- sessing the clinical course in patients with acute and chronic cerebrovascular diseases is not completely per- fect and leaves the possibility of insufficient effective- ness of this approach. Discriminant analysis was used in the training sample in order to classify the prognostic solution by measuring various parameters (results) of the examina- tion of patients. Carrying out a canonical discriminant analysis of the results of examination of patients by the standard method allowed to develop mathematical models based on the task of increasing the informativeness of predict- ing the development and progression of epileptic sei- zures in patients with acute and chronic cerebrovascu- lar diseases. The first issue to be addressed by discriminant analysis was the prediction of seizures in patients with acute cerebrovascular disease. Source variables (age; history of hypertension; scores on the scales HAM-D, MoCA, NIHSS, Rankin, Barthel, NHS3; 10 EEG parameters; score by the Faze- kas scale) were selected, the number of which in the
  • 23. Norwegian Journal of development of the International Science No 48/2020 23 process of step-by-step discriminant analysis (back- ward stepwise) is reduced to the optimal 10 and as a result the following formulas of canonical discriminant functions were developed: ПІ(EpiDevAcuTRUE)=(1.675×Х1)–(0.234×Х2)+(8.415×Х3)+(10.963×Х4)+ +(2.118×Х5)+(29.745×Х6)+(2.167×Х7)+(1.823×Х8)+(6.506×Х9)+ (12.222×Х10)–355.400; ПІ(EpiDevAcuFALSE)=(1.793×Х1)–(0.260×Х2)+(11.164×Х3)+(12.314×Х4)+ +(2.090×Х5)+(32.512×Х6)+(2.345×Х7)+(2.022×Х8)+(7.571×Х9)+ (13.823×Х10)–446.278, where PI is the value of the prognostic index (UI), which assesses the probability of developing an epilep- tic seizure in patients with cerebrovascular disorders (PI(EpiDevAcuTRUE) - the probability of development is greater than or equal to 95%, PI(EpiDevAcuFALSE) - the probability of developing less than 5%) ; X1 - age, years; X2 - history of hypertension, years; X3 - score on the HAM-D scale; X4 - score on the MoCA scale; X5 - score on the NIHSS scale; X6 - score on the Ran- kin scale; X7 - score on the Barthel scale; X8 - score on the NHS3 scale; X9 - median asymmetry in alpha rhythm; X10 - Fazekas score. If PI(EpiDevAcuFALSE) < PI(EpiDevAcuTRUE), a high (≥95%) probability of developing an epileptic seizure in patients with acute cerebrovascular accident is estab- lished. If PI(EpiDevAcuFALSE) > PI(EpiDevAcuTRUE) — a low (<5%) probability of developing an epileptic seizure in patients with acute cerebrovascular accident is estab- lished. Discussion The vascular component of epileptogenesis which we have detected in the study corresponds to what other authors have revealed. Thus, as well as in our study, the significance of brain circulation state in the condition of neurovascular unit has been shown [25], an essential role of vascular integrity has been determined [26]. Transcranial and extracranial duplex ultrasound scanning is an inexpensive and non-invasive method of examination that allows to determine the features of cerebral blood flow and identify sites of occlusion in large vessels of a brain [10, 11]. Khasanova D. R. et al. (2010) found changes in cerebrovascular reactivity in patients with ischemic stroke and epileptic seizures. Emphasis was placed on the predominance of perfusion reserve disorders in the vertebrobasilar circulation (90.2 %), compared with carotid, which correlated with EEG-registered foci of pathological activity (79.3 %). This may partly explain the increased convulsive activ- ity, as it develops insufficiency of the antiepileptic sys- tem, most of which (in particular, the cerebellum, retic- ular formation, caudate nucleus) are supplied with blood by the vessels of the vertebrobasilar circulation [12]. The results of visualization and electroneurophys- iological studies allow to establish etiopathogenetic features, type of epilepsy, characteristics of seizures in patients with cerebrovascular diseases. The basic and most common electroneurophysiological method, elec- troencephalography, is not included in the standard ex- amination of patients with acute stroke, but this simple inexpensive non-invasive method can provide infor- mation about changes in the cerebral cortex as a result of its damage. According to our experience and the data of other authors, electroencephalography is the best technique for detecting brain epileptic activity, espe- cially in patients with nonconvulsive post-stroke sei- zures [13, 14, 15]. Thus, Claassen J. et al. (2004) found convulsive activity of brain in 19% of patients after stroke using continuous EEG monitoring, most of whom (92 %) had no motor manifestations [16]. In our study we have revealed higher amplitude of delta- and alpha waves, focal changes, paroxysmal activity, dys- function of the deep brain structures. Electroencephalography is of great importance in the early diagnosis of seizures and post-stroke epilepsy, and also allows you to monitor the course of the dis- ease, helps to choose a method of treatment and predict its results [14, 17, 18]. Apart of this, EEG is also used to differentiate true seizures from non-convulsive con- ditions that can mimic them. The recording of a stand- ard (routine) EEG takes 20–45 minutes, but there are also extended techniques such as extended EEG (re- cording for 1–2 hours) and continuous EEG monitor- ing, which can take up to 24 hours or more. Continuous EEG allows to fix ictal (during seizure) and interictal patterns better than standard EEG, especially in cases of non-convulsive seizures or non-convulsive status ep- ilepticus [15, 17, 19]. Thus, in the study Bentes S. (2017) the interictal epileptiform discharges on the first EEG were registered in 17.9 % of visitors, while daily serial EEG monitoring during the week after stroke re- vealed the majority of people with paroxysmal activity [20]. In general, abnormalities registered on the EEG in patients with stroke can be divided into three groups [13] (including which have been detected in our study): 1) nonspecific patterns (diffuse or focal polymor- phic slowing of delta rhythm, ipsilateral attenuation or lack of alpha and beta activity); 2) interictal epileptiform patterns that develop due to irritation of the cerebral cortex and indicate an in- creased risk of seizures (sharp waves and spikes, lat- eralized periodic discharges, bilateral independent pe- riodic discharges, generalized periodic discharges, tem- poral intermittent delta-activity); 3) ictal epileptic patterns (rhythmic theta, delta or alpha activity, rhythmic spikes or spike waves). According to the meta-analysis of 8 studies exam- ining EEG changes in patients with seizures after stroke (n=739), the most common finding was diffuse or focal slowing (49.3 %), followed by epileptiform discharges (35 %) and only 11.9 % had a normal EEG picture [21]. In the study of 69 patients with post-stroke EEG sei- zures, normal activity was maintained in only 8 % (compared to 54 % in patients without stroke), and most of them had the following EEG abnormalities: intermit- tent rhythmic delta activity (n=17), diffuse slowing