Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Multi Tier Annotation Search
MTAS
Matthijs Brouwer
Meertens Institute
December 8, 2015
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
1 Introduction
2 Lucene
3 MTAS
4 Tokenizer FoLiA
5 Search using CQL
6 Results
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Text and Metadata
Annotated Text
Requirements
Provide Search on Combination of Text and Metadata
Example data
Author Eduard Douwes Dekker
Place of birth Amsterdam
Date of birth 1820, March 2
Pseudonym Max Havelaar
Title Multatuli
Published 1860
Text Ik ben makelaar in ko e
en woon op de Lauriergracht
no 37 . . .
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Text and Metadata
Annotated Text
Requirements
Solution based on Apache Solr
Reverse Index
Apache Solr (based on Apache Lucene)
Index on both Text and Metadata
Advantages
Search
Facets
Scalable
Custom plugin (join)
Actively developed
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Text and Metadata
Annotated Text
Requirements
Search Text
’Ik ben makelaar in ko e, en woon op de Lauriergracht no 37.’
We can search for
”Makelaar”
”Makelaar in ko e”
”Makel.* in ko e”
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Text and Metadata
Annotated Text
Requirements
Annotations
’Ik ben makelaar in ko e, en woon op de Lauriergracht no 37.’
text lemma pos/features
Ik ik VNW(pers,pron,nomin,vol,1,ev)
ben zijn WW(pv,tgw,ev)
makelaar makelaar N(soort,ev,basis,zijd,stan)
in in VZ(init)
ko e ko e N(soort,ev,basis,zijd,stan)
, , LET()
. . . . . . . . .
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Text and Metadata
Annotated Text
Requirements
FoLiA
<text xml:id=”untitled.text”>
<p xml:id=”untitled.p.1”>
<s xml:id=”untitled.p.1.s.1”>
<w xml:id=”untitled.p.1.s.1.w.1” class=”WORD”>
<t>Ik</t>
<pos class=”VNW(pers,pron,nomin,vol,1,ev)” confidence=”0.999791” head=”VNW”>
<feat class=”pers” subset=”vwtype”/>
<feat class=”pron” subset=”pdtype”/>
<feat class=”nomin” subset=”naamval”/>
<feat class=”vol” subset=”status”/>
<feat class=”1” subset=”persoon”/>
<feat class=”ev” subset=”getal”/>
</pos>
<morphology>
<morpheme>
<t o↵set=”0”>ik</t>
</morpheme>
</morphology>
<lemma class=”ik”/>
</w>
. . .
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Text and Metadata
Annotated Text
Requirements
Required functionality
Extend current Solr solution
Search on annotations like pos, lemma, features, . . .
Search on sentences, paragraphs, chapters, . . .
Search on entities and chunks
Search on dependencies
Statistics, grouping, facets, . . .
Important
Maintaining functionality and scalability
Upgradeable to new releases Solr/Lucene
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Tokenization
Reverse Index
Limitations
Alternatives
Tokenization
Something about Lucene internals
Focus on text
Tokenization
Text is split up into tokens
value, e.g. ”ko e”
position, e.g. 4
o↵set, e.g. 19 24
payload, e.g. 1.000
’Ik ben makelaar in ko e, en woon op de Lauriergracht no 37.’
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Tokenization
Reverse Index
Limitations
Alternatives
Reverse Index
Tokenstream used to construct Reverse Index
text document position o↵set payload
ben 0 1 3 5 0.500
de 0 9 38 39 0.200
en 0 6 27 28 0.250
in 0 3 16 17 0.350
ko e 0 4 19 24 0.900
makelaar 0 2 7 14 0.800
. . . . . . . . . . . . . . .
This enables fast search, since the locations of matching terms can
be found very quickly.
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Tokenization
Reverse Index
Limitations
Alternatives
Limitations
Limitations of this approach
Heavily based on grouping by document
Collecting statistics
Grouping results
Not possible to include
Structural information: sentences, paragraphs, . . .
Annotations: pos, lemma’s, . . .
Relations: dependencies, chunking, . . .
