SlideShare a Scribd company logo
1 of 88
Microorganisms causing spoilage of meat
and meat products, eggs and poultry
Dr Ravi Kant Agrawal, MVSc, PhD
Senior Scientist (Veterinary Microbiology)
Food Microbiology Laboratory
Division of Livestock Products Technology
ICAR-Indian Veterinary Research Institute
Izatnagar 243122 (UP) India
Acinetobacter is  a genus of 
Gram-negative,  rod  shaped  bacteria 
belonging  to  the  wider  class  of 
Gammaproteobacteria.
Acinetobacter species  are  strict 
aerobic,  non  –  fermentative  non-
motile and oxidase-negative,  do  not 
reduce  nitrates,  and  occur  in  pairs 
under magnification.
Although,  rod-shaped  cells  are 
formed  in  young  cultures,  old 
cultures  contain  many  coccoid-
shaped/cocco-bacillary cells.
They  show  preponderantly  a 
coccobacillary  morphology  on  non-
selective agar. 
Rods  predominate  in  fluid  media, 
especially during early growth
They are important soil organisms
Acinetobacter (akinetos: unable to move)Acinetobacter (akinetos: unable to move)
Acinetobacter species are a key source of infection in debilitated 
patients  in  the  hospital,  in  particular  the  species 
Acinetobacter baumannii.
These  Gram-negative  rods  show  some  affinity  to  the  family 
Neisseriaceae, and some that were formerly achromobacters and 
moraxellae are placed here.
Also,  some  former  acinetobacters  are  now  in  the  Genus 
Psychrobacter.
They differ from psychrobacter and moraxellae in being oxidase 
negative.
They are widely distributed in soils and waters and may be found 
on many foods, especially refrigerated fresh products. 
The mol% G+C content of DNA for the genus is 39-47.
It  has  been  proposed,  based  on  DNA-rRNA  hybridization  data, 
that  the  genera  Acinetobacter, Moraxella, and Psychrobacter be 
placed in a new family (Moracellaceae), but this proposal has not 
been approved.
Acinetobacter (akinetos: unable to move)Acinetobacter (akinetos: unable to move)
Alcaligenes is a genus of Gram -ve, aerobic, 
rod-shaped/  coccal  rods  or  cocci,  sized 
about 0.5-1.0 x 0.5-2.6 μm. 
The  species  are  motile  with  one  or  more 
peritrichous flagella and rarely non-motile.
It is a genus of non-fermenting bacteria.
Although  Gram  -ve,  these  organisms 
sometimes stain Gram positive.
They are rods that Do not ferment sugars 
but  instead  produce  alkaline  reactions, 
especially in litmus milk.
Non-pigmented,  they  are  widely 
distributed  in  nature  in  decomposing 
matter  of all types. 
Raw  milk,    poultry    products,  and  fecal 
matter are common sources.
The  mol%  G+C  content  of  DNA  is  58-70, 
suggesting  that  the  genus  is 
heterogeneous.
AlcaligenesAlcaligenes (alkali producers)(alkali producers)
Circular, smooth, entire,
opaque colonies of
Alcaligenes on a nutrient
agar plate
MoraxellaMoraxella
Moraxella is a genus of Gram-negative bacteria in the
Moraxellaceae family.
It is named after the Swiss ophthalmologist Victor Morax.
These short Gram-negative rods are sometimes classified as
Acinetobacter.
They differ from the latter in being sensitive to penicillin and
oxidase positive.
The organisms are short rods, coccobacilli or, as in the case of
Moraxella catarrhalis, diplococci in morphology, with a-
saccharolytic, oxidase-positive and catalase-positive properties.
Moraxella catarrhalis is the clinically most important species
under this genus.
Have a mol % G+C content of DNA of 40-46.
The newly erected genus Psychrobacter includes some that were
once placed in this genus.
Their metabolism is oxidative, and they do not form acid from
glucose.
This genus was created primarily to accommodate some of the 
non-motile Gram-negative rods that were once classified in the 
genera Acinetobacter and Moraxella. 
They are plump Coccobacilli that Occur often In pairs.
Also,  they  are  aerobic,  non-motile,  and  catalase  and  oxidase 
positive, and generally they do not ferment glucose.
Growth occurs in 6.5% NaCl and at 1°C, but generally not at 35°C 
or 37°C.
They  hydrolyze  Tween-80,  and  most  are  egg-yolk  positive 
(lecithinase).
They  are  sensitive  to  penicillin  and  utilize  7-aminovalerate, 
whereas the Acinetobacters do not.
They  are  distinguished  from  the  Acinetobacters  by  being 
oxidase positive and  Amino-valerate users and from non-motile 
Pseudomonads by their inability to utilize glycerol or fructose.
Because they closely resemble the moraxellae, they have been 
placed in the family Neisseriaceae.
They are common on meats, poultry, and fish, and in waters.
PsychrobacterPsychrobacter
 These are typically aquatic, Gram-negative, facultative anaerobic, rod-
shaped bacterium formerly in the family Vibrionaceae but now in the 
family Aeromonadaceae.
 Aeromonas morphologically  resembles  members  of  the  family 
Enterobacteriaceae.
 As the generic name suggests, they produce copious quantities of gas 
from those sugars fermented.
 Most  of  the  14  described  species  have  been  associated  with  human 
diseases.
 The  most  important  pathogens  are A. hydrophila, A. caviae,  and 
A. veronii  biovar sobria.
 The organisms are ubiquitous in fresh and brackish water.
 They group with the gamma subclass of the Proteobacteria.
 They are normal inhabitants of the intestines of fish, and some are fish 
pathogens.
 Two major diseases associated with Aeromonas are gastroenteritis and 
wound infections, with or without bacteremia. 
 Gastroenteritis  typically  occurs  after  the  ingestion  of  contaminated 
water  or  food,  whereas  wound  infections  result  from  exposure  to 
contaminated water.
 The mol% G+C content of DNA is 57-65. 
AeromonasAeromonas (aeromonas: gas producing)(aeromonas: gas producing)
FlavobacteriumFlavobacterium
These Gram-negative rods are characterized by their production 
of yellow to red pigments on agar and by their association with 
plants.
Some  are  mesotrophs,  and  others  are  psychrotrophs,  where 
they  participate  in  the  spoilage  of  refrigerated  meats  and 
vegetables.
This genus has undergone drastic redefinition, resulting in the 
creation  of  several  new  genera  Weeksella, Chryseobacterium,
Empedobacter, and Bergeyella),  none  of  which  appear  to  be 
associated with foods. 
Some of the new genera contain fish pathogens and some are 
halophiles.
These Gram-positive, non-spore forming, rods are closely related 
to the genera Lactobacillus and Listeria.
Although, they are not true coryneforms, they bear resemblance 
to this group.
Typically,  exponential-phase  cells  are  rods,  and  older  cells  are 
coccoids, a feature typical of coryneforms.
Their separate taxonomic status has been re-affirmed by rRNA 
data,  although  only  two  species  are  recognized:  B. 
thermosphacta and B. campestris.
They  are  common  On  processed  Meats  and  On  fresh  and 
processed meats that are stored in gas-impermeable packages at 
refrigerator temperatures.
In contrast to B. thermosphacta, B. campestris Is rhamnose and 
hippurate positive.
The mol% G+C content of DNA is 36%. 
They do not grow at 37°C.
They Share Some features with the genus Microbacterium.
Brochothrix (brochos, loop; thrix, thread)Brochothrix (brochos, loop; thrix, thread)
AlteromonasAlteromonas (another monad)(another monad)
They are Gram-negative, strict aerobes.
 Its cells are curved rods, motile with a single polar flagellum.
Alteromonas is  a  genus  of Proteobacteria found  in  sea  water, 
either in the open ocean or in the coast
These are marine and coastal water inhabitants.
That are found in and on seafoods.
 All species require seawater salinity for growth. 
These  Gram-negative  rods  constitute  the  largest  genus  of 
bacteria that exists in fresh foods.
The mol %G+C content of their DNA of 58-70 suggests that it is a 
heterogeneous group, and this has been verified.
They  are  typical  of  soil  and  water  bacteria  and  are  widely 
distributed  among  foods,  especially  vegetables,  meat,  poultry, 
and seafood products.
They are, by far, the most important group of bacteria that bring 
about  the  spoilage  of  refrigerated  fresh  foods  because  many 
species and strains are psychrotrophic.
Some  are  notable  by  their  production  of  water–soluble, blue-
green pigments,  whereas  many  other  food  spoilage  types  are 
not.
Some  plant-associated  species  have  been  transferred  to  the 
genus Burkholderia, including the species that causes bongkrek.
A new genus, Ralstonia, has been created to accommodate some 
Burkholderia and Alcaligenes  species, notably R. solanecearum, 
which causes wilt of tomato.
Pseudomonas (false monad)Pseudomonas (false monad)
ShewanellaShewanella
The bacterium once Classified As Pseudomonas putrefaciens And 
later As Alteromonas putrefaciens Has been Placed in this new 
genus as S. putrefaciens.
They  are  Gram-negative,  straight  or  curved  rods,  non-
pigmented, and motile by polar flagella. 
They are oxidase positive and have a mol% G+C of  44-47. 
The other three species in this genus are S. hanedai, S. benthica, 
and S. colwelliana.
All  are  associated  with  aquatic  or  marine  habitats,  and  the 
growth of S. benthica is enhanced by hydrostatic pressure.
Staphylococcus (grape like coccus)Staphylococcus (grape like coccus)
These  Gram-positive,  catalase-positive  cocci  include  S. aureus, 
which  causes  several  disease  syndromes  in  humans,  including 
foodborne gastroenteritis. 
MicrococcusMicrococcus
These cocci are Gram positive and catalase positive.
Some  produce  pink  to  orange-red  to  red  pigments,  whereas 
others are non-pigmented.
Most can grow in the presence of high levels of NaCl, and most 
are  mesotrophs,  although  psychrotrophic  species/  strains  are 
known. 
This once very large genus has been reduced by the creation of 
at least five new genera: Dermacoccus, Stomatococcus, Kocuria,
Kytococcus, and Nesterenkonia.
Micrococcus agilis has been transferred to the arthrobacters as 
Arthrobacter agilis,  and  some  former  M. roseus strains  have 
been transferred to the genus Salinicoccus. 
The type species is M. luteus, and the redefined genus has a mol
% G+C content of DNA of 69-76. 
The  organism once classed as M. freudendreichii is now in the 
genus Pediococcus.
 These  are  Gram-positive,  spore  forming 
rods that are aerobes, in contrast to the 
clostridia, which are anaerobes.
 Although  most  are  mesophiles, 
psychrotrophs and thermophiles exist.
 The genus contains only two pathogens: 
B. anthracis (cause  of  anthrax)  and  B.
cereus.
 Although  most  strains  of  the  latter  are 
non-pathogens,  some  cause  foodborne 
gastroenteritis.
 B.  cereus  food  poisoning  is  principally 
associated  with  the  storage  of  cooked 
foods
 Found  in  raw  materials  and  processed 
foods  which  were  not  sterilized  by  heat 
or irradiation.
 Polymixin  pyruvate  egg  yolk  mannitol 
bromothymol  blue  agar  (PEMBA)  and 
Mannitol  egg  yolk  agar  are  selective 
media
 B. licheniformis, B. pumilus and B. subtilis 
were  the  most  commonly  isolated 
Bacillus species in bakeries and milk
BacillusBacillus
BLOOD AGAR
large, spreading,
gray-white
colonies, with
irregular
margins
Bacillus cereus
SELECTIVE
MEDIA: MANNITOL
EGG YOLK AGAR
 The phylogenetic heterogeneity of this genus employing small-subunit 
rRNA  Sequence data allowed five groups to be formed.
 Group  1  includes  B. cereus, B. subtilis, B. coagulans, and  B. anthracis 
among others, and it seems likely that this group will be retained as 
Bacillus.
 The group 3 cluster has been given the generic name Paenibacillus; and 
B. stearothermophilus clustered with group 5.
 The  thermoacidophilic  Bacillus  species,  B. acidocaldarius, B.
acidoterrestris,  and  B. cycloheptanicus, have  been  reclassified  in  the 
new genus Alicyclobacillus.
 The latter have mol % G+C of 51.6-60.3, grow as low as about 35°C to 
700
C, and over the pH range 2 to 6. 
 The  B. brevis cluster  of  10  species  has  been  reclassified  into  a  new 
genus, Brevibacillus based on 16SRNA gene sequences.
BacillusBacillus
 These  are  Gram  Positive,  anaerobic,  spore  forming  rods  are  widely 
distributed in nature, as are their aerobic counterparts, the bacilli.
 The  genus  contains  many  species,  some  of  which  cause  disease  in 
humans (C. perfringens food poisoning and botulism). 
 Mesotrophic,  psychrotrophic,  and  thermophilic  species/strains  exist; 
therefore important in the thermal canning of foods.
 A  reorganization  of  the  genus  involves  the  creation  of  the  five  new 
genera: Caloramater, Filifactor, Moorella, Oxobacter, and Oxalophagus. 
 These five new Genera appear to be unimportant in foods.
 The  clostridial  species  of  known  importance  in  foods  remain  in  the 
genus at this time. 
Clostridium (Gr. closter, a spindle)Clostridium (Gr. closter, a spindle)
Gram Stain: They usually stain Gram-positive, at least in very early stages of growth.
Morphology Cells of most strains occur as straight or slightly curved rods.
Size: 0.3-2.0 micrometers by 1.5-20.0 micrometers in length.
Motility: Motility occurs by peritrichous flagella.
Capsules: None.
Spores: Clostridium spp. form oval or spherical endospores that usually distend the
cell.
Other: Most have round, tapering ends; long filaments are formed by some species.
Clostridia possess no one typical 
colony morphology.
  They  are  generally  a  large 
colony  (>2mm)  with  irregular 
edges or swarming growth.
  Some  Clostridia  form  small, 
convex,  non-hemolytic  colonies 
with a smooth edge.
Cl. perfringens
Tryptose sulphate cycloserine agar,
Sulphate- polymixin-sulphadiazine agar,
Shahid Ferguson perfringens agar,
Neomycin blood agar.
Cl. botulinum Horse blood agar,
Anerobic egg yolk agar
Cl. botulinum on egg yolk agarSELECTIVE MEDIA
This newly established genus comprises organisms formerly in the
genera Bacillus and Clostridium, and it includes the species: P.
alvei, P. amylolyticus, P. azotofixans, P. circulans, P. durum, P.
larvae, P. macerans, P. macquariensis, P. pubuli, P. pulvifaciens,
and P. validus.
 Recently, two new species were added (P. lautus and P. peoriae).
Paenibacillus (almost a bacillus)Paenibacillus (almost a bacillus)
 This is clearly the most widely studied genus of all bacteria. 
 The genus is named after Theodor Escherich, the discoverer of Escherichia coli
.
 Escherichia  is  a genus of Gram-negative,  non-spore forming, 
facultatively anaerobic,  rod-shaped bacteria from  the  family 
Enterobacteriaceae.
 1.1-1.5 um by 2.0-6.0 um.
 They occur singly or in pairs.
 Escherichia spp. are motile by peritrichous flagella or are non-motile. 
 In addition to flagella, most strains have fimbriae (pili) that extend from the 
bacterial surface into the surrounding medium. Some fimbriae have specific 
functions as adhesive organs.
 Capsules or microcapsules occur in many strains.
 Are inhabitants of the gastrointestinal tracts of warm-blooded animals.
 Some strains cause foodborne gastroenteritis.
 E. coli act as an indicator of food safety.
EscherichiaEscherichia
For culture: Tryptic Soy Agar, Nutrient Agar, Blood Agar 5%.
For selective isolation: MacConkey Agar, EMB Agar, MacConkey with Sorbitol ( E. coli O157).
For maintenance: Tryptic Soy Agar, Nutrient Agar, Blood Agar 5%. For long-term
storage at - 70 degrees C., TSB with 15% Glycerol or Skim Milk Media
is recommended
E. coli O157: H7
Escherichia coli O157:H7 is  an 
enterohemorrhagic serotype of  the 
bacteria Escherichia coli and a cause of 
illness, typically through consumption 
of  contaminated  and  raw  food 
including raw milk Children under five 
years  of  age  and  the  elderly,  the 
infection  can  cause 
hemolytic uremic syndrome (HUS),  in 
which  the red blood cells are 
destroyed and the kidneys fail
MUG( 4-Methylumbelliferyl  ß-D-
Glucuronide) sorbitol agar
Escherichia coli produce
small, dark colonies with a
green metallic sheen on EMB
agar
SalmonellaSalmonella
All members of this genus of Gram-negative enteric
bacteria are considered to be human pathogens
belong to the family Enterobacteriaceae .
 The Mol% G+C content of DNA is 50-53.
ShigellaShigella
All members of this genus are presumed to be human
enteropathogens.
Family Enterobacteriaceae.
These Gram-negative rods that belong to the family
Enterobacteriaceae are aerobic and proteolytic, and they
generally produce red pigments on culture media and in
certain foods, although non-pigmented strains are not
uncommon.
S. liquefaciens is the most prevalent of the foodborne species;
it causes spoilage of refrigerated Vegetables and meat
products.
The mol % G+C content of DNA is 53-59.
SerratiaSerratia
CitrobacterCitrobacter
Citrobacter is a genus of Gram-negative coliform bacteria in the
Enterobacteriaceae family.
All members Can Use Citrate As The Sole carbon source.
These Enteric Bacteria Are Slow lactose-fermenting.
C. freundii is the most prevalent species In foods, and it and the
other Species are not uncommon on vegetables and fresh
meats.
The mol% G+C content of DNA is 50-52.
Common species are C. amalonaticus, C. koseri, and C. freundii .
Citrobacter species are differentiated by their ability to convert
tryptophan to indole, ferment lactose, and use malonate.
Enterobacter is a genus of common Gram-negative,
facultatively anaerobic, rod-shaped, non-spore-forming bacteria
of the family Enterobacteriaceae.
These bacteria are typical of other Enterobacteriaceae relative to
growth requirements, although they are not Generally adapted
to the gastrointestinal tract.
The genus Enterobacter is a member of the coliform group of
bacteria.
Two clinically important species from this genus are E. aerogenes
and E. cloacae.
Several strains of these bacteria are pathogenic and cause
opportunistic infections in immunocompromised (usually
hospitalized) hosts.
The genus Enterobacter ferments lactose with gas production
during a 48-hour incubation at 35-37 °C in the presence of bile
salts and detergents.
It is oxidase-negative, indole-negative, and urease-variable.
E. agglomerans has been transferred to the genus Pantoea.
EnterobacterEnterobacter
ErwiniaErwinia
Erwinia is a genus of Enterobacteriaceae containing mostly
plant pathogenic species which was named for the famous
plant pathologist, Erwin Frink Smith.
These Gram-negative enteric rods are especially associated
with Plants, where they cause bacterial soft rot.
At least three species Have been transferred to the genus
Pantoea.
The mol% G+C content of DNA is 53.6-54.1.
This genus consists of Gram-negative, non-capsulated, non-
sporing straight rods, most of which are motile by peritrichous
flagella.
They are widely distributed and are found on plants and in seeds,
in soil, water, and human specimens.
Some are plant pathogens.
The four recognized species were once classified as
enterobacters or erwinias.
P. agglomerans includes the former Enterobacter agglomerans,
Erwinia herbicola, and E. milletiae; P. ananas includes the former
Erwinia ananas and E. uredovora; P. stewartii was once E.
stewartii; and P. dispersa is an original species.
