The document discusses using MongoDB as a tick store for financial data. It provides an overview of MongoDB and its benefits for handling tick data, including its flexible data model, rich querying capabilities, native aggregation framework, ability to do pre-aggregation for continuous data snapshots, language drivers and Hadoop connector. It also presents a case study of AHL, a quantitative hedge fund, using MongoDB and Python as their market data platform to easily onboard large volumes of financial data in different formats and provide low-latency access for backtesting and research applications.