No real forward index
Finding all tokens for a given position
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Tokenization
Reverse Index
Limitations
Alternatives
Alternatives
Alternative solutions
Graph Database
Experiments Neo4j: problems scalability and performance
Too general, doesn’t use sequential nature of textual data
BlackLab
Based on Lucene, no integration with Solr
Di↵erent fields for each annotation layer
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
General
Prefixes
Payload
Forward Indexes
Additional requirements
Extension provided by MTAS
Store multiple tokens on the same position, and use prefixes
to distinguish between di↵erent layers of annotations
Use the payload to encode additional information on each
token
Construct forward indexes by extending the Lucene Codec
Implementation
Extension based on the Lucene Library
Provide query handlers for extended data structures
Provide Solr Plugin using the MTAS extension
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
General
Prefixes
Payload
Forward Indexes
Additional requirements
Prefixes
Store multiple tokens on the same position, and use prefixes to
distinguish between di↵erent layers of annotations
text document position
lemma:de 0 9
lemma:zijn 0 1
. . . . . . . . .
pos:LID 0 9
pos:WW 0 1
. . . . . . . . .
t:ben 0 1
t:de 0 9
. . . . . . . . .
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
General
Prefixes
Payload
Forward Indexes
Additional requirements
Payload
Use the payload to encode additional information on each token
mtas id integer identifying token within a document
position type of position: single, range or set
additional information for range or set
o↵set start and end o↵set
real o↵set start and end real o↵set
parent reference to another token by its mtas id
payload original payload
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
General
Prefixes
Payload
Forward Indexes
Additional requirements
Forward Indexes
Construct forward indexes by extending the Lucene Codec
Position Given the position within the document,
return references to all objects on that position.
Parent Id Given the mtas id, return references
to all objects referring to this mtas id as parent
Object Id Given the id, return a reference to the object
Prefix/Position Given prefix and position, return the value
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
General
Prefixes
Payload
Forward Indexes
Additional requirements
Usage new structure
The additions make it possible to quickly retrieve the required
information for queries and results based on the annotated text.
To take advantage of these additions to the Lucene structure, we
need
Tokenizer mapping the original annotated data (FoLiA) on the
new structure
Query handlers, and query language: CQL
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
FoLiA
<text xml:id=”untitled.text”>
<p xml:id=”untitled.p.1”>
<s xml:id=”untitled.p.1.s.1”>
<w xml:id=”untitled.p.1.s.1.w.1” class=”WORD”>
<t>Ik</t>
<pos class=”VNW(pers,pron,nomin,vol,1,ev)” confidence=”0.999791” head=”VNW”>
<feat class=”pers” subset=”vwtype”/>
<feat class=”pron” subset=”pdtype”/>
<feat class=”nomin” subset=”naamval”/>
<feat class=”vol” subset=”status”/>
<feat class=”1” subset=”persoon”/>
<feat class=”ev” subset=”getal”/>
</pos>
<morphology>
<morpheme>
<t o↵set=”0”>ik</t>
</morpheme>
</morphology>
<lemma class=”ik”/>
</w>
. . .
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Tokenizer FoLiA
Several elements can be distinguished:
Words : <w/>
Annotations on Words : <pos/>, <t/>, <lemma/>
Groups of Words : <p/>, <s/>, <div/>
Annotations on Groups : <lang/>
References : <wref/>
Relations : <entity/>
The configurable FoLiA tokenizer enables to define these items and
map them onto the new index structure.
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Search using CQL
For new MTAS data structure
Query handlers provided
Support Corpus Query Language (CQL)
Enables to define conditions on annotations
Confusion about the exact interpretation and implementation
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Search using CQL
the big green shiny apple
LID ADJ ADJ ADJ N
Ambiguities illustrated by examples
[pos = ”LID”|word = ”the”] (1)
[word = ”b. ⇤ ”|word = ”. ⇤ g”] (2)
[pos = ”ADJ”]{2} (3)
[pos = ”ADJ”]? [pos = ”N”] (4)
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Search using CQL
Within MTAS
Results should be considered as equal if and only if the
positions of both results exactly match.
Di↵ers from the default query interpretation of Lucene and
the CQL interpretation as used in other applications
No options to refer to parts of the matched pattern to e.g.
sort, group or collect statistics
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Size indexes
Performance
TODO
Size indexes
Collection # FoLiA Zipped Size Index Positions
DBNL T 9, 465 29GB 198GB 677,476,310
DBNL DT 131, 177 95GB 395,530,191
SONAR 2, 063, 880 22GB 127GB 504,393,711
Search on combined indexes using Solr sharding
# FoLiA 2, 204, 522
# Positions 1, 577, 400, 212
# Sentences 92, 584, 655
There are approximately 10 tokens on each position.