The G+C content of DNA ranges from 49.7 to 60.6 mol%.
PantoeaPantoea
HafniaHafnia
Hafnia is the genus of the Enterobacteriaceae family which are
Gram-negative, facultatively anaerobic, rod-shaped bacterium.
These Gram-negative enteric rods are important in the spoilage
of refrigerated meat and vegetable products.
H. alvei is the only species at this time.
H. alvei is a commensal of the human gastrointestinal tract and
not normally pathogenic, but may cause disease in
immunocompromised patients.
It is often resistant to multiple antibiotics, including the
aminopenicillins.
It is motile and lysine and ornithine positive.
It has a mol% G+C content of DNA of 48-49.
These enteric Gram-negative rods are aerobes that often display
pleomorphism, hence the generic name.
All are motile and typically produce swarming growth on the
surface of moist agar plates.
They are typical of enteric bacteria in being present in the
intestinal tract of humans and animals.
They may be isolated from a variety of vegetable and meat
products, especially those that undergo spoilage at
temperatures in the mesophilic range.
ProteusProteus
 Gram-negative coccobacillus-shaped
bacterium, belonging to
family Enterobacteriaceae.
 Motile at 25°c/ non-motile at 37°c
 Non-spore-forming, catalase positive
oxidase negative facultatively anaerobic
 This genus includes the agent of human
plague, Y. pestis, and at least one species
that causes foodborne gastroenteritis, Y.
enterocolitica.
 The mol% G+C content of DNA is 45.8-46.8.
 The sorbose-positive biogroup 3A strains
have been elevated to species status as Y.
mollaretti and the sorbose-negative Strains
as Y. bercovieri.
 Selective Media:
 Cefsulodin-irgasan-novobiocin agar (CIN)
 Virulent Yersinia enterocolitica agar (VYE)
 Salmonella-Shigella-deoxycholate-calcium
chloride agar
 Mac Conkey agar.
YersiniaYersinia
CIN (Cefsulodin-Irgasan-
Novobiocin) agar
MLA
These Gram-negative, spirally curved rods
were formerly classified as vibrios.
Small, thin (0.2 - 0.5 um X 0.5 - 5.0 um), helical
(spiral or curved) cells with typical Gram-
negative cell wall; “Gull-winged” appearance
• Tendency to form coccoid & elongated forms
on prolonged culture or when exposed to O2
They are microaerophilic to anaerobic &
capnophilic 5%O2,10%CO2,85%N2
Oxidase-positive, non-fermentative bacteria.
Long sheathed polar flagellum at one (polar)
or both (bipolar) ends of the cell
Move via unipolar or bipolar flagella-
Distinctive rapid darting motility (Corkscrew
like motility)
• Motility slows quickly in wet mount
preparation
Most Campylobacter species are pathogenic
and can infect humans and other animals.
Campylobacter (campylo, curved)Campylobacter (campylo, curved)
Skirrows media
Selective media used :
i) Campy – BAP
ii) Campy – CVA
iii) Modified Skirrows media
iv) Charcoal based Selective medium agar (blood free)
v) Butzler’s media
Incubation – at 42o
C for 48 hrs at 5% O2.
Colonies - Grey, moist, flat or convex
At least a dozen species of Campylobacter have been implicated
in human disease, with C. jejuni and C. coli the most common.
C. jejuni is now recognized as one of the main causes of
bacterial foodborne disease in many developed countries.
The genus has been restructured since 1984.
The once C. nitrofigilis and C. cryaerophila have been transferred
to the New genus Arcobacter; the once C. cinnaedi and C. fenneliae
are now in the genus Helicobacter; and the once Wolinella carva
and W. recta Are Now C. curvus and C. rectus?
The mol% G+C content of DNA is 30-35.
Campylobacter (campylo, curved)Campylobacter (campylo, curved)
This genus was created (in 1992) during revision of the genera
Campylobacter, Helicobacter, and Wolinella, and the three
species were once classified as Campylobacter.
 They are Gram-negative, curved or S-shaped rods, 1-3 µm x 0.2-
0.4µ m that are quite similar to the campylobacters except they
can grow at lower temperature (150
C) and in air (are
aerotolerant).
Single polar flagellum and typical corkscrew-like motility
Colonies :off-white, white or greyish color on blood agar plates.
After 48 h incubation: 2-4 mm in diameter and convex with
entire edges
This genus currently consists of five species: A. butzleri, A.
cryaerophilus, A. skirrowii, A. nitrofigilis, and A. sulfidicus. Three
of these five known species are pathogenic.
They are found in poultry, raw milk, shellfish, and water; and in
cattle and swine products.
These oxidative and catalase positive organisms cause abortion
and enteritis in some animals, and the latter in humans is
associated with A. butzleri.
ArcobacterArcobacter (arcus – bow)(arcus – bow)
Corynebacterium (Gr. coryne, club)Corynebacterium (Gr. coryne, club)
This is one of the true coryneform genera of Gram-positive, rod-
shaped bacteria that are sometimes involved in the spoilage of
vegetable and meat products.
They are catalase-positive, aerobic or facultatively anaerobic,
generally non-motile bacteria
2 - 6 μm in length and 0.5 μm in diameter
The bacteria group together in a characteristic way, which has
been described as the form of a "V", "palisades", or "Chinese
letters".
Corynebacteria grow slowly, even on enriched media. In terms
of nutritional requirements, all need biotin to grow
Sometimes involved in the spoilage of meat products
Most are mesotrophs, although psychrotrophs are known.
 C. diphtheriae, causes diphtheria in humans.
The genus has been reduced in species with the transfer of
some of the plant Pathogens to the genus Clavibacter and
others to the genus Curtobacterium.
The mol% G+C content of DNA is 51-63.
Bacteria grow in Loeffler’s medium, blood
agar and Trypticase soya agar
Small, grayish colonies with a granular
appearance, mostly translucent, but with
opaque centers, convex, with continuous
borders.
Color tends to be yellowish-white in
Loeffler's medium.
 In TSA, they can form grey colonies with
black centers and dentated borders that
look similar to flowers
Kocuria is a genus of Gram positive bacteria in the phylum
Actinobacteria, including the sequenced species
Kocuria rhizophila.
 The three species (K. rosea, K. varians, and K. kristinae) are
oxidase negative and catalase positive.
 Mol% G+C content of DNA is 66-75.
Kocuria (after M. Kocur)Kocuria (after M. Kocur)
This genus of 15 species of Gram-positive, non-sporing,
facultative anaerobic, non spore forming rods
Closely related to Brochothrix.
Named after Joseph Lister.
Causes listeriosis in humans by foodborne route.
L. monocytogenes, L. innocua, L. ivanovii, L. grrayi, l.
welshimeri, L. seeligeri
ListeriaListeria
VibrioVibrio
These Gram-negative, straight or curved rods are members of
the family Vibrionaceae.
 Several former species have been transferred to the genus
Listonella.
 Several species cause gastroenteritis and other human illness.
 The Mol %G+C content of DNA is 38-51.
lactic acid bacteria (LAB)lactic acid bacteria (LAB)
 Lactic acid bacteria (LAB) are Gram-positive, acid-tolerant, generally
non-sporulating, either rod- or cocci-shaped bacteria.
 Usually found in decomposing plants/milk products, produce
lactic acid as the major end product of carbohydrate fermentation.
 This trait has, throughout history, linked LAB with food fermentations
, as acidification inhibits the growth of spoilage agents.
 Lactic acid and other metabolic products contribute to the
organoleptic and textural profile of a food item.
 Bacteriocins are produced by several LAB strains and provide an
additional hurdle for spoilage and pathogenic microorganisms.
 The industrial importance of the LAB is further evinced by their
generally recognized as safe (GRAS) status, due to their ubiquitous
appearance in food and their contribution to the healthy microflora
of human mucosal surfaces.
 The genera that comprise the LAB are at its core Lactobacillus,
Leuconostoc, Pediococcus, Lactococcus, and Streptococcus, as well as
the more peripheral Aerococcus, Carnobacterium, Enterococcus,
Oenococcus, Vagococcus, and Weisella also Sporolactobacillus and
Tetragenococcus.
Lactobacillus, also called Döderlein's bacillus, is a genus of
Gram-positive facultative anaerobic or microaerophilic rod-shaped
bacteria.
They are Gram-positive, catalase-negative rods that often occur in
long chains.
Although, those in foods are typically microaerophilic, many true
anaerobic strains exist, especially in human stools and the rumen.
They are a major part of the Lactic acid bacteria group, named as
such because most of its members convert lactose and other
sugars to lactic acid.
In humans they are present in the vagina and the
gastrointestinal tract, where they make up a small portion of the
gut flora.
Based on 16S rRNA sequence data, three phylogenetically distinct
clusters are revealed, with one cluster encompassing Weissella.
In all probability, this genus will undergo further reclassification.
It helps in preventing yeast infections, urinary tract infection, IBS,
traveler's diarrhea , diarrhea resulting from Clostridium difficile,
treating lactose intolerance, skin disorders (fever blisters, eczema,
acne) and prevention of respiratory infections .
LactobacillusLactobacillus
LactabacillusLactabacillus
 They typically occur on most, if not all,
vegetables, along with some of the other lactic
acid bacteria.
 There are more than 50 species of lactobacilli.
 Their occurrence in dairy products is common.
 Many fermented products are produced.
 Foods that are fermented, like yogurt, and
dietary supplements also contain these
bacteria.
 A recently described species, L. suebicus, was
recovered from apple and pear mashes; it
grows at pH 2.8 in 12-16% ethanol.
 Taxonomic techniques that came into wide use
during the 1980s have been applied to this
genus, resulting in some of those in the ninth
edition of Bergey's Manual being transferred
to other genera.
 Leuconostoc is a genus of Gram-positive bacteria, catalase-negative,
cocci placed within the family of Leuconostocaceae. They are
generally ovoid cocci, often forming chains.
 Along with the lactobacilli, this is another of the genera of lactic acid
bacteria.
 Leuconostoc spp. are intrinsically resistant to vancomycin and are
catalase-negative (which distinguishes them from staphylococci).
 All species within this genus are HETEROFERMENTATIVE and are able
to produce dextran from sucrose.
 They are generally slime-forming.
 These catalase-negative heterofermentative cocci and are typically
found in association with the lactobacilli.
 Blamed for causing the 'stink' when creating a sourdough starter,
some species are also capable of causing human infection.
 Leuconostoc is, along with other lactic acid bacteria such as
Pediococcus and Lactobacillus, responsible for the fermentation of
cabbage, making it sauerkraut.
 It is similarly part of the symbiotic colonies of microbes involved in the
fermentation of kefir, a fermented milk beverage.
 The former L. oenos has been transferred to a new genus, Oenococcus
as O. oeni, and the former L. paramesenteroides has been transferred
to the new genus as Weissella paramesenteroides.
Leuconostoc (colorless nostoc)Leuconostoc (colorless nostoc)
LeuconostocLeuconostoc
Members of Leuconstoc spp. are very often
used in production of fermented foods
because of their ability to produce lactic
acid and diacetyl.
Leuconostoc are used to inhibit Listeria
monocytogenes in dairy and meat products.
Weissella: (Weissella, after N. Weiss)Weissella: (Weissella, after N. Weiss)
This genus of lactic acid bacteria was established in 1993 in part
to accommodate The “leuconostoc branch” Of The lactobacilli.
The seven species are closely related to the leuconostocs, and
with the exception of W. paramesenteroides and W. hellenica
they produce DL-lactate from glucose.
All produce gas from carbohydrates.
W. hellenica is a new species associated with fermented Greek
sausages.
The former Leuconostoc paramesenteroides is now W.
paramesenteroides, and the following five species were formerly
classified as Lactobacillus spp.: W. confusa, W. halotolerans, W.
kandleri, W. minor, and W. viridescens.
The G+C content of DNA is 37-47mol%.
 Lactococcus is a genus of LACTIC ACID BACTERIA that were formerly
included in the genus Streptococcus Group N1.
 They are known as HOMOFERMENTORS meaning that they produce a
single product, lactic acid in this case, as the major or only product of
glucose fermentation-L-Lactic acid is the predominant end product.
 They are Gram-positive, non-motile, and catalase-negative spherical or
ovoid cells that occur singly, in pairs, or as chains.
 They grow at 100
C but not at 450
C, and most strains react with group N
antisera-The genus contains strains known to grow at or below 7˚C.
 These organisms are commonly used in the dairy industry in the
manufacture of fermented dairy products, such as cheeses.
 They can be used in single-strain starter cultures, or in mixed-strain
cultures with other lactic acid bacteria such as Lactobacillus and
Streptococcus.
 Special interest is placed on the study of L. lactis subsp. lactis and L.
lactis subsp. cremoris, as they are the strains used as starter cultures in
industrial dairy fermentations.
 Their main purpose in dairy production is the rapid acidification of
milk; this causes a drop in the pH of the fermented product, which
prevents the growth of spoilage bacteria.
 The bacteria also play a role in the flavor of the final product.
LactococcusLactococcus
This genus was created to accommodate the group N lactococci
based on 16S sequence data.
They are Gram positive and Catalase negative, and grow at 100
C
but not at 45°C.
They are motile by peritrichous flagella,
They grow in 4% NaCl but not 6.5%, and no growth occurs at pH
9.6.
The cell wall peptidoglycan is Lys-D-Asp, And the mol% G+C is
33.6.
At least one species produces H2S.
They are found on fish, in feces, and in water and may be
expected to occur on other foods.
Vagococcus (wandering coccus)Vagococcus (wandering coccus)
Enterococcus is a large genus of LACTIC ACID BACTERIA of the
phylum Firmicutes.
This is normally found in the intestinal tract of humans .
This genus was erected to accommodate some of the Lancefield
serologic group D cocci - were in the genus Streptococcus.
It has since been expanded to more than 16 species of Gram
positive, ovoid cells that occur singly, in pairs, or in short chains.
Some species do not react with group D antisera.
Enterococci are facultative anaerobic organisms, i.e., they are
capable of cellular respiration in both oxygen-rich and oxygen-poor
environments.
Though they are not capable of forming spores, enterococci are
tolerant of a wide range of environmental conditions: extreme
temperature (10-45°C), pH (4.5-10.0) and high sodium chloride
concentrations.
Two species are common commensal organisms in the intestines of
humans: E. faecalis (90-95%) and E. faecium (5-10%).
Rare clusters of infections occur with other species, including E.
casseliflavus, E. gallinarum, and E. raffinosus.
Enterococcus faecium SF68 is a specific probiotic strain that has
been used in the management of diarrhoeal illnesses.
EnterococcusEnterococcus
Enterococcus on
blood agar plate
smooth, cream or
white colonies
with entire edges
For culture:
TSA Agar,
Blood Agar 5%,
Chocolate Agar, Nutrient Agar
For selective
isolation:
Bile Esculin Azide (BEA) Media,
6.5% NaCl Broth
6.5% NaCl Agar
Columbia CNA
Mannitol Salt Agar
Mannitol Salt Broth
For
maintenance:
TSA Agar, Blood Agar 5%. Media
containing cryoprotectants such as
glycerol or serum may be used for
long-term storage at -70 degrees C.
(i.e. Brucella with Glycerol, TSB with
Glycerol).
Quadrant 1: Enterococcus faecalis, is resistant to the antibiotics colistin and naladixic acid.
Quadrant 2: Enterobacter aerogenes, is sensitive to the antibiotics and is Gram-negative.
Quadrant 3: Escherichia coli, is sensitive to the antibiotics and is Gram-negative.
Quadrant 4: Staphylococcus aureus, is resistant to the antibiotics and is Gram-positive.
Growth on Columbia CNA
These HOMO-FERMENTATIVE cocci are lactic acid bacteria that
exist in pairs and tetrads resulting from cell division in two
planes.
P. acidilactici, a common starter species,
Reported to cause septicemia in a 53-year-old male.
Their mol% G+C content of DNA is 34.4.
The once P. halophilus is now in the genus Tetragenococcus
as T. halophilus - It can grow in 18% NaCl.
PediococcusPediococcus
 Carnobacterium is a genus of Gram-positive bacteria within the family
Leuconostocaceae.
 This genus of Gram positive, catalase-negative rods was formed to
accommodate some organisms previously classified as lactobacilli.
 They are phylogenetically closer to the enterococci and vagococci than the
lactobacilli.
 They differ from the lactobacilli in being unable to grow on Acetate medium
and in their synthesis of oleic acid.
 They are HETERO-FERMENTATIVE, and most grow at 00
C and none at 450
C.
 Gas is produced from glucose By some species.
 C. divergens and C. maltaromaticum are dominating part of microflora of
chilled vacuum or modified atmosphere-packed meat as well as on fish and
poultry meats.
 They can grow anaerobically.
 These species are not known to be pathogenic in humans, but may cause
disease in fish.
 C. maltaromaticum strain CB1, has been evaluated under the
Canadian Environmental Protection Act, 1999, as a food additive for vacuum-
or modified atmosphere-packaged ready-to-eat meat and fresh comminuted,
processed meat-Based on the hazard and exposure considerations, the risk
assessment conducted by Health Canada concluded that C.
maltaromaticum strain CB1 is not considered to be toxic to the Canadian
environment or human health as described in Section 64 of CEPA 1999.
 The Mol% G+C for the genus is 33.0-37.2.
Carnobacterium (carnis, of flesh-meat bacteria)Carnobacterium (carnis, of flesh-meat bacteria)
Bifidobacteria
There are approx. 30 species of
bifidobacteria.
They are found in the intestinal tract
within days of birth, especially in
breastfed infants.
They help in the improvement of
abdominal pain, bloating, bowel
dysfunction, incomplete evacuation,
straining, and the passage of gas.
Streptococcus
This produces large quantities of the
enzyme lactase, making it effective.
It helps in the prevention of lactose
intolerance.
Saccharomyces
The only yeast probiotic.
It is effective in treating diarrhea
associated with the use of antibiotics and
traveler's diarrhea.
It has also been reported to prevent the
reoccurrence of Clostridium difficile, to
treat acne, and to reduce side effects of
treatment for Helicobacter pylori.
Foodborne Moulds
• Aspergillus
• Alternaria
• Aureobasidium (Pullularia)
• Botrytis
• Byssochlamys
• Chladosporium
• Collectotrichum
• Fusarium
• Geotrichum
• Monilinia
• Mucor
• Penicillium
• Rhizopus
• Thamnidium
• Trichothesium
• Other moulds
Miscellaneous genera that are found in some foods but are generally
not regarded as significant: Cephalosporium, Diplodia and Neurospora
Xerophiles: Aspergillus, Eurotium, Basipetospora, Chrysosporium,
Eremascus, Polypaecilum, Wallemia, and Xeromyces
Common Moulds in Food
Filamentous fungi that grow in the form of a tangled mass that
spreads rapidly and may cover several inches of area in 2 to 3
days.
The total of the mass or any large portion of it is referred to as
mycelium.
Mycelium is composed of branches or filaments referred to as
hyphae.
Those of greatest importance in foods multiply by
zygospores/oospores, ascospores, or conidia.
Morphology
 The morphology of moulds as judged by their macroscopic and
microscopic appearance is used for its identificationa nd
classification.
 The mould thallus consist of a mass of branching intertwined
filaments called hyphae.
 Whole mass of these hyphae is called mycelium.
 Hyphae may be submerged (growing in to food) or aerial (growing in
to air above food)
 Hyphae may be vegetative or growing and hence involved chiefly in
nutrition of mold or fertile, involved in production of reproductive
parts.
 In most moulds, fertile hyphae are aerial but in some may be
submerged.
 Hyphae may be septate or non-septate (coenocytic)
 The hyphae of most moulds are clear but in som it may be dark or
smoky.
 Septate hyphae increase in length by means of division of tip cell
(apical growth) or of cells within hypha (Intercalary growth)- the type
of growth being characteristic of type of mold
 Special mycelial structures or parts aid in the identification of moulds.
E.g. rhizoids/hodfasts in Rhizopus and Absidia; the foot cell in
Aspergillus and dichotomous or y-shaped, branching in Geotrichium.
Reproductive Parts or Structures
 Molds can grow from a transplanted part of mycelium.
Reproduction in molds mainly occurs by means of asexual
spores.
Some molds also form sexual spores. Such molds are termed as
“perfect” and include Zygomycetes or Oomycetes (non-septate)
or ascomycetes and basidiomycetes if septate. In contrast,
Imperfect moulds i.e. Fungi Imperfecti (typically septate)
multiply by only asexual spores.
Asexual Spores: Asexual spores of molds are produced in large
numbers and are small, light and resistant to drying. They are
readily spread through air. Three types of asexual spores are:
Conidia
Sporangiospore
Arthrospores/oidia
Chlamydospores
Asexual Spores
Conidia: Conidia are cut off or bud from special fertile hyphae
called conidiophores and usually are in open (not enclosed in
container).
Sponragiospores: Sponragiospores are produced in a
sac/container (called sporangium) at the tip of the fertile
hyphae called sporangiophores
Arthrospores: Arthrospores are formd by fragmentation of the
hypha so that the cells of the hypha become arthrospores.
Chlamydospores: Produced by many molds. Here cells in the
mycelium here and there stores up reserve food, swells and
forms a thicker wall than the surrounding cells. This is
chlamydospore or resting cell.
Asexual spores in Identification
 The morphology of the asexual spore is helpful in identification of
genus and speices of the mold.
 Sporangiospores differ in shape size and colour.
 Conidia also may be smooth or roughened and one, two or many
celled.
 Also helpful in identification of mold is the appearance of fertile
hyphae and arrangement of asexual spores on them.
 If sporangiospores are formed, sporangiophores may be simple or
branched; type of branching and sizem shape and color and location
of sporangia hint about the speices.
 The swollen tip of the sporangiophore is called columella, which
usually projects in to the sporangium, assumes shapes typical of
species of mold.
 Conidia may be borne singly on conidiophores or in spore heads of
differing arrangement and complexity. A look at the appearance of
spore head is sufficient for genus identification.
 Some molds have conidia in chains, squeezed off one by one from a
special cell, a sterigma, or phialide at the tip of the conidiophore.
 Other molds have irregular masses of conidia which cut off from
conidiophore with out evident sterigmata.
Sexual Spores
The non-septate molds (phycomycetes) reproduce by oospores
are termed oomycetes. These molds are mostly aquatic but also
include “downy mildews” which cause late blight of potato and
buckeye rot of tomatoes. The oospores are formed by union of
small male gamete and large female gamete.
The zygospores are formed by zygomycetes by the union of tip
of two hyphae from the same mycelium or different mycelium.
Both oospores and zygospores are covered by a tough wall and
can survive drying for prolong period.
The ascomycetes produce ascospores in a sac called ascus
Usually 08 ascospores are produced in an ascus. The asci may be
single or may be grouped within a covering called an ascocarp
formed by branchinga and intertwinning of the adjacent
hyphae.
The basidiomycetes, which include most mushrooms, plant
rusts and smuts produce basidiospores.
Aspergillus Aspergillus is defined as a group of conidial fungi
 The aspergilli appear yellow to green to black on
a large number of foods
 Found on country-cured hams and on bacon
 It is widely distributed and contains many species
important in food.
 Members have septate hyphae and produce
black-colored asexual spores or conidia.
 Many are xerophilic (able to grow in low Aw) and
can grow in grains, causing spoilage.
 They are also involved in spoilage of foods such
as jams, cured ham, nuts, and fruits and
vegetables (rot).
 Some species or strains produce mycotoxins (e.g.
Aspergillus flavus produces aflatoxin).
 Many species or strains are also used in food and
food additive processing e.g.
Asp. oryzae is used to hydrolyze starch by α-
amylase in the production of sake.
Asp. niger is used to process citric acid from
sucrose and to produce enzymes such as b-
galactosidase. Colony of A. flavus on SDA
Alternaria
Alternaria is a genus of ascomycete fungi.
Members are septate and form dark-colored spores or conidia.
Septate mycelia with conidiophores and large brown conidia
are produced
The conidia have both cross and longitudinal septa and are
variously shaped.
They cause rot in tomatoes and rancid flavor in dairy products.
Some species or strains produce mycotoxins.
Species: Alternaria tenuis
Sabouraud dextrose agar
Aureobasidium
Ubiquitous black, yeast-like fungus
Cultivated on potato dextrose agar, where it produces
smooth, faint pink, yeast-like colonies covered with a
slimy mass of spores
Colony on PDA
Cladosporium
Most abundant mold in air
A genus of fungi having dematiaceous or dark-
colored conidiophores with oval or round spores
Species produce olive-green to brown or black colonies, and have
dark-pigmented conidia that are formed in simple or branching
chains
C. herbarum can cause "black spot" spoilage of meat
C. herbarum on PDA
Penicillium
 Genus of ascomycetous fungi
Typical colors on foods are blue to blue-
green
It is widely distributed and contains many
species.
Members have septate hyphae and form 
conidiophores on a blue-green, brushlike 
conidia head (Figure 2.1). 
Some  species  are  used  in  food 
production,  such  as  Penicillium
roquefortii and  Pen. camembertii in
cheese.
Many species cause fungal rot in fruits
and vegetables. 
They  also  cause  spoilage  of  grains, 
breads, and meat. 
Some  strains  produce  mycotoxins  (e.g., 
Ochratoxin A). Penicillium colony on PDA
Rhizopus
Common saprophytic fungi
Rhizopus species  grow  as 
filamentous,  branching hyphae that 
generally lack cross-walls
Hyphae are aseptate and form
sporangiophores in sporangium.
Reproduce  by  forming  asexual  and 
sexual spores
They cause spoilage  of  many  fruits 
and vegetables. 
Rhizopus stolonifer is the common
black bread mold.
Colony on acidified PDA
Thamnidium
Genus (the type of the family Thamnidiaceae) of molds
Related to the typical bread molds 
Characterized by branched sporangiophores and sporangia
Fusarium:
Many types are associated with rot in citrus fruits, potatoes, and
grains.
They  form  cottony  growth  and  produce  septate,  sickle-shaped 
conidia. Species: Fusarium solani.
Geotrichum:
Members are septate and form rectangular arthrospores.
They grow, forming a yeast like cottony, creamy colony. 
They  establish  easily  in  equipment  and  often  grow  on  dairy 
products (dairy mold). Species: Geotrichum candidum.
Mucor:
It is widely distributed.
Members have non-septate hyphae and produce sporangiophores.
They produce cottony colonies. 
Some species are used in food fermentation and as a source of 
enzymes. 
They cause spoilage of vegetables. 
Species: Mucor rouxii.
Foodborne Yeasts
• Saccharomyces
• Schizosaccharomyces
• Zygosaccharomyces
• Candida
• Cryptococcus
• Rhdotorula
• Pichia
• Brettanomyces
• Debaryomyces
• Henseniaspora
• Issatchenkia
• Kluyveromyces (Fabospora)
•Torulaspora
• Trichosporon
Morphology
Yeast  may  be  spherical  to  ovoid,  lemon  shaped,  pear  shaped, 
cylindrical,  triangular  or  even  elongated  in  to  a  false  or  true 
mycelium.
Most  yeast  reproduce  asexually  by  multilateral  or  polar 
budding.
Some  yeast  species  reproduce  by  fission  and  one  by 
combination of budding and fission.
Saccharomyces
Cells  are  round,  oval,  or  elongated.  It  is  the  most  important 
genus and contains heterogenous groups. 
Saccharomyces cerevisiae variants are  used  in  baking  for 
leavening bread and in alcoholic fermentation. 
They also cause spoilage of food, producing alcohol and CO2.
Zygosaccharomyces:
Cause spoilage of high-acid foods, such as sauces, ketchups,
pickles, mustards, mayonnaise, salad dressings, especially those 
with less acid and less salt and sugar (e.g., Zygosaccharomyces
bailii).
Dimorphic fungus that  grows  both  as yeast and filamentous
 cells
Most common yeasts in fresh ground beef and poultry
Many  species  spoil  foods  with  high  acid,  salt,  and  sugar  and 
form  pellicles  on  the  surface  of  liquids.  Some  can  cause 
rancidity in butter and dairy products (e.g., Candida lipolyticum).
Candida on SDA
Candida
Cryptococcus
Sexual  forms  or teleomorphs  of Cryptococcus species  are 
filamentous fungi in the genus Filobasidiella
Asporogenous,  reproduce  by  multilateral  budding,  and  are 
nonfermenters of sugars
Colonies  on  a  macroscopic  level  are  cream-color  to  pale  pink, 
with  the  majority  of  colonies  being  smooth  with  a  mucoid 
appearance
INDIA INK STAINING COLONY ON SDA
Rhodotorula
They are pigment-forming yeasts and can cause discoloration of 
foods such as meat, fish, and sauerkraut. 
Unicellular pigmented yeasts, part of the division Basidiomycota
Distinctive  orange/red colonies when  grown  on  SDA 
(Sabouraud's Dextrose Agar)
Species: Rhodotorula glutinis
Pichia
 Cells are oval to cylindrical and form pellicles in beer, wine, and
brine to cause spoilage. 
 Some are also used in oriental food fermentation. 
 Species: Pichia membranaefaciens
Trichosporon
Trichosporon is a genus of anamorphic fungi in
the family Trichosporonaceae
All species of Trichosporon are yeasts with no known
teleomorphs (sexual states)
Common flora in fresh meat
Common Species: T. pullulans
COLONY ON SDA
Yarrowia
Yarrowia is a fungal genus in the family Dipodascaceae
Can use unusual carbon sources, such as hydrocarbons
Commonly isolated from poultry meat
Viruses Viruses are important in food for three reasons.
 Some are able to cause enteric disease, and thus, if present in a food, can 
cause foodborne diseases e.g. Hepatitis A and Norwalk-like viruses have 
been  implicated  in  foodborne  outbreaks.  Several  other  enteric  viruses, 
such as polio, echo, and Coxsackie virus, can cause foodborne diseases. In 
some countries where the level of sanitation is not very high, they can 
contaminate foods and cause disease.
 Some  bacterial  viruses  (bacteriophages)  are  used  to  identify  some 
pathogens (Salmonella spp., Staphylococcus aureus strains) on the basis of
the sensitivity of the  cells  to  a  series  of  bacteriophages  at  appropriate 
dilutions. 
 Bacteriophages  are  used  to  transfer  genetic  traits  in  some  bacterial 
species or strains by a process called transduction (e.g., in Escherichia coli
or Lactococcus lactis).
 Finally,  some  bacteriophages  can  be  very  important  because  they  can 
cause  fermentation  failure.  Many  lactic  acid  bacteria,  used  as  starter 
cultures in food fermentation, are sensitive to different bacteriophages. 
They  can  infect  and  destroy  starter-culture  bacteria,  causing  product 
failure.  Among  the  lactic  acid  bacteria,  bacteriophages  have  been 
isolated  for  many  species  in  the  genera  Lactococcus, Streptococcus,
Leuconostoc, and Lactobacillus; no bacteriophage of Pediococcus is yet 
known. Methods are being devised to genetically engineer lactic starter 
cultures so that they become resistant to multiple bacteriophages.
Bacterial Groups in Foods
Among the microorganisms found in foods, bacteria constitute 
major important groups.
This is not only because many different species but also because 
of their rapid growth rate, ability to utilize food nutrients, and 
ability to grow under a wide range of temperatures, aerobiosis, 
pH,  and  water  activity,  as  well  as  to  better  survive  adverse 
situations, such as survival of spores at high temperature. 
For  convenience,  bacteria  important  in  foods  have  been 
arbitrarily divided into several groups on the basis of similarities 
in certain characteristics. 
This grouping does not have any taxonomic significance. Some 
of these groups and their importance in foods are listed here.
A. Lactic Acid Bacteria
 They are bacteria that produce relatively large quantities of lactic acid from 
carbohydrates.  Species  mainly  from  genera  Lactococcus, Leuconostoc,
Pediococcus, Lactobacillus, and  Streptococcus thermophilus are included in
this group.
B. Acetic Acid Bacteria
 They are bacteria that produce acetic acid, such as Acetobacter aceti.
C. Propionic Acid Bacteria
 They  are  bacteria  that  produce  propionic  acid  and  are  used  in  dairy 
fermentation. Species such as Propionibacterium freudenreichii are included
in this group.
D. Butyric Acid Bacteria
 They are bacteria that produce butyric acid in relatively large amounts. Some
 Clostridium spp. such as Clostridium butyricum are included in this group.
E. Proteolytic Bacteria
 They  are  bacteria  that  can  hydrolyze  proteins  because  they  produce 
extracellular proteinases. 
 Species  in  genera  Micrococcus, Staphylococcus, Bacillus, Clostridium,
Pseudomonas, Alteromonas, Flavobacterium, Alcaligenes, some in
Enterobacteriaceae, and Brevibacterium are included in this group.
Bacterial Groups in Foods……
F. Lipolytic Bacteria
They  are  bacteria  that  are  able  to  hydrolyze  triglycerides  because 
they produce extracellular lipases. 
Species  in  genera  Micrococcus, Staphylococcus, Pseudomonas,
Alteromonas, and Flavobacterium are included in this group.
G. Saccharolytic Bacteria
They are bacteria that are able to hydrolyze complex carbohydrates. 
Species in genera Bacillus, Clostridium, Aeromonas, Pseudomonas, and
Enterobacter are included in this group.
H. Thermophilic Bacteria
They are bacteria that are able to grow at 500
C and above. 
Species from genera Bacillus, Clostridium, Pediococcus, Streptococcus,
and Lactobacillus are included in this group.
I. Psychrotrophic Bacteria
They are bacteria that are able to grow at refrigerated temperature 
(<5􀁲C). 
Some  species  from  Pseudomonas, Alteromonas, Alcaligenes,
Flavobacterium, Serratia, Bacillus, Clostridium, Lactobacillus,
Leuconostoc, Carnobacterium, Brochothrix, Listeria, Yersinia, and
Aeromonas are included in this group.
Bacterial Groups in Foods……
J. Thermoduric Bacteria
 They  are  bacteria  that  are  able  to  survive  pasteurization  temperature 
treatment. 
 Some  species  from  Micrococcus, Enterococcus, Lactobacillus, Pediococcus,
Bacillus (spores), and Clostridium (spores) are included in this group.
K. Halotolerant Bacteria
 They are bacteria that are able to survive high salt concentrations (>10%). 
 Some species from Bacillus, Micrococcus, Staphylococcus, Pediococcus, Vibrio,
and Corynebacterium are included in this group.
L. Aciduric Bacteria
 They are bacteria that are able to survive at low pH (<4.0). 
 Some species from Lactobacillus, Pediococcus, Lactococcus, Enterococcus, and
Streptococcus are included in this group.
M. Osmophilic Bacteria
 They are bacteria that can grow at a relatively higher osmotic environment 
than  that  needed  for  other  bacteria.  Some  species  from  genera 
Staphylococcus, Leuconostoc, and Lactobacillus are included in this group.
 They are much less osmophilic than yeasts and molds.
N. Gas-Producing Bacteria
 They  are  bacteria  that  produce  gas  (CO2,  H2,  H2S)  during  metabolism  of 
nutrients.
 Species  from  Leuconostoc, Lactobacillus, Propionibacterium, Escherichia,
Enterobacter, Clostridium, and Desulfotomaculum are included in this group.
Bacterial Groups in Foods……
O. Slime Producers
 They  are  bacteria  that  produce  slime  because  they  synthesize 
polysaccharides. 
 Some  species  or  strains  from  Xanthomonas, Leuconostoc, Alcaligenes,
Enterobacter, Lactococcus,and Lactobacillus are included in this group.
P. Spore Formers
 They are bacteria having the ability to produce spores. Species from Bacillus,
Clostridium, and Desulfotomaculum are included in this group.
 They are further
 divided into aerobic spore formers, anaerobic spore formers, flat sour spore 
formers, thermophilic spore formers, and sulfide-producing spore formers.
Q. Aerobes
 They are bacteria that require oxygen for growth and multiplication. Species 
from Pseudomonas, Bacillus, and Flavobacterium are included in this group.
R. Anaerobes
 They are bacteria that cannot grow in the presence of oxygen. Species from 
Clostridium are included in this group.
S. Facultative Anaerobes
 They are bacteria that are able to grow in both the presence and absence of 
oxygen. Lactobacillus, Pediococcus, Leuconostoc, enteric pathogens, and some
species of Bacillus, Serratia, and coliforms are included in this group.
Bacterial Groups in Foods……
T. Coliforms
 Species  from  Escherichia, Enterobacter, Citrobacter, and Klebsiella are
included in this group. They are used as an index of sanitation.
U. Fecal Coliforms
 Mainly Escherichia coli is included in this group. They are also used as an index
of sanitation.
V. Enteric Pathogens
 Pathogenic Salmonella, Shigella, Campylobacter, Yersinia, Escherichia, Vibrio,
Listeria, hepatitis A, and others that can cause gastrointestinal infection are 
included in this group.
Bacterial Groups in Foods……
SUMMARY
Bacteria, yeast and moulds contribute majorly in food spoilage
Some  bacteria  can  even  survive  pasteurization  and  vaccum 
packaging
Spoilage  leads  to  deterioration  of  product  and  render  it 
unpalatable
Bacteria  and  fungi  can  also  be  pathogen  and  may  lead  to 
diseases and food poisoning
Proper hygenic measures in production, processing, packaging 
and  storage  can  render  food  free  from  spoilage  and 
pathogenic organisms
Thanks
Acknowledgement: All the material/presentations available online on the subject
are duly acknowledged.
Disclaimer: The author bear no responsibility with regard to the source and
authenticity of the content.
Questions???