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Size indexes
Performance
TODO
Performance
Virtual Machine, Ubuntu, 8 cores, 48GB (40GB Solr)
Computing stats (sum, mean, median, standarddeviation, etc.) on
full set of 2, 204, 522 documents and 1, 577, 400, 212 positions.
CQL Time Hits Docs
[t = ”de”] 3, 023 ms 57, 531, 353 1, 801, 583
[t = ”de” & pos = ”LID”] 7, 877 ms 56, 704, 921 1, 799, 499
[t = ”de” & !pos = ”LID”] 3, 105 ms 826, 432 132, 722
< s > [t = ”De”] 11, 568 ms 6, 085, 643 1, 090, 127
[pos = ”N”] 6, 200 ms 259, 942, 340 2, 189, 750
[pos = ”ADJ”] [pos = ”N”] 42, 977 ms 45, 366, 603 1, 821, 716
[pos = ”ADJ”]? [pos = ”N”] 207, 795 ms 305, 308, 943 2, 189, 750
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Size indexes
Performance
TODO
TODO
Group results
Facets
Performance
. . .
Matthijs Brouwer Multi Tier Annotation Search
Introduction
Lucene
MTAS
Tokenizer FoLiA
Search using CQL
Results
Size indexes
Performance
TODO
The end
Matthijs Brouwer Multi Tier Annotation Search

MTAS Henny Brugman

  • 1.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Multi Tier Annotation Search MTAS Matthijs Brouwer Meertens Institute December 8, 2015 Matthijs Brouwer Multi Tier Annotation Search
  • 2.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results 1 Introduction 2 Lucene 3 MTAS 4 Tokenizer FoLiA 5 Search using CQL 6 Results Matthijs Brouwer Multi Tier Annotation Search
  • 3.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Text and Metadata Annotated Text Requirements Provide Search on Combination of Text and Metadata Example data Author Eduard Douwes Dekker Place of birth Amsterdam Date of birth 1820, March 2 Pseudonym Max Havelaar Title Multatuli Published 1860 Text Ik ben makelaar in ko e en woon op de Lauriergracht no 37 . . . Matthijs Brouwer Multi Tier Annotation Search
  • 4.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Text and Metadata Annotated Text Requirements Solution based on Apache Solr Reverse Index Apache Solr (based on Apache Lucene) Index on both Text and Metadata Advantages Search Facets Scalable Custom plugin (join) Actively developed Matthijs Brouwer Multi Tier Annotation Search
  • 5.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Text and Metadata Annotated Text Requirements Search Text ’Ik ben makelaar in ko e, en woon op de Lauriergracht no 37.’ We can search for ”Makelaar” ”Makelaar in ko e” ”Makel.* in ko e” Matthijs Brouwer Multi Tier Annotation Search
  • 6.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Text and Metadata Annotated Text Requirements Annotations ’Ik ben makelaar in ko e, en woon op de Lauriergracht no 37.’ text lemma pos/features Ik ik VNW(pers,pron,nomin,vol,1,ev) ben zijn WW(pv,tgw,ev) makelaar makelaar N(soort,ev,basis,zijd,stan) in in VZ(init) ko e ko e N(soort,ev,basis,zijd,stan) , , LET() . . . . . . . . . Matthijs Brouwer Multi Tier Annotation Search
  • 7.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Text and Metadata Annotated Text Requirements FoLiA <text xml:id=”untitled.text”> <p xml:id=”untitled.p.1”> <s xml:id=”untitled.p.1.s.1”> <w xml:id=”untitled.p.1.s.1.w.1” class=”WORD”> <t>Ik</t> <pos class=”VNW(pers,pron,nomin,vol,1,ev)” confidence=”0.999791” head=”VNW”> <feat class=”pers” subset=”vwtype”/> <feat class=”pron” subset=”pdtype”/> <feat class=”nomin” subset=”naamval”/> <feat class=”vol” subset=”status”/> <feat class=”1” subset=”persoon”/> <feat class=”ev” subset=”getal”/> </pos> <morphology> <morpheme> <t o↵set=”0”>ik</t> </morpheme> </morphology> <lemma class=”ik”/> </w> . . . Matthijs Brouwer Multi Tier Annotation Search
  • 8.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Text and Metadata Annotated Text Requirements Required functionality Extend current Solr solution Search on annotations like pos, lemma, features, . . . Search on sentences, paragraphs, chapters, . . . Search on entities and chunks Search on dependencies Statistics, grouping, facets, . . . Important Maintaining functionality and scalability Upgradeable to new releases Solr/Lucene Matthijs Brouwer Multi Tier Annotation Search