More Related Content

What's hot

gram negative rods, entrobacteria
gram negative rods,  entrobacteriagram negative rods,  entrobacteria
gram negative rods, entrobacteriaFaarah Yusuf
 
Non sporing anaerobes by rk taram
Non sporing anaerobes by rk taramNon sporing anaerobes by rk taram
Non sporing anaerobes by rk taramRanjeettaram
 
Staphylococcus
StaphylococcusStaphylococcus
Staphylococcusdrakmane
 
Basic microbiology aid nurses
Basic microbiology aid nursesBasic microbiology aid nurses
Basic microbiology aid nursesRUBINAAKBAR1
 
Bacteriology: Bacillus
Bacteriology: BacillusBacteriology: Bacillus
Bacteriology: BacillusBikram Das
 
Medical Microbiology Laboratory (Bacillus spp.)
Medical Microbiology Laboratory (Bacillus spp.)Medical Microbiology Laboratory (Bacillus spp.)
Medical Microbiology Laboratory (Bacillus spp.)Hussein Al-tameemi
 
physiology of microorganisms
physiology of microorganismsphysiology of microorganisms
physiology of microorganismsMuhammad Abdullah
 
Medical Microbiology Laboratory (Clostridium spp.)
Medical Microbiology Laboratory (Clostridium spp.)Medical Microbiology Laboratory (Clostridium spp.)
Medical Microbiology Laboratory (Clostridium spp.)Hussein Al-tameemi
 
Bacillus spp. (Practical Medical Microbiology, 12)
Bacillus spp. (Practical Medical Microbiology, 12)Bacillus spp. (Practical Medical Microbiology, 12)
Bacillus spp. (Practical Medical Microbiology, 12)Hussein Al-tameemi
 

What's hot (17)

gram negative rods, entrobacteria
gram negative rods,  entrobacteriagram negative rods,  entrobacteria
gram negative rods, entrobacteria
 
Burkholderia spp.
Burkholderia spp.Burkholderia spp.
Burkholderia spp.
 
Non sporing anaerobes by rk taram
Non sporing anaerobes by rk taramNon sporing anaerobes by rk taram
Non sporing anaerobes by rk taram
 
Staphylococcus
StaphylococcusStaphylococcus
Staphylococcus
 
Gram positive rods
Gram positive rodsGram positive rods
Gram positive rods
 
Enterobacteriasese seminar
Enterobacteriasese seminarEnterobacteriasese seminar
Enterobacteriasese seminar
 
Basic microbiology aid nurses
Basic microbiology aid nursesBasic microbiology aid nurses
Basic microbiology aid nurses
 
microbial growth
microbial growthmicrobial growth
microbial growth
 
ENTEROBACTERIACEAE for Students in Microbiology by Dr.T.V.Rao MD
ENTEROBACTERIACEAE for Students in Microbiology by Dr.T.V.Rao MDENTEROBACTERIACEAE for Students in Microbiology by Dr.T.V.Rao MD
ENTEROBACTERIACEAE for Students in Microbiology by Dr.T.V.Rao MD
 
Bacteriology: Bacillus
Bacteriology: BacillusBacteriology: Bacillus
Bacteriology: Bacillus
 
Medical Microbiology Laboratory (Bacillus spp.)
Medical Microbiology Laboratory (Bacillus spp.)Medical Microbiology Laboratory (Bacillus spp.)
Medical Microbiology Laboratory (Bacillus spp.)
 
physiology of microorganisms
physiology of microorganismsphysiology of microorganisms
physiology of microorganisms
 
Bacillus
BacillusBacillus
Bacillus
 
Medical Microbiology Laboratory (Clostridium spp.)
Medical Microbiology Laboratory (Clostridium spp.)Medical Microbiology Laboratory (Clostridium spp.)
Medical Microbiology Laboratory (Clostridium spp.)
 
Bacillus spp. (Practical Medical Microbiology, 12)
Bacillus spp. (Practical Medical Microbiology, 12)Bacillus spp. (Practical Medical Microbiology, 12)
Bacillus spp. (Practical Medical Microbiology, 12)
 
NON-FERMENTERS
NON-FERMENTERSNON-FERMENTERS
NON-FERMENTERS
 
Corynebacterial toxins
Corynebacterial toxinsCorynebacterial toxins
Corynebacterial toxins
 

Similar to Microorganisms important in livestock products

Enterobacteriaceae & Brucella
Enterobacteriaceae & BrucellaEnterobacteriaceae & Brucella
Enterobacteriaceae & BrucellaAlia Najiha
 
Ordinary Gram-Positive Bacteria
Ordinary Gram-Positive BacteriaOrdinary Gram-Positive Bacteria
Ordinary Gram-Positive BacteriaAnil Shrestha
 
Lactobacillales-Group-1-2-Presentation.pdf
Lactobacillales-Group-1-2-Presentation.pdfLactobacillales-Group-1-2-Presentation.pdf
Lactobacillales-Group-1-2-Presentation.pdfMcFerdieCBacton
 
General Characteristics of Plant Pathogenic Bacteria ppt. By ADAMU Zaid.
General Characteristics of  Plant Pathogenic Bacteria ppt. By ADAMU Zaid.General Characteristics of  Plant Pathogenic Bacteria ppt. By ADAMU Zaid.
General Characteristics of Plant Pathogenic Bacteria ppt. By ADAMU Zaid.ZaidAdamu
 
Archaebacteria
ArchaebacteriaArchaebacteria
Archaebacteriakaslinsas
 
Vibrio cholerae. Genera Vibrio. Treatment of cholerae
Vibrio cholerae. Genera Vibrio. Treatment of choleraeVibrio cholerae. Genera Vibrio. Treatment of cholerae
Vibrio cholerae. Genera Vibrio. Treatment of choleraeEneutron
 
Historical developments, microorganisms important in food bacteria
Historical developments, microorganisms important in food bacteria Historical developments, microorganisms important in food bacteria
Historical developments, microorganisms important in food bacteria Deepika Rana
 
Classification of enterbacteriaceae and biochemical reactions
Classification of enterbacteriaceae and biochemical reactionsClassification of enterbacteriaceae and biochemical reactions
Classification of enterbacteriaceae and biochemical reactionsDAKhan4
 
Medical Microbiology :Richettsia or rickettsiae
Medical Microbiology :Richettsia or rickettsiaeMedical Microbiology :Richettsia or rickettsiae
Medical Microbiology :Richettsia or rickettsiaeTejaswini Petkar
 
Nitrobacteriaceae & Pseudomonas
Nitrobacteriaceae & PseudomonasNitrobacteriaceae & Pseudomonas
Nitrobacteriaceae & PseudomonasAlia Najiha
 
Bohomolets Microbiology Lesson #1
Bohomolets Microbiology Lesson #1Bohomolets Microbiology Lesson #1
Bohomolets Microbiology Lesson #1Dr. Rubz
 
GROUPS of bacteria importance in food microbiology
GROUPS of bacteria importance in food microbiologyGROUPS of bacteria importance in food microbiology
GROUPS of bacteria importance in food microbiologyTamanna Naznin
 
1 spore-forming gram-positive bacilli 2014
1   spore-forming gram-positive bacilli 20141   spore-forming gram-positive bacilli 2014
1 spore-forming gram-positive bacilli 2014May Alwakil
 

Similar to Microorganisms important in livestock products (20)

Enterobacteriaceae & Brucella
Enterobacteriaceae & BrucellaEnterobacteriaceae & Brucella
Enterobacteriaceae & Brucella
 
Ordinary Gram-Positive Bacteria
Ordinary Gram-Positive BacteriaOrdinary Gram-Positive Bacteria
Ordinary Gram-Positive Bacteria
 
Lactobacillales-Group-1-2-Presentation.pdf
Lactobacillales-Group-1-2-Presentation.pdfLactobacillales-Group-1-2-Presentation.pdf
Lactobacillales-Group-1-2-Presentation.pdf
 
General Characteristics of Plant Pathogenic Bacteria ppt. By ADAMU Zaid.
General Characteristics of  Plant Pathogenic Bacteria ppt. By ADAMU Zaid.General Characteristics of  Plant Pathogenic Bacteria ppt. By ADAMU Zaid.
General Characteristics of Plant Pathogenic Bacteria ppt. By ADAMU Zaid.
 
Archaebacteria
ArchaebacteriaArchaebacteria
Archaebacteria
 
Vibrio by Dr. Rakesh Prasad Sah
Vibrio by Dr. Rakesh Prasad SahVibrio by Dr. Rakesh Prasad Sah
Vibrio by Dr. Rakesh Prasad Sah
 
Kingdom archaebacteria
Kingdom archaebacteriaKingdom archaebacteria
Kingdom archaebacteria
 
Vibrio by Dr. Rakesh Prasad Sah
Vibrio by Dr. Rakesh Prasad SahVibrio by Dr. Rakesh Prasad Sah
Vibrio by Dr. Rakesh Prasad Sah
 
Vibrio cholerae. Genera Vibrio. Treatment of cholerae
Vibrio cholerae. Genera Vibrio. Treatment of choleraeVibrio cholerae. Genera Vibrio. Treatment of cholerae
Vibrio cholerae. Genera Vibrio. Treatment of cholerae
 
Historical developments, microorganisms important in food bacteria
Historical developments, microorganisms important in food bacteria Historical developments, microorganisms important in food bacteria
Historical developments, microorganisms important in food bacteria
 
Classification of enterbacteriaceae and biochemical reactions
Classification of enterbacteriaceae and biochemical reactionsClassification of enterbacteriaceae and biochemical reactions
Classification of enterbacteriaceae and biochemical reactions
 
Medical Microbiology :Richettsia or rickettsiae
Medical Microbiology :Richettsia or rickettsiaeMedical Microbiology :Richettsia or rickettsiae
Medical Microbiology :Richettsia or rickettsiae
 
2009. yeast
2009. yeast2009. yeast
2009. yeast
 
Nitrobacteriaceae & Pseudomonas
Nitrobacteriaceae & PseudomonasNitrobacteriaceae & Pseudomonas
Nitrobacteriaceae & Pseudomonas
 
Bohomolets Microbiology Lesson #1
Bohomolets Microbiology Lesson #1Bohomolets Microbiology Lesson #1
Bohomolets Microbiology Lesson #1
 
MAJOR GROUPS OF BACTERIA.pdf
MAJOR  GROUPS OF  BACTERIA.pdfMAJOR  GROUPS OF  BACTERIA.pdf
MAJOR GROUPS OF BACTERIA.pdf
 
GROUPS of bacteria importance in food microbiology
GROUPS of bacteria importance in food microbiologyGROUPS of bacteria importance in food microbiology
GROUPS of bacteria importance in food microbiology
 
Bergye's Mannual Classification of Bacteria
Bergye's  Mannual Classification of Bacteria Bergye's  Mannual Classification of Bacteria
Bergye's Mannual Classification of Bacteria
 
1 spore-forming gram-positive bacilli 2014
1   spore-forming gram-positive bacilli 20141   spore-forming gram-positive bacilli 2014
1 spore-forming gram-positive bacilli 2014
 
Genus campylobacter
Genus campylobacterGenus campylobacter
Genus campylobacter
 

More from Ravi Kant Agrawal

Biochemical tests for identification of bacteria
Biochemical tests for identification of bacteriaBiochemical tests for identification of bacteria
Biochemical tests for identification of bacteriaRavi Kant Agrawal
 
Classification and nomenclature of bacterial toxins
Classification and nomenclature of bacterial toxins Classification and nomenclature of bacterial toxins
Classification and nomenclature of bacterial toxins Ravi Kant Agrawal
 
Foodborne Infections and Intoxications
Foodborne Infections and IntoxicationsFoodborne Infections and Intoxications
Foodborne Infections and IntoxicationsRavi Kant Agrawal
 
Factors affecting microbial growth in Livestock products
Factors affecting microbial growth in Livestock productsFactors affecting microbial growth in Livestock products
Factors affecting microbial growth in Livestock productsRavi Kant Agrawal
 
Lect 01 introduction to antibiotics 19 08-142
Lect 01 introduction to antibiotics 19 08-142Lect 01 introduction to antibiotics 19 08-142
Lect 01 introduction to antibiotics 19 08-142Ravi Kant Agrawal
 
Antibiotics acting on cell wall 2 cephalosporins 03-05-2018
Antibiotics acting on cell wall 2   cephalosporins 03-05-2018Antibiotics acting on cell wall 2   cephalosporins 03-05-2018
Antibiotics acting on cell wall 2 cephalosporins 03-05-2018Ravi Kant Agrawal
 
Safety considerations and guidelines veterinary microbiology laboratory
Safety considerations and guidelines veterinary microbiology laboratorySafety considerations and guidelines veterinary microbiology laboratory
Safety considerations and guidelines veterinary microbiology laboratoryRavi Kant Agrawal
 
Biosafety Levels, Biological Safety Cabinets and Biosafety Laboratory Constru...
Biosafety Levels, Biological Safety Cabinets and Biosafety Laboratory Constru...Biosafety Levels, Biological Safety Cabinets and Biosafety Laboratory Constru...
Biosafety Levels, Biological Safety Cabinets and Biosafety Laboratory Constru...Ravi Kant Agrawal
 
Rapid pathogen detection methods
Rapid pathogen detection methodsRapid pathogen detection methods
Rapid pathogen detection methodsRavi Kant Agrawal
 
Novel non thermal preservation technologies
Novel non thermal preservation technologiesNovel non thermal preservation technologies
Novel non thermal preservation technologiesRavi Kant Agrawal
 
Transformation and transfection
Transformation and transfection Transformation and transfection
Transformation and transfection Ravi Kant Agrawal
 

More from Ravi Kant Agrawal (20)

Corynebacterium toxins
Corynebacterium toxinsCorynebacterium toxins
Corynebacterium toxins
 
Biochemical tests for identification of bacteria
Biochemical tests for identification of bacteriaBiochemical tests for identification of bacteria
Biochemical tests for identification of bacteria
 
Genus Yersinia
Genus YersiniaGenus Yersinia
Genus Yersinia
 
Genus Salmonella
Genus SalmonellaGenus Salmonella
Genus Salmonella
 
Genus Escherichia coli
Genus Escherichia coliGenus Escherichia coli
Genus Escherichia coli
 
Genus Streptococcus
Genus StreptococcusGenus Streptococcus
Genus Streptococcus
 
Classification and nomenclature of bacterial toxins
Classification and nomenclature of bacterial toxins Classification and nomenclature of bacterial toxins
Classification and nomenclature of bacterial toxins
 
Foodborne Infections and Intoxications
Foodborne Infections and IntoxicationsFoodborne Infections and Intoxications
Foodborne Infections and Intoxications
 
Factors affecting microbial growth in Livestock products
Factors affecting microbial growth in Livestock productsFactors affecting microbial growth in Livestock products
Factors affecting microbial growth in Livestock products
 
Lect 01 introduction to antibiotics 19 08-142
Lect 01 introduction to antibiotics 19 08-142Lect 01 introduction to antibiotics 19 08-142
Lect 01 introduction to antibiotics 19 08-142
 
Antibiotics acting on cell wall 2 cephalosporins 03-05-2018
Antibiotics acting on cell wall 2   cephalosporins 03-05-2018Antibiotics acting on cell wall 2   cephalosporins 03-05-2018
Antibiotics acting on cell wall 2 cephalosporins 03-05-2018
 
Safety considerations and guidelines veterinary microbiology laboratory
Safety considerations and guidelines veterinary microbiology laboratorySafety considerations and guidelines veterinary microbiology laboratory
Safety considerations and guidelines veterinary microbiology laboratory
 
Good lab practices (GLP)
Good lab practices (GLP)Good lab practices (GLP)
Good lab practices (GLP)
 
Biosafety Levels, Biological Safety Cabinets and Biosafety Laboratory Constru...
Biosafety Levels, Biological Safety Cabinets and Biosafety Laboratory Constru...Biosafety Levels, Biological Safety Cabinets and Biosafety Laboratory Constru...
Biosafety Levels, Biological Safety Cabinets and Biosafety Laboratory Constru...
 
Rapid pathogen detection methods
Rapid pathogen detection methodsRapid pathogen detection methods
Rapid pathogen detection methods
 
Novel non thermal preservation technologies
Novel non thermal preservation technologiesNovel non thermal preservation technologies
Novel non thermal preservation technologies
 
Biopreservation
BiopreservationBiopreservation
Biopreservation
 
Genus staphylococcus
Genus staphylococcusGenus staphylococcus
Genus staphylococcus
 
Genus listeria
Genus listeriaGenus listeria
Genus listeria
 
Transformation and transfection
Transformation and transfection Transformation and transfection
Transformation and transfection
 

Recently uploaded

Chocolate Milk Flavorful Indulgence to RD UHT Innovations.pptx
Chocolate Milk Flavorful Indulgence to RD UHT Innovations.pptxChocolate Milk Flavorful Indulgence to RD UHT Innovations.pptx
Chocolate Milk Flavorful Indulgence to RD UHT Innovations.pptxRD Food
 
Prepare And Cook Meat.pptx Quarter II Module
Prepare And Cook Meat.pptx Quarter II ModulePrepare And Cook Meat.pptx Quarter II Module
Prepare And Cook Meat.pptx Quarter II Modulemaricel769799
 
Food-Allergy-PowerPoint-Presentation-2.ppt
Food-Allergy-PowerPoint-Presentation-2.pptFood-Allergy-PowerPoint-Presentation-2.ppt
Food-Allergy-PowerPoint-Presentation-2.pptIsaacMensah62
 
Estimation of protein quality using various methods
Estimation of protein quality using various methodsEstimation of protein quality using various methods
Estimation of protein quality using various methodsThiviKutty
 
526350093-Online-Food-Ordering-System-Ppt.pptx
526350093-Online-Food-Ordering-System-Ppt.pptx526350093-Online-Food-Ordering-System-Ppt.pptx
526350093-Online-Food-Ordering-System-Ppt.pptxJaidBagwan2
 
Irradiation preservation of food advancements
Irradiation preservation of food advancementsIrradiation preservation of food advancements
Irradiation preservation of food advancementsDeepika Sugumar
 
Affordable PriceD Call Girls In Crowne Plaza Greater Noida 8377877756 Short 2...
Affordable PriceD Call Girls In Crowne Plaza Greater Noida 8377877756 Short 2...Affordable PriceD Call Girls In Crowne Plaza Greater Noida 8377877756 Short 2...
Affordable PriceD Call Girls In Crowne Plaza Greater Noida 8377877756 Short 2...dollysharma2066
 
VIP Kolkata Call Girl Jadavpur 👉 8250192130 Available With Room
VIP Kolkata Call Girl Jadavpur 👉 8250192130  Available With RoomVIP Kolkata Call Girl Jadavpur 👉 8250192130  Available With Room
VIP Kolkata Call Girl Jadavpur 👉 8250192130 Available With Roomdivyansh0kumar0
 
FUTURISTIC FOOD PRODUCTS OFTEN INVOLVE INNOVATIONS THAT
FUTURISTIC FOOD PRODUCTS OFTEN INVOLVE INNOVATIONS THATFUTURISTIC FOOD PRODUCTS OFTEN INVOLVE INNOVATIONS THAT
FUTURISTIC FOOD PRODUCTS OFTEN INVOLVE INNOVATIONS THATBHIKHUKUMAR KUNWARADIYA
 
Best Connaught Place Call Girls Service WhatsApp -> 9999965857 Available 24x7...
Best Connaught Place Call Girls Service WhatsApp -> 9999965857 Available 24x7...Best Connaught Place Call Girls Service WhatsApp -> 9999965857 Available 24x7...
Best Connaught Place Call Girls Service WhatsApp -> 9999965857 Available 24x7...srsj9000
 
Call Girls in Ghitorni Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Ghitorni Delhi 💯Call Us 🔝8264348440🔝Call Girls in Ghitorni Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Ghitorni Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
2.6 Endocrine System.ppt2.6 Endocrine System.ppt2.6 Endocrine System.ppt2.6 E...
2.6 Endocrine System.ppt2.6 Endocrine System.ppt2.6 Endocrine System.ppt2.6 E...2.6 Endocrine System.ppt2.6 Endocrine System.ppt2.6 Endocrine System.ppt2.6 E...
2.6 Endocrine System.ppt2.6 Endocrine System.ppt2.6 Endocrine System.ppt2.6 E...AmitSherawat2
 
Gwal Pahari Call Girls 9873940964 Book Hot And Sexy Girls
Gwal Pahari Call Girls 9873940964 Book Hot And Sexy GirlsGwal Pahari Call Girls 9873940964 Book Hot And Sexy Girls
Gwal Pahari Call Girls 9873940964 Book Hot And Sexy Girlshram8477
 
如何办韩国SKKU文凭,成均馆大学毕业证学位证怎么辨别?
如何办韩国SKKU文凭,成均馆大学毕业证学位证怎么辨别?如何办韩国SKKU文凭,成均馆大学毕业证学位证怎么辨别?
如何办韩国SKKU文凭,成均馆大学毕业证学位证怎么辨别?t6tjlrih
 
Jp Nagar Call Girls Bangalore WhatsApp 8250192130 High Profile Service
Jp Nagar Call Girls Bangalore WhatsApp 8250192130 High Profile ServiceJp Nagar Call Girls Bangalore WhatsApp 8250192130 High Profile Service
Jp Nagar Call Girls Bangalore WhatsApp 8250192130 High Profile ServiceHigh Profile Call Girls
 
Call Girls Laxmi Nagar Delhi reach out to us at ☎ 9711199012
Call Girls Laxmi Nagar Delhi reach out to us at ☎ 9711199012Call Girls Laxmi Nagar Delhi reach out to us at ☎ 9711199012
Call Girls Laxmi Nagar Delhi reach out to us at ☎ 9711199012rehmti665
 
咨询办理南卡罗来纳大学毕业证成绩单SC毕业文凭
咨询办理南卡罗来纳大学毕业证成绩单SC毕业文凭咨询办理南卡罗来纳大学毕业证成绩单SC毕业文凭
咨询办理南卡罗来纳大学毕业证成绩单SC毕业文凭o8wvnojp
 
Planning your Restaurant's Path to Profitability
Planning your Restaurant's Path to ProfitabilityPlanning your Restaurant's Path to Profitability
Planning your Restaurant's Path to ProfitabilityAggregage
 
thanksgiving dinner and more information
thanksgiving dinner and more informationthanksgiving dinner and more information
thanksgiving dinner and more informationlialiaskou00
 

Recently uploaded (20)

Chocolate Milk Flavorful Indulgence to RD UHT Innovations.pptx
Chocolate Milk Flavorful Indulgence to RD UHT Innovations.pptxChocolate Milk Flavorful Indulgence to RD UHT Innovations.pptx
Chocolate Milk Flavorful Indulgence to RD UHT Innovations.pptx
 
Prepare And Cook Meat.pptx Quarter II Module
Prepare And Cook Meat.pptx Quarter II ModulePrepare And Cook Meat.pptx Quarter II Module
Prepare And Cook Meat.pptx Quarter II Module
 
9953330565 Low Rate Call Girls In Sameypur-Bodli Delhi NCR
9953330565 Low Rate Call Girls In Sameypur-Bodli Delhi NCR9953330565 Low Rate Call Girls In Sameypur-Bodli Delhi NCR
9953330565 Low Rate Call Girls In Sameypur-Bodli Delhi NCR
 
Food-Allergy-PowerPoint-Presentation-2.ppt
Food-Allergy-PowerPoint-Presentation-2.pptFood-Allergy-PowerPoint-Presentation-2.ppt
Food-Allergy-PowerPoint-Presentation-2.ppt
 
Estimation of protein quality using various methods
Estimation of protein quality using various methodsEstimation of protein quality using various methods
Estimation of protein quality using various methods
 
526350093-Online-Food-Ordering-System-Ppt.pptx
526350093-Online-Food-Ordering-System-Ppt.pptx526350093-Online-Food-Ordering-System-Ppt.pptx
526350093-Online-Food-Ordering-System-Ppt.pptx
 
Irradiation preservation of food advancements
Irradiation preservation of food advancementsIrradiation preservation of food advancements
Irradiation preservation of food advancements
 
Affordable PriceD Call Girls In Crowne Plaza Greater Noida 8377877756 Short 2...
Affordable PriceD Call Girls In Crowne Plaza Greater Noida 8377877756 Short 2...Affordable PriceD Call Girls In Crowne Plaza Greater Noida 8377877756 Short 2...
Affordable PriceD Call Girls In Crowne Plaza Greater Noida 8377877756 Short 2...
 
VIP Kolkata Call Girl Jadavpur 👉 8250192130 Available With Room
VIP Kolkata Call Girl Jadavpur 👉 8250192130  Available With RoomVIP Kolkata Call Girl Jadavpur 👉 8250192130  Available With Room
VIP Kolkata Call Girl Jadavpur 👉 8250192130 Available With Room
 
FUTURISTIC FOOD PRODUCTS OFTEN INVOLVE INNOVATIONS THAT
FUTURISTIC FOOD PRODUCTS OFTEN INVOLVE INNOVATIONS THATFUTURISTIC FOOD PRODUCTS OFTEN INVOLVE INNOVATIONS THAT
FUTURISTIC FOOD PRODUCTS OFTEN INVOLVE INNOVATIONS THAT
 
Best Connaught Place Call Girls Service WhatsApp -> 9999965857 Available 24x7...
Best Connaught Place Call Girls Service WhatsApp -> 9999965857 Available 24x7...Best Connaught Place Call Girls Service WhatsApp -> 9999965857 Available 24x7...
Best Connaught Place Call Girls Service WhatsApp -> 9999965857 Available 24x7...
 