  • 9.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Tokenization Reverse Index Limitations Alternatives Tokenization Something about Lucene internals Focus on text Tokenization Text is split up into tokens value, e.g. ”ko e” position, e.g. 4 o↵set, e.g. 19 24 payload, e.g. 1.000 ’Ik ben makelaar in ko e, en woon op de Lauriergracht no 37.’ Matthijs Brouwer Multi Tier Annotation Search
  • 10.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Tokenization Reverse Index Limitations Alternatives Reverse Index Tokenstream used to construct Reverse Index text document position o↵set payload ben 0 1 3 5 0.500 de 0 9 38 39 0.200 en 0 6 27 28 0.250 in 0 3 16 17 0.350 ko e 0 4 19 24 0.900 makelaar 0 2 7 14 0.800 . . . . . . . . . . . . . . . This enables fast search, since the locations of matching terms can be found very quickly. Matthijs Brouwer Multi Tier Annotation Search
  • 11.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Tokenization Reverse Index Limitations Alternatives Limitations Limitations of this approach Heavily based on grouping by document Collecting statistics Grouping results Not possible to include Structural information: sentences, paragraphs, . . . Annotations: pos, lemma’s, . . . Relations: dependencies, chunking, . . . No real forward index Finding all tokens for a given position Matthijs Brouwer Multi Tier Annotation Search
  • 12.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Tokenization Reverse Index Limitations Alternatives Alternatives Alternative solutions Graph Database Experiments Neo4j: problems scalability and performance Too general, doesn’t use sequential nature of textual data BlackLab Based on Lucene, no integration with Solr Di↵erent fields for each annotation layer Matthijs Brouwer Multi Tier Annotation Search
  • 13.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results General Prefixes Payload Forward Indexes Additional requirements Extension provided by MTAS Store multiple tokens on the same position, and use prefixes to distinguish between di↵erent layers of annotations Use the payload to encode additional information on each token Construct forward indexes by extending the Lucene Codec Implementation Extension based on the Lucene Library Provide query handlers for extended data structures Provide Solr Plugin using the MTAS extension Matthijs Brouwer Multi Tier Annotation Search
  • 14.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results General Prefixes Payload Forward Indexes Additional requirements Prefixes Store multiple tokens on the same position, and use prefixes to distinguish between di↵erent layers of annotations text document position lemma:de 0 9 lemma:zijn 0 1 . . . . . . . . . pos:LID 0 9 pos:WW 0 1 . . . . . . . . . t:ben 0 1 t:de 0 9 . . . . . . . . . Matthijs Brouwer Multi Tier Annotation Search
  • 15.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results General Prefixes Payload Forward Indexes Additional requirements Payload Use the payload to encode additional information on each token mtas id integer identifying token within a document position type of position: single, range or set additional information for range or set o↵set start and end o↵set real o↵set start and end real o↵set parent reference to another token by its mtas id payload original payload Matthijs Brouwer Multi Tier Annotation Search
  • 16.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results General Prefixes Payload Forward Indexes Additional requirements Forward Indexes Construct forward indexes by extending the Lucene Codec Position Given the position within the document, return references to all objects on that position. Parent Id Given the mtas id, return references to all objects referring to this mtas id as parent Object Id Given the id, return a reference to the object Prefix/Position Given prefix and position, return the value Matthijs Brouwer Multi Tier Annotation Search