Call Girls in Ghitorni Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Ghitorni Delhi 💯Call Us 🔝8264348440🔝Call Girls in Ghitorni Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Ghitorni Delhi 💯Call Us 🔝8264348440🔝
 
2.6 Endocrine System.ppt2.6 Endocrine System.ppt2.6 Endocrine System.ppt2.6 E...
2.6 Endocrine System.ppt2.6 Endocrine System.ppt2.6 Endocrine System.ppt2.6 E...2.6 Endocrine System.ppt2.6 Endocrine System.ppt2.6 Endocrine System.ppt2.6 E...
2.6 Endocrine System.ppt2.6 Endocrine System.ppt2.6 Endocrine System.ppt2.6 E...
 
Gwal Pahari Call Girls 9873940964 Book Hot And Sexy Girls
Gwal Pahari Call Girls 9873940964 Book Hot And Sexy GirlsGwal Pahari Call Girls 9873940964 Book Hot And Sexy Girls
Gwal Pahari Call Girls 9873940964 Book Hot And Sexy Girls
 
如何办韩国SKKU文凭,成均馆大学毕业证学位证怎么辨别?
如何办韩国SKKU文凭,成均馆大学毕业证学位证怎么辨别?如何办韩国SKKU文凭,成均馆大学毕业证学位证怎么辨别?
如何办韩国SKKU文凭,成均馆大学毕业证学位证怎么辨别?
 
Jp Nagar Call Girls Bangalore WhatsApp 8250192130 High Profile Service
Jp Nagar Call Girls Bangalore WhatsApp 8250192130 High Profile ServiceJp Nagar Call Girls Bangalore WhatsApp 8250192130 High Profile Service
Jp Nagar Call Girls Bangalore WhatsApp 8250192130 High Profile Service
 
Call Girls Laxmi Nagar Delhi reach out to us at ☎ 9711199012
Call Girls Laxmi Nagar Delhi reach out to us at ☎ 9711199012Call Girls Laxmi Nagar Delhi reach out to us at ☎ 9711199012
Call Girls Laxmi Nagar Delhi reach out to us at ☎ 9711199012
 
咨询办理南卡罗来纳大学毕业证成绩单SC毕业文凭
咨询办理南卡罗来纳大学毕业证成绩单SC毕业文凭咨询办理南卡罗来纳大学毕业证成绩单SC毕业文凭
咨询办理南卡罗来纳大学毕业证成绩单SC毕业文凭
 
Planning your Restaurant's Path to Profitability
Planning your Restaurant's Path to ProfitabilityPlanning your Restaurant's Path to Profitability
Planning your Restaurant's Path to Profitability
 
thanksgiving dinner and more information
thanksgiving dinner and more informationthanksgiving dinner and more information
thanksgiving dinner and more information
 

Microorganisms important in livestock products

  • 1. Microorganisms causing spoilage of meat and meat products, eggs and poultry Dr Ravi Kant Agrawal, MVSc, PhD Senior Scientist (Veterinary Microbiology) Food Microbiology Laboratory Division of Livestock Products Technology ICAR-Indian Veterinary Research Institute Izatnagar 243122 (UP) India
  • 2. Acinetobacter is  a genus of  Gram-negative,  rod  shaped  bacteria  belonging  to  the  wider  class  of  Gammaproteobacteria. Acinetobacter species  are  strict  aerobic,  non  –  fermentative  non- motile and oxidase-negative,  do  not  reduce  nitrates,  and  occur  in  pairs  under magnification. Although,  rod-shaped  cells  are  formed  in  young  cultures,  old  cultures  contain  many  coccoid- shaped/cocco-bacillary cells. They  show  preponderantly  a  coccobacillary  morphology  on  non- selective agar.  Rods  predominate  in  fluid  media,  especially during early growth They are important soil organisms Acinetobacter (akinetos: unable to move)Acinetobacter (akinetos: unable to move)
  • 3. Acinetobacter species are a key source of infection in debilitated  patients  in  the  hospital,  in  particular  the  species  Acinetobacter baumannii. These  Gram-negative  rods  show  some  affinity  to  the  family  Neisseriaceae, and some that were formerly achromobacters and  moraxellae are placed here. Also,  some  former  acinetobacters  are  now  in  the  Genus  Psychrobacter. They differ from psychrobacter and moraxellae in being oxidase  negative. They are widely distributed in soils and waters and may be found  on many foods, especially refrigerated fresh products.  The mol% G+C content of DNA for the genus is 39-47. It  has  been  proposed,  based  on  DNA-rRNA  hybridization  data,  that  the  genera  Acinetobacter, Moraxella, and Psychrobacter be  placed in a new family (Moracellaceae), but this proposal has not  been approved. Acinetobacter (akinetos: unable to move)Acinetobacter (akinetos: unable to move)
  • 4. Alcaligenes is a genus of Gram -ve, aerobic,  rod-shaped/  coccal  rods  or  cocci,  sized  about 0.5-1.0 x 0.5-2.6 μm.  The  species  are  motile  with  one  or  more  peritrichous flagella and rarely non-motile. It is a genus of non-fermenting bacteria. Although  Gram  -ve,  these  organisms  sometimes stain Gram positive. They are rods that Do not ferment sugars  but  instead  produce  alkaline  reactions,  especially in litmus milk. Non-pigmented,  they  are  widely  distributed  in  nature  in  decomposing  matter  of all types.  Raw  milk,    poultry    products,  and  fecal  matter are common sources. The  mol%  G+C  content  of  DNA  is  58-70,  suggesting  that  the  genus  is  heterogeneous. AlcaligenesAlcaligenes (alkali producers)(alkali producers) Circular, smooth, entire, opaque colonies of Alcaligenes on a nutrient agar plate
  • 5. MoraxellaMoraxella Moraxella is a genus of Gram-negative bacteria in the Moraxellaceae family. It is named after the Swiss ophthalmologist Victor Morax. These short Gram-negative rods are sometimes classified as Acinetobacter. They differ from the latter in being sensitive to penicillin and oxidase positive. The organisms are short rods, coccobacilli or, as in the case of Moraxella catarrhalis, diplococci in morphology, with a- saccharolytic, oxidase-positive and catalase-positive properties. Moraxella catarrhalis is the clinically most important species under this genus. Have a mol % G+C content of DNA of 40-46. The newly erected genus Psychrobacter includes some that were once placed in this genus. Their metabolism is oxidative, and they do not form acid from glucose.
  • 6. This genus was created primarily to accommodate some of the  non-motile Gram-negative rods that were once classified in the  genera Acinetobacter and Moraxella.  They are plump Coccobacilli that Occur often In pairs. Also,  they  are  aerobic,  non-motile,  and  catalase  and  oxidase  positive, and generally they do not ferment glucose. Growth occurs in 6.5% NaCl and at 1°C, but generally not at 35°C  or 37°C. They  hydrolyze  Tween-80,  and  most  are  egg-yolk  positive  (lecithinase). They  are  sensitive  to  penicillin  and  utilize  7-aminovalerate,  whereas the Acinetobacters do not. They  are  distinguished  from  the  Acinetobacters  by  being  oxidase positive and  Amino-valerate users and from non-motile  Pseudomonads by their inability to utilize glycerol or fructose. Because they closely resemble the moraxellae, they have been  placed in the family Neisseriaceae. They are common on meats, poultry, and fish, and in waters. PsychrobacterPsychrobacter
  • 7.  These are typically aquatic, Gram-negative, facultative anaerobic, rod- shaped bacterium formerly in the family Vibrionaceae but now in the  family Aeromonadaceae.  Aeromonas morphologically  resembles  members  of  the  family  Enterobacteriaceae.  As the generic name suggests, they produce copious quantities of gas  from those sugars fermented.  Most  of  the  14  described  species  have  been  associated  with  human  diseases.  The  most  important  pathogens  are A. hydrophila, A. caviae,  and  A. veronii  biovar sobria.  The organisms are ubiquitous in fresh and brackish water.  They group with the gamma subclass of the Proteobacteria.  They are normal inhabitants of the intestines of fish, and some are fish  pathogens.  Two major diseases associated with Aeromonas are gastroenteritis and  wound infections, with or without bacteremia.   Gastroenteritis  typically  occurs  after  the  ingestion  of  contaminated  water  or  food,  whereas  wound  infections  result  from  exposure  to  contaminated water.  The mol% G+C content of DNA is 57-65.  AeromonasAeromonas (aeromonas: gas producing)(aeromonas: gas producing)
  • 8. FlavobacteriumFlavobacterium These Gram-negative rods are characterized by their production  of yellow to red pigments on agar and by their association with  plants. Some  are  mesotrophs,  and  others  are  psychrotrophs,  where  they  participate  in  the  spoilage  of  refrigerated  meats  and  vegetables. This genus has undergone drastic redefinition, resulting in the  creation  of  several  new  genera  Weeksella, Chryseobacterium, Empedobacter, and Bergeyella),  none  of  which  appear  to  be  associated with foods.  Some of the new genera contain fish pathogens and some are  halophiles.
  • 9. These Gram-positive, non-spore forming, rods are closely related  to the genera Lactobacillus and Listeria. Although, they are not true coryneforms, they bear resemblance  to this group. Typically,  exponential-phase  cells  are  rods,  and  older  cells  are  coccoids, a feature typical of coryneforms. Their separate taxonomic status has been re-affirmed by rRNA  data,  although  only  two  species  are  recognized:  B.  thermosphacta and B. campestris. They  are  common  On  processed  Meats  and  On  fresh  and  processed meats that are stored in gas-impermeable packages at  refrigerator temperatures. In contrast to B. thermosphacta, B. campestris Is rhamnose and  hippurate positive. The mol% G+C content of DNA is 36%.  They do not grow at 37°C. They Share Some features with the genus Microbacterium. Brochothrix (brochos, loop; thrix, thread)Brochothrix (brochos, loop; thrix, thread)
  • 10. AlteromonasAlteromonas (another monad)(another monad) They are Gram-negative, strict aerobes.  Its cells are curved rods, motile with a single polar flagellum. Alteromonas is  a  genus  of Proteobacteria found  in  sea  water,  either in the open ocean or in the coast These are marine and coastal water inhabitants. That are found in and on seafoods.  All species require seawater salinity for growth. 
  • 11. These  Gram-negative  rods  constitute  the  largest  genus  of  bacteria that exists in fresh foods. The mol %G+C content of their DNA of 58-70 suggests that it is a  heterogeneous group, and this has been verified. They  are  typical  of  soil  and  water  bacteria  and  are  widely  distributed  among  foods,  especially  vegetables,  meat,  poultry,  and seafood products. They are, by far, the most important group of bacteria that bring  about  the  spoilage  of  refrigerated  fresh  foods  because  many  species and strains are psychrotrophic. Some  are  notable  by  their  production  of  water–soluble, blue- green pigments,  whereas  many  other  food  spoilage  types  are  not. Some  plant-associated  species  have  been  transferred  to  the  genus Burkholderia, including the species that causes bongkrek. A new genus, Ralstonia, has been created to accommodate some  Burkholderia and Alcaligenes  species, notably R. solanecearum,  which causes wilt of tomato. Pseudomonas (false monad)Pseudomonas (false monad)
  • 12. ShewanellaShewanella The bacterium once Classified As Pseudomonas putrefaciens And  later As Alteromonas putrefaciens Has been Placed in this new  genus as S. putrefaciens. They  are  Gram-negative,  straight  or  curved  rods,  non- pigmented, and motile by polar flagella.  They are oxidase positive and have a mol% G+C of  44-47.  The other three species in this genus are S. hanedai, S. benthica,  and S. colwelliana. All  are  associated  with  aquatic  or  marine  habitats,  and  the  growth of S. benthica is enhanced by hydrostatic pressure.
  • 13. Staphylococcus (grape like coccus)Staphylococcus (grape like coccus) These  Gram-positive,  catalase-positive  cocci  include  S. aureus,  which  causes  several  disease  syndromes  in  humans,  including  foodborne gastroenteritis. 
  • 14. MicrococcusMicrococcus These cocci are Gram positive and catalase positive. Some  produce  pink  to  orange-red  to  red  pigments,  whereas  others are non-pigmented. Most can grow in the presence of high levels of NaCl, and most  are  mesotrophs,  although  psychrotrophic  species/  strains  are  known.  This once very large genus has been reduced by the creation of  at least five new genera: Dermacoccus, Stomatococcus, Kocuria, Kytococcus, and Nesterenkonia. Micrococcus agilis has been transferred to the arthrobacters as  Arthrobacter agilis,  and  some  former  M. roseus strains  have  been transferred to the genus Salinicoccus.  The type species is M. luteus, and the redefined genus has a mol % G+C content of DNA of 69-76.  The  organism once classed as M. freudendreichii is now in the  genus Pediococcus.
  • 15.  These  are  Gram-positive,  spore  forming  rods that are aerobes, in contrast to the  clostridia, which are anaerobes.  Although  most  are  mesophiles,  psychrotrophs and thermophiles exist.  The genus contains only two pathogens:  B. anthracis (cause  of  anthrax)  and  B. cereus.  Although  most  strains  of  the  latter  are  non-pathogens,  some  cause  foodborne  gastroenteritis.  B.  cereus  food  poisoning  is  principally  associated  with  the  storage  of  cooked  foods  Found  in  raw  materials  and  processed  foods  which  were  not  sterilized  by  heat  or irradiation.  Polymixin  pyruvate  egg  yolk  mannitol  bromothymol  blue  agar  (PEMBA)  and  Mannitol  egg  yolk  agar  are  selective  media  B. licheniformis, B. pumilus and B. subtilis  were  the  most  commonly  isolated  Bacillus species in bakeries and milk BacillusBacillus BLOOD AGAR large, spreading, gray-white colonies, with irregular margins Bacillus cereus SELECTIVE MEDIA: MANNITOL EGG YOLK AGAR
  • 16.  The phylogenetic heterogeneity of this genus employing small-subunit  rRNA  Sequence data allowed five groups to be formed.  Group  1  includes  B. cereus, B. subtilis, B. coagulans, and  B. anthracis  among others, and it seems likely that this group will be retained as  Bacillus.  The group 3 cluster has been given the generic name Paenibacillus; and  B. stearothermophilus clustered with group 5.  The  thermoacidophilic  Bacillus  species,  B. acidocaldarius, B. acidoterrestris,  and  B. cycloheptanicus, have  been  reclassified  in  the  new genus Alicyclobacillus.  The latter have mol % G+C of 51.6-60.3, grow as low as about 35°C to  700 C, and over the pH range 2 to 6.   The  B. brevis cluster  of  10  species  has  been  reclassified  into  a  new  genus, Brevibacillus based on 16SRNA gene sequences. BacillusBacillus
  • 17.  These  are  Gram  Positive,  anaerobic,  spore  forming  rods  are  widely  distributed in nature, as are their aerobic counterparts, the bacilli.  The  genus  contains  many  species,  some  of  which  cause  disease  in  humans (C. perfringens food poisoning and botulism).   Mesotrophic,  psychrotrophic,  and  thermophilic  species/strains  exist;  therefore important in the thermal canning of foods.  A  reorganization  of  the  genus  involves  the  creation  of  the  five  new  genera: Caloramater, Filifactor, Moorella, Oxobacter, and Oxalophagus.   These five new Genera appear to be unimportant in foods.  The  clostridial  species  of  known  importance  in  foods  remain  in  the  genus at this time.  Clostridium (Gr. closter, a spindle)Clostridium (Gr. closter, a spindle) Gram Stain: They usually stain Gram-positive, at least in very early stages of growth. Morphology Cells of most strains occur as straight or slightly curved rods. Size: 0.3-2.0 micrometers by 1.5-20.0 micrometers in length. Motility: Motility occurs by peritrichous flagella. Capsules: None. Spores: Clostridium spp. form oval or spherical endospores that usually distend the cell. Other: Most have round, tapering ends; long filaments are formed by some species.
  • 18. Clostridia possess no one typical  colony morphology.   They  are  generally  a  large  colony  (>2mm)  with  irregular  edges or swarming growth.   Some  Clostridia  form  small,  convex,  non-hemolytic  colonies  with a smooth edge. Cl. perfringens Tryptose sulphate cycloserine agar, Sulphate- polymixin-sulphadiazine agar, Shahid Ferguson perfringens agar, Neomycin blood agar. Cl. botulinum Horse blood agar, Anerobic egg yolk agar Cl. botulinum on egg yolk agarSELECTIVE MEDIA
  • 19. This newly established genus comprises organisms formerly in the genera Bacillus and Clostridium, and it includes the species: P. alvei, P. amylolyticus, P. azotofixans, P. circulans, P. durum, P. larvae, P. macerans, P. macquariensis, P. pubuli, P. pulvifaciens, and P. validus.  Recently, two new species were added (P. lautus and P. peoriae). Paenibacillus (almost a bacillus)Paenibacillus (almost a bacillus)
  • 20.  This is clearly the most widely studied genus of all bacteria.   The genus is named after Theodor Escherich, the discoverer of Escherichia coli .  Escherichia  is  a genus of Gram-negative,  non-spore forming,  facultatively anaerobic,  rod-shaped bacteria from  the  family  Enterobacteriaceae.  1.1-1.5 um by 2.0-6.0 um.  They occur singly or in pairs.  Escherichia spp. are motile by peritrichous flagella or are non-motile.   In addition to flagella, most strains have fimbriae (pili) that extend from the  bacterial surface into the surrounding medium. Some fimbriae have specific  functions as adhesive organs.  Capsules or microcapsules occur in many strains.  Are inhabitants of the gastrointestinal tracts of warm-blooded animals.  Some strains cause foodborne gastroenteritis.  E. coli act as an indicator of food safety. EscherichiaEscherichia For culture: Tryptic Soy Agar, Nutrient Agar, Blood Agar 5%. For selective isolation: MacConkey Agar, EMB Agar, MacConkey with Sorbitol ( E. coli O157). For maintenance: Tryptic Soy Agar, Nutrient Agar, Blood Agar 5%. For long-term storage at - 70 degrees C., TSB with 15% Glycerol or Skim Milk Media is recommended
  • 21.
  • 22. E. coli O157: H7 Escherichia coli O157:H7 is  an  enterohemorrhagic serotype of  the  bacteria Escherichia coli and a cause of  illness, typically through consumption  of  contaminated  and  raw  food  including raw milk Children under five  years  of  age  and  the  elderly,  the  infection  can  cause  hemolytic uremic syndrome (HUS),  in  which  the red blood cells are  destroyed and the kidneys fail MUG( 4-Methylumbelliferyl  ß-D- Glucuronide) sorbitol agar Escherichia coli produce small, dark colonies with a green metallic sheen on EMB agar
  • 23. SalmonellaSalmonella All members of this genus of Gram-negative enteric bacteria are considered to be human pathogens belong to the family Enterobacteriaceae .  The Mol% G+C content of DNA is 50-53.
  • 24. ShigellaShigella All members of this genus are presumed to be human enteropathogens. Family Enterobacteriaceae.
  • 25. These Gram-negative rods that belong to the family Enterobacteriaceae are aerobic and proteolytic, and they generally produce red pigments on culture media and in certain foods, although non-pigmented strains are not uncommon. S. liquefaciens is the most prevalent of the foodborne species; it causes spoilage of refrigerated Vegetables and meat products. The mol % G+C content of DNA is 53-59. SerratiaSerratia
  • 26. CitrobacterCitrobacter Citrobacter is a genus of Gram-negative coliform bacteria in the Enterobacteriaceae family. All members Can Use Citrate As The Sole carbon source. These Enteric Bacteria Are Slow lactose-fermenting. C. freundii is the most prevalent species In foods, and it and the other Species are not uncommon on vegetables and fresh meats. The mol% G+C content of DNA is 50-52. Common species are C. amalonaticus, C. koseri, and C. freundii . Citrobacter species are differentiated by their ability to convert tryptophan to indole, ferment lactose, and use malonate.
  • 27. Enterobacter is a genus of common Gram-negative, facultatively anaerobic, rod-shaped, non-spore-forming bacteria of the family Enterobacteriaceae. These bacteria are typical of other Enterobacteriaceae relative to growth requirements, although they are not Generally adapted to the gastrointestinal tract. The genus Enterobacter is a member of the coliform group of bacteria. Two clinically important species from this genus are E. aerogenes and E. cloacae. Several strains of these bacteria are pathogenic and cause opportunistic infections in immunocompromised (usually hospitalized) hosts. The genus Enterobacter ferments lactose with gas production during a 48-hour incubation at 35-37 °C in the presence of bile salts and detergents. It is oxidase-negative, indole-negative, and urease-variable. E. agglomerans has been transferred to the genus Pantoea. EnterobacterEnterobacter
  • 28. ErwiniaErwinia Erwinia is a genus of Enterobacteriaceae containing mostly plant pathogenic species which was named for the famous plant pathologist, Erwin Frink Smith. These Gram-negative enteric rods are especially associated with Plants, where they cause bacterial soft rot. At least three species Have been transferred to the genus Pantoea. The mol% G+C content of DNA is 53.6-54.1.
  • 29. This genus consists of Gram-negative, non-capsulated, non- sporing straight rods, most of which are motile by peritrichous flagella. They are widely distributed and are found on plants and in seeds, in soil, water, and human specimens. Some are plant pathogens. The four recognized species were once classified as enterobacters or erwinias. P. agglomerans includes the former Enterobacter agglomerans, Erwinia herbicola, and E. milletiae; P. ananas includes the former Erwinia ananas and E. uredovora; P. stewartii was once E. stewartii; and P. dispersa is an original species. The G+C content of DNA ranges from 49.7 to 60.6 mol%. PantoeaPantoea
  • 30. HafniaHafnia Hafnia is the genus of the Enterobacteriaceae family which are Gram-negative, facultatively anaerobic, rod-shaped bacterium. These Gram-negative enteric rods are important in the spoilage of refrigerated meat and vegetable products. H. alvei is the only species at this time. H. alvei is a commensal of the human gastrointestinal tract and not normally pathogenic, but may cause disease in immunocompromised patients. It is often resistant to multiple antibiotics, including the aminopenicillins. It is motile and lysine and ornithine positive. It has a mol% G+C content of DNA of 48-49.
  • 31. These enteric Gram-negative rods are aerobes that often display pleomorphism, hence the generic name. All are motile and typically produce swarming growth on the surface of moist agar plates. They are typical of enteric bacteria in being present in the intestinal tract of humans and animals. They may be isolated from a variety of vegetable and meat products, especially those that undergo spoilage at temperatures in the mesophilic range. ProteusProteus
  • 32.  Gram-negative coccobacillus-shaped bacterium, belonging to family Enterobacteriaceae.  Motile at 25°c/ non-motile at 37°c  Non-spore-forming, catalase positive oxidase negative facultatively anaerobic  This genus includes the agent of human plague, Y. pestis, and at least one species that causes foodborne gastroenteritis, Y. enterocolitica.  The mol% G+C content of DNA is 45.8-46.8.  The sorbose-positive biogroup 3A strains have been elevated to species status as Y. mollaretti and the sorbose-negative Strains as Y. bercovieri.  Selective Media:  Cefsulodin-irgasan-novobiocin agar (CIN)  Virulent Yersinia enterocolitica agar (VYE)  Salmonella-Shigella-deoxycholate-calcium chloride agar  Mac Conkey agar. YersiniaYersinia CIN (Cefsulodin-Irgasan- Novobiocin) agar MLA
  • 33. These Gram-negative, spirally curved rods were formerly classified as vibrios. Small, thin (0.2 - 0.5 um X 0.5 - 5.0 um), helical (spiral or curved) cells with typical Gram- negative cell wall; “Gull-winged” appearance • Tendency to form coccoid & elongated forms on prolonged culture or when exposed to O2 They are microaerophilic to anaerobic & capnophilic 5%O2,10%CO2,85%N2 Oxidase-positive, non-fermentative bacteria. Long sheathed polar flagellum at one (polar) or both (bipolar) ends of the cell Move via unipolar or bipolar flagella- Distinctive rapid darting motility (Corkscrew like motility) • Motility slows quickly in wet mount preparation Most Campylobacter species are pathogenic and can infect humans and other animals. Campylobacter (campylo, curved)Campylobacter (campylo, curved) Skirrows media
  • 34. Selective media used : i) Campy – BAP ii) Campy – CVA iii) Modified Skirrows media iv) Charcoal based Selective medium agar (blood free) v) Butzler’s media Incubation – at 42o C for 48 hrs at 5% O2. Colonies - Grey, moist, flat or convex At least a dozen species of Campylobacter have been implicated in human disease, with C. jejuni and C. coli the most common. C. jejuni is now recognized as one of the main causes of bacterial foodborne disease in many developed countries. The genus has been restructured since 1984. The once C. nitrofigilis and C. cryaerophila have been transferred to the New genus Arcobacter; the once C. cinnaedi and C. fenneliae are now in the genus Helicobacter; and the once Wolinella carva and W. recta Are Now C. curvus and C. rectus? The mol% G+C content of DNA is 30-35. Campylobacter (campylo, curved)Campylobacter (campylo, curved)
  • 35. This genus was created (in 1992) during revision of the genera Campylobacter, Helicobacter, and Wolinella, and the three species were once classified as Campylobacter.  They are Gram-negative, curved or S-shaped rods, 1-3 µm x 0.2- 0.4µ m that are quite similar to the campylobacters except they can grow at lower temperature (150 C) and in air (are aerotolerant). Single polar flagellum and typical corkscrew-like motility Colonies :off-white, white or greyish color on blood agar plates. After 48 h incubation: 2-4 mm in diameter and convex with entire edges This genus currently consists of five species: A. butzleri, A. cryaerophilus, A. skirrowii, A. nitrofigilis, and A. sulfidicus. Three of these five known species are pathogenic. They are found in poultry, raw milk, shellfish, and water; and in cattle and swine products. These oxidative and catalase positive organisms cause abortion and enteritis in some animals, and the latter in humans is associated with A. butzleri. ArcobacterArcobacter (arcus – bow)(arcus – bow)
  • 36. Corynebacterium (Gr. coryne, club)Corynebacterium (Gr. coryne, club) This is one of the true coryneform genera of Gram-positive, rod- shaped bacteria that are sometimes involved in the spoilage of vegetable and meat products. They are catalase-positive, aerobic or facultatively anaerobic, generally non-motile bacteria 2 - 6 μm in length and 0.5 μm in diameter The bacteria group together in a characteristic way, which has been described as the form of a "V", "palisades", or "Chinese letters". Corynebacteria grow slowly, even on enriched media. In terms of nutritional requirements, all need biotin to grow Sometimes involved in the spoilage of meat products Most are mesotrophs, although psychrotrophs are known.  C. diphtheriae, causes diphtheria in humans. The genus has been reduced in species with the transfer of some of the plant Pathogens to the genus Clavibacter and others to the genus Curtobacterium. The mol% G+C content of DNA is 51-63.
  • 37. Bacteria grow in Loeffler’s medium, blood agar and Trypticase soya agar Small, grayish colonies with a granular appearance, mostly translucent, but with opaque centers, convex, with continuous borders. Color tends to be yellowish-white in Loeffler's medium.  In TSA, they can form grey colonies with black centers and dentated borders that look similar to flowers
  • 38. Kocuria is a genus of Gram positive bacteria in the phylum Actinobacteria, including the sequenced species Kocuria rhizophila.  The three species (K. rosea, K. varians, and K. kristinae) are oxidase negative and catalase positive.  Mol% G+C content of DNA is 66-75. Kocuria (after M. Kocur)Kocuria (after M. Kocur)
  • 39. This genus of 15 species of Gram-positive, non-sporing, facultative anaerobic, non spore forming rods Closely related to Brochothrix. Named after Joseph Lister. Causes listeriosis in humans by foodborne route. L. monocytogenes, L. innocua, L. ivanovii, L. grrayi, l. welshimeri, L. seeligeri ListeriaListeria
  • 40. VibrioVibrio These Gram-negative, straight or curved rods are members of the family Vibrionaceae.  Several former species have been transferred to the genus Listonella.  Several species cause gastroenteritis and other human illness.  The Mol %G+C content of DNA is 38-51.
  • 41. lactic acid bacteria (LAB)lactic acid bacteria (LAB)  Lactic acid bacteria (LAB) are Gram-positive, acid-tolerant, generally non-sporulating, either rod- or cocci-shaped bacteria.  Usually found in decomposing plants/milk products, produce lactic acid as the major end product of carbohydrate fermentation.  This trait has, throughout history, linked LAB with food fermentations , as acidification inhibits the growth of spoilage agents.  Lactic acid and other metabolic products contribute to the organoleptic and textural profile of a food item.  Bacteriocins are produced by several LAB strains and provide an additional hurdle for spoilage and pathogenic microorganisms.  The industrial importance of the LAB is further evinced by their generally recognized as safe (GRAS) status, due to their ubiquitous appearance in food and their contribution to the healthy microflora of human mucosal surfaces.  The genera that comprise the LAB are at its core Lactobacillus, Leuconostoc, Pediococcus, Lactococcus, and Streptococcus, as well as the more peripheral Aerococcus, Carnobacterium, Enterococcus, Oenococcus, Vagococcus, and Weisella also Sporolactobacillus and Tetragenococcus.
  • 42. Lactobacillus, also called Döderlein's bacillus, is a genus of Gram-positive facultative anaerobic or microaerophilic rod-shaped bacteria. They are Gram-positive, catalase-negative rods that often occur in long chains. Although, those in foods are typically microaerophilic, many true anaerobic strains exist, especially in human stools and the rumen. They are a major part of the Lactic acid bacteria group, named as such because most of its members convert lactose and other sugars to lactic acid. In humans they are present in the vagina and the gastrointestinal tract, where they make up a small portion of the gut flora. Based on 16S rRNA sequence data, three phylogenetically distinct clusters are revealed, with one cluster encompassing Weissella. In all probability, this genus will undergo further reclassification. It helps in preventing yeast infections, urinary tract infection, IBS, traveler's diarrhea , diarrhea resulting from Clostridium difficile, treating lactose intolerance, skin disorders (fever blisters, eczema, acne) and prevention of respiratory infections . LactobacillusLactobacillus
  • 43. LactabacillusLactabacillus  They typically occur on most, if not all, vegetables, along with some of the other lactic acid bacteria.  There are more than 50 species of lactobacilli.  Their occurrence in dairy products is common.  Many fermented products are produced.  Foods that are fermented, like yogurt, and dietary supplements also contain these bacteria.  A recently described species, L. suebicus, was recovered from apple and pear mashes; it grows at pH 2.8 in 12-16% ethanol.  Taxonomic techniques that came into wide use during the 1980s have been applied to this genus, resulting in some of those in the ninth edition of Bergey's Manual being transferred to other genera.
  • 44.  Leuconostoc is a genus of Gram-positive bacteria, catalase-negative, cocci placed within the family of Leuconostocaceae. They are generally ovoid cocci, often forming chains.  Along with the lactobacilli, this is another of the genera of lactic acid bacteria.  Leuconostoc spp. are intrinsically resistant to vancomycin and are catalase-negative (which distinguishes them from staphylococci).  All species within this genus are HETEROFERMENTATIVE and are able to produce dextran from sucrose.  They are generally slime-forming.  These catalase-negative heterofermentative cocci and are typically found in association with the lactobacilli.  Blamed for causing the 'stink' when creating a sourdough starter, some species are also capable of causing human infection.  Leuconostoc is, along with other lactic acid bacteria such as Pediococcus and Lactobacillus, responsible for the fermentation of cabbage, making it sauerkraut.  It is similarly part of the symbiotic colonies of microbes involved in the fermentation of kefir, a fermented milk beverage.  The former L. oenos has been transferred to a new genus, Oenococcus as O. oeni, and the former L. paramesenteroides has been transferred to the new genus as Weissella paramesenteroides. Leuconostoc (colorless nostoc)Leuconostoc (colorless nostoc)
  • 45. LeuconostocLeuconostoc Members of Leuconstoc spp. are very often used in production of fermented foods because of their ability to produce lactic acid and diacetyl. Leuconostoc are used to inhibit Listeria monocytogenes in dairy and meat products.
  • 46. Weissella: (Weissella, after N. Weiss)Weissella: (Weissella, after N. Weiss) This genus of lactic acid bacteria was established in 1993 in part to accommodate The “leuconostoc branch” Of The lactobacilli. The seven species are closely related to the leuconostocs, and with the exception of W. paramesenteroides and W. hellenica they produce DL-lactate from glucose. All produce gas from carbohydrates. W. hellenica is a new species associated with fermented Greek sausages. The former Leuconostoc paramesenteroides is now W. paramesenteroides, and the following five species were formerly classified as Lactobacillus spp.: W. confusa, W. halotolerans, W. kandleri, W. minor, and W. viridescens. The G+C content of DNA is 37-47mol%.
  • 47.  Lactococcus is a genus of LACTIC ACID BACTERIA that were formerly included in the genus Streptococcus Group N1.  They are known as HOMOFERMENTORS meaning that they produce a single product, lactic acid in this case, as the major or only product of glucose fermentation-L-Lactic acid is the predominant end product.  They are Gram-positive, non-motile, and catalase-negative spherical or ovoid cells that occur singly, in pairs, or as chains.  They grow at 100 C but not at 450 C, and most strains react with group N antisera-The genus contains strains known to grow at or below 7˚C.  These organisms are commonly used in the dairy industry in the manufacture of fermented dairy products, such as cheeses.  They can be used in single-strain starter cultures, or in mixed-strain cultures with other lactic acid bacteria such as Lactobacillus and Streptococcus.  Special interest is placed on the study of L. lactis subsp. lactis and L. lactis subsp. cremoris, as they are the strains used as starter cultures in industrial dairy fermentations.  Their main purpose in dairy production is the rapid acidification of milk; this causes a drop in the pH of the fermented product, which prevents the growth of spoilage bacteria.  The bacteria also play a role in the flavor of the final product. LactococcusLactococcus
  • 48. This genus was created to accommodate the group N lactococci based on 16S sequence data. They are Gram positive and Catalase negative, and grow at 100 C but not at 45°C. They are motile by peritrichous flagella, They grow in 4% NaCl but not 6.5%, and no growth occurs at pH 9.6. The cell wall peptidoglycan is Lys-D-Asp, And the mol% G+C is 33.6. At least one species produces H2S. They are found on fish, in feces, and in water and may be expected to occur on other foods. Vagococcus (wandering coccus)Vagococcus (wandering coccus)
  • 49. Enterococcus is a large genus of LACTIC ACID BACTERIA of the phylum Firmicutes. This is normally found in the intestinal tract of humans . This genus was erected to accommodate some of the Lancefield serologic group D cocci - were in the genus Streptococcus. It has since been expanded to more than 16 species of Gram positive, ovoid cells that occur singly, in pairs, or in short chains. Some species do not react with group D antisera. Enterococci are facultative anaerobic organisms, i.e., they are capable of cellular respiration in both oxygen-rich and oxygen-poor environments. Though they are not capable of forming spores, enterococci are tolerant of a wide range of environmental conditions: extreme temperature (10-45°C), pH (4.5-10.0) and high sodium chloride concentrations. Two species are common commensal organisms in the intestines of humans: E. faecalis (90-95%) and E. faecium (5-10%). Rare clusters of infections occur with other species, including E. casseliflavus, E. gallinarum, and E. raffinosus. Enterococcus faecium SF68 is a specific probiotic strain that has been used in the management of diarrhoeal illnesses. EnterococcusEnterococcus
  • 50. Enterococcus on blood agar plate smooth, cream or white colonies with entire edges For culture: TSA Agar, Blood Agar 5%, Chocolate Agar, Nutrient Agar For selective isolation: Bile Esculin Azide (BEA) Media, 6.5% NaCl Broth 6.5% NaCl Agar Columbia CNA Mannitol Salt Agar Mannitol Salt Broth For maintenance: TSA Agar, Blood Agar 5%. Media containing cryoprotectants such as glycerol or serum may be used for long-term storage at -70 degrees C. (i.e. Brucella with Glycerol, TSB with Glycerol). Quadrant 1: Enterococcus faecalis, is resistant to the antibiotics colistin and naladixic acid. Quadrant 2: Enterobacter aerogenes, is sensitive to the antibiotics and is Gram-negative. Quadrant 3: Escherichia coli, is sensitive to the antibiotics and is Gram-negative. Quadrant 4: Staphylococcus aureus, is resistant to the antibiotics and is Gram-positive. Growth on Columbia CNA
  • 51. These HOMO-FERMENTATIVE cocci are lactic acid bacteria that exist in pairs and tetrads resulting from cell division in two planes. P. acidilactici, a common starter species, Reported to cause septicemia in a 53-year-old male. Their mol% G+C content of DNA is 34.4. The once P. halophilus is now in the genus Tetragenococcus as T. halophilus - It can grow in 18% NaCl. PediococcusPediococcus
  • 52.  Carnobacterium is a genus of Gram-positive bacteria within the family Leuconostocaceae.  This genus of Gram positive, catalase-negative rods was formed to accommodate some organisms previously classified as lactobacilli.  They are phylogenetically closer to the enterococci and vagococci than the lactobacilli.  They differ from the lactobacilli in being unable to grow on Acetate medium and in their synthesis of oleic acid.  They are HETERO-FERMENTATIVE, and most grow at 00 C and none at 450 C.  Gas is produced from glucose By some species.  C. divergens and C. maltaromaticum are dominating part of microflora of chilled vacuum or modified atmosphere-packed meat as well as on fish and poultry meats.  They can grow anaerobically.  These species are not known to be pathogenic in humans, but may cause disease in fish.  C. maltaromaticum strain CB1, has been evaluated under the Canadian Environmental Protection Act, 1999, as a food additive for vacuum- or modified atmosphere-packaged ready-to-eat meat and fresh comminuted, processed meat-Based on the hazard and exposure considerations, the risk assessment conducted by Health Canada concluded that C. maltaromaticum strain CB1 is not considered to be toxic to the Canadian environment or human health as described in Section 64 of CEPA 1999.  The Mol% G+C for the genus is 33.0-37.2. Carnobacterium (carnis, of flesh-meat bacteria)Carnobacterium (carnis, of flesh-meat bacteria)
  • 53. Bifidobacteria There are approx. 30 species of bifidobacteria. They are found in the intestinal tract within days of birth, especially in breastfed infants. They help in the improvement of abdominal pain, bloating, bowel dysfunction, incomplete evacuation, straining, and the passage of gas.
  • 54. Streptococcus This produces large quantities of the enzyme lactase, making it effective. It helps in the prevention of lactose intolerance.
  • 55. Saccharomyces The only yeast probiotic. It is effective in treating diarrhea associated with the use of antibiotics and traveler's diarrhea. It has also been reported to prevent the reoccurrence of Clostridium difficile, to treat acne, and to reduce side effects of treatment for Helicobacter pylori.
  • 56. Foodborne Moulds • Aspergillus • Alternaria • Aureobasidium (Pullularia) • Botrytis • Byssochlamys • Chladosporium • Collectotrichum • Fusarium • Geotrichum • Monilinia • Mucor • Penicillium • Rhizopus • Thamnidium • Trichothesium • Other moulds Miscellaneous genera that are found in some foods but are generally not regarded as significant: Cephalosporium, Diplodia and Neurospora Xerophiles: Aspergillus, Eurotium, Basipetospora, Chrysosporium, Eremascus, Polypaecilum, Wallemia, and Xeromyces
  • 57. Common Moulds in Food Filamentous fungi that grow in the form of a tangled mass that spreads rapidly and may cover several inches of area in 2 to 3 days. The total of the mass or any large portion of it is referred to as mycelium. Mycelium is composed of branches or filaments referred to as hyphae. Those of greatest importance in foods multiply by zygospores/oospores, ascospores, or conidia.
  • 58. Morphology  The morphology of moulds as judged by their macroscopic and microscopic appearance is used for its identificationa nd classification.  The mould thallus consist of a mass of branching intertwined filaments called hyphae.  Whole mass of these hyphae is called mycelium.  Hyphae may be submerged (growing in to food) or aerial (growing in to air above food)  Hyphae may be vegetative or growing and hence involved chiefly in nutrition of mold or fertile, involved in production of reproductive parts.  In most moulds, fertile hyphae are aerial but in some may be submerged.  Hyphae may be septate or non-septate (coenocytic)  The hyphae of most moulds are clear but in som it may be dark or smoky.  Septate hyphae increase in length by means of division of tip cell (apical growth) or of cells within hypha (Intercalary growth)- the type of growth being characteristic of type of mold  Special mycelial structures or parts aid in the identification of moulds. E.g. rhizoids/hodfasts in Rhizopus and Absidia; the foot cell in Aspergillus and dichotomous or y-shaped, branching in Geotrichium.
  • 59. Reproductive Parts or Structures  Molds can grow from a transplanted part of mycelium. Reproduction in molds mainly occurs by means of asexual spores. Some molds also form sexual spores. Such molds are termed as “perfect” and include Zygomycetes or Oomycetes (non-septate) or ascomycetes and basidiomycetes if septate. In contrast, Imperfect moulds i.e. Fungi Imperfecti (typically septate) multiply by only asexual spores. Asexual Spores: Asexual spores of molds are produced in large numbers and are small, light and resistant to drying. They are readily spread through air. Three types of asexual spores are: Conidia Sporangiospore Arthrospores/oidia Chlamydospores
  • 60. Asexual Spores Conidia: Conidia are cut off or bud from special fertile hyphae called conidiophores and usually are in open (not enclosed in container). Sponragiospores: Sponragiospores are produced in a sac/container (called sporangium) at the tip of the fertile hyphae called sporangiophores Arthrospores: Arthrospores are formd by fragmentation of the hypha so that the cells of the hypha become arthrospores. Chlamydospores: Produced by many molds. Here cells in the mycelium here and there stores up reserve food, swells and forms a thicker wall than the surrounding cells. This is chlamydospore or resting cell.
  • 61. Asexual spores in Identification  The morphology of the asexual spore is helpful in identification of genus and speices of the mold.  Sporangiospores differ in shape size and colour.  Conidia also may be smooth or roughened and one, two or many celled.  Also helpful in identification of mold is the appearance of fertile hyphae and arrangement of asexual spores on them.  If sporangiospores are formed, sporangiophores may be simple or branched; type of branching and sizem shape and color and location of sporangia hint about the speices.  The swollen tip of the sporangiophore is called columella, which usually projects in to the sporangium, assumes shapes typical of species of mold.  Conidia may be borne singly on conidiophores or in spore heads of differing arrangement and complexity. A look at the appearance of spore head is sufficient for genus identification.  Some molds have conidia in chains, squeezed off one by one from a special cell, a sterigma, or phialide at the tip of the conidiophore.  Other molds have irregular masses of conidia which cut off from conidiophore with out evident sterigmata.
  • 62. Sexual Spores The non-septate molds (phycomycetes) reproduce by oospores are termed oomycetes. These molds are mostly aquatic but also include “downy mildews” which cause late blight of potato and buckeye rot of tomatoes. The oospores are formed by union of small male gamete and large female gamete. The zygospores are formed by zygomycetes by the union of tip of two hyphae from the same mycelium or different mycelium. Both oospores and zygospores are covered by a tough wall and can survive drying for prolong period. The ascomycetes produce ascospores in a sac called ascus Usually 08 ascospores are produced in an ascus. The asci may be single or may be grouped within a covering called an ascocarp formed by branchinga and intertwinning of the adjacent hyphae. The basidiomycetes, which include most mushrooms, plant rusts and smuts produce basidiospores.
  • 63. Aspergillus Aspergillus is defined as a group of conidial fungi  The aspergilli appear yellow to green to black on a large number of foods  Found on country-cured hams and on bacon  It is widely distributed and contains many species important in food.  Members have septate hyphae and produce black-colored asexual spores or conidia.  Many are xerophilic (able to grow in low Aw) and can grow in grains, causing spoilage.  They are also involved in spoilage of foods such as jams, cured ham, nuts, and fruits and vegetables (rot).  Some species or strains produce mycotoxins (e.g. Aspergillus flavus produces aflatoxin).  Many species or strains are also used in food and food additive processing e.g. Asp. oryzae is used to hydrolyze starch by α- amylase in the production of sake. Asp. niger is used to process citric acid from sucrose and to produce enzymes such as b- galactosidase. Colony of A. flavus on SDA
  • 64. Alternaria Alternaria is a genus of ascomycete fungi. Members are septate and form dark-colored spores or conidia. Septate mycelia with conidiophores and large brown conidia are produced The conidia have both cross and longitudinal septa and are variously shaped. They cause rot in tomatoes and rancid flavor in dairy products. Some species or strains produce mycotoxins. Species: Alternaria tenuis Sabouraud dextrose agar
  • 65. Aureobasidium Ubiquitous black, yeast-like fungus Cultivated on potato dextrose agar, where it produces smooth, faint pink, yeast-like colonies covered with a slimy mass of spores Colony on PDA
  • 66. Cladosporium Most abundant mold in air A genus of fungi having dematiaceous or dark- colored conidiophores with oval or round spores Species produce olive-green to brown or black colonies, and have dark-pigmented conidia that are formed in simple or branching chains C. herbarum can cause "black spot" spoilage of meat C. herbarum on PDA
  • 67. Penicillium  Genus of ascomycetous fungi Typical colors on foods are blue to blue- green It is widely distributed and contains many species. Members have septate hyphae and form  conidiophores on a blue-green, brushlike  conidia head (Figure 2.1).  Some  species  are  used  in  food  production,  such  as  Penicillium roquefortii and  Pen. camembertii in cheese. Many species cause fungal rot in fruits and vegetables.  They  also  cause  spoilage  of  grains,  breads, and meat.  Some  strains  produce  mycotoxins  (e.g.,  Ochratoxin A). Penicillium colony on PDA
  • 68. Rhizopus Common saprophytic fungi Rhizopus species  grow  as  filamentous,  branching hyphae that  generally lack cross-walls Hyphae are aseptate and form sporangiophores in sporangium. Reproduce  by  forming  asexual  and  sexual spores They cause spoilage  of  many  fruits  and vegetables.  Rhizopus stolonifer is the common black bread mold. Colony on acidified PDA
  • 70. Fusarium: Many types are associated with rot in citrus fruits, potatoes, and grains. They  form  cottony  growth  and  produce  septate,  sickle-shaped  conidia. Species: Fusarium solani. Geotrichum: Members are septate and form rectangular arthrospores. They grow, forming a yeast like cottony, creamy colony.  They  establish  easily  in  equipment  and  often  grow  on  dairy  products (dairy mold). Species: Geotrichum candidum. Mucor: It is widely distributed. Members have non-septate hyphae and produce sporangiophores. They produce cottony colonies.  Some species are used in food fermentation and as a source of  enzymes.  They cause spoilage of vegetables.  Species: Mucor rouxii.
  • 72. Morphology Yeast  may  be  spherical  to  ovoid,  lemon  shaped,  pear  shaped,  cylindrical,  triangular  or  even  elongated  in  to  a  false  or  true  mycelium. Most  yeast  reproduce  asexually  by  multilateral  or  polar  budding. Some  yeast  species  reproduce  by  fission  and  one  by  combination of budding and fission.
  • 73. Saccharomyces Cells  are  round,  oval,  or  elongated.  It  is  the  most  important  genus and contains heterogenous groups.  Saccharomyces cerevisiae variants are  used  in  baking  for  leavening bread and in alcoholic fermentation.  They also cause spoilage of food, producing alcohol and CO2. Zygosaccharomyces: Cause spoilage of high-acid foods, such as sauces, ketchups, pickles, mustards, mayonnaise, salad dressings, especially those  with less acid and less salt and sugar (e.g., Zygosaccharomyces bailii).
  • 74. Dimorphic fungus that  grows  both  as yeast and filamentous  cells Most common yeasts in fresh ground beef and poultry Many  species  spoil  foods  with  high  acid,  salt,  and  sugar  and  form  pellicles  on  the  surface  of  liquids.  Some  can  cause  rancidity in butter and dairy products (e.g., Candida lipolyticum). Candida on SDA Candida
  • 75. Cryptococcus Sexual  forms  or teleomorphs  of Cryptococcus species  are  filamentous fungi in the genus Filobasidiella Asporogenous,  reproduce  by  multilateral  budding,  and  are  nonfermenters of sugars Colonies  on  a  macroscopic  level  are  cream-color  to  pale  pink,  with  the  majority  of  colonies  being  smooth  with  a  mucoid  appearance INDIA INK STAINING COLONY ON SDA
  • 77. Pichia  Cells are oval to cylindrical and form pellicles in beer, wine, and brine to cause spoilage.   Some are also used in oriental food fermentation.   Species: Pichia membranaefaciens
  • 78. Trichosporon Trichosporon is a genus of anamorphic fungi in the family Trichosporonaceae All species of Trichosporon are yeasts with no known teleomorphs (sexual states) Common flora in fresh meat Common Species: T. pullulans COLONY ON SDA
  • 79. Yarrowia Yarrowia is a fungal genus in the family Dipodascaceae Can use unusual carbon sources, such as hydrocarbons Commonly isolated from poultry meat
  • 80. Viruses Viruses are important in food for three reasons.  Some are able to cause enteric disease, and thus, if present in a food, can  cause foodborne diseases e.g. Hepatitis A