  • 17.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results General Prefixes Payload Forward Indexes Additional requirements Usage new structure The additions make it possible to quickly retrieve the required information for queries and results based on the annotated text. To take advantage of these additions to the Lucene structure, we need Tokenizer mapping the original annotated data (FoLiA) on the new structure Query handlers, and query language: CQL Matthijs Brouwer Multi Tier Annotation Search
  • 18.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results FoLiA <text xml:id=”untitled.text”> <p xml:id=”untitled.p.1”> <s xml:id=”untitled.p.1.s.1”> <w xml:id=”untitled.p.1.s.1.w.1” class=”WORD”> <t>Ik</t> <pos class=”VNW(pers,pron,nomin,vol,1,ev)” confidence=”0.999791” head=”VNW”> <feat class=”pers” subset=”vwtype”/> <feat class=”pron” subset=”pdtype”/> <feat class=”nomin” subset=”naamval”/> <feat class=”vol” subset=”status”/> <feat class=”1” subset=”persoon”/> <feat class=”ev” subset=”getal”/> </pos> <morphology> <morpheme> <t o↵set=”0”>ik</t> </morpheme> </morphology> <lemma class=”ik”/> </w> . . . Matthijs Brouwer Multi Tier Annotation Search
  • 19.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Tokenizer FoLiA Several elements can be distinguished: Words : <w/> Annotations on Words : <pos/>, <t/>, <lemma/> Groups of Words : <p/>, <s/>, <div/> Annotations on Groups : <lang/> References : <wref/> Relations : <entity/> The configurable FoLiA tokenizer enables to define these items and map them onto the new index structure. Matthijs Brouwer Multi Tier Annotation Search
  • 20.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Search using CQL For new MTAS data structure Query handlers provided Support Corpus Query Language (CQL) Enables to define conditions on annotations Confusion about the exact interpretation and implementation Matthijs Brouwer Multi Tier Annotation Search
  • 21.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Search using CQL the big green shiny apple LID ADJ ADJ ADJ N Ambiguities illustrated by examples [pos = ”LID”|word = ”the”] (1) [word = ”b. ⇤ ”|word = ”. ⇤ g”] (2) [pos = ”ADJ”]{2} (3) [pos = ”ADJ”]? [pos = ”N”] (4) Matthijs Brouwer Multi Tier Annotation Search
  • 22.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Search using CQL Within MTAS Results should be considered as equal if and only if the positions of both results exactly match. Di↵ers from the default query interpretation of Lucene and the CQL interpretation as used in other applications No options to refer to parts of the matched pattern to e.g. sort, group or collect statistics Matthijs Brouwer Multi Tier Annotation Search
  • 23.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Size indexes Performance TODO Size indexes Collection # FoLiA Zipped Size Index Positions DBNL T 9, 465 29GB 198GB 677,476,310 DBNL DT 131, 177 95GB 395,530,191 SONAR 2, 063, 880 22GB 127GB 504,393,711 Search on combined indexes using Solr sharding # FoLiA 2, 204, 522 # Positions 1, 577, 400, 212 # Sentences 92, 584, 655 There are approximately 10 tokens on each position. Matthijs Brouwer Multi Tier Annotation Search
  • 24.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Size indexes Performance TODO Performance Virtual Machine, Ubuntu, 8 cores, 48GB (40GB Solr) Computing stats (sum, mean, median, standarddeviation, etc.) on full set of 2, 204, 522 documents and 1, 577, 400, 212 positions. CQL Time Hits Docs [t = ”de”] 3, 023 ms 57, 531, 353 1, 801, 583 [t = ”de” & pos = ”LID”] 7, 877 ms 56, 704, 921 1, 799, 499 [t = ”de” & !pos = ”LID”] 3, 105 ms 826, 432 132, 722 < s > [t = ”De”] 11, 568 ms 6, 085, 643 1, 090, 127 [pos = ”N”] 6, 200 ms 259, 942, 340 2, 189, 750 [pos = ”ADJ”] [pos = ”N”] 42, 977 ms 45, 366, 603 1, 821, 716 [pos = ”ADJ”]? [pos = ”N”] 207, 795 ms 305, 308, 943 2, 189, 750 Matthijs Brouwer Multi Tier Annotation Search
  • 25.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Size indexes Performance TODO TODO Group results Facets Performance . . . Matthijs Brouwer Multi Tier Annotation Search
  • 26.
    Introduction Lucene MTAS Tokenizer FoLiA Search usingCQL Results Size indexes Performance TODO The end Matthijs Brouwer Multi Tier Annotation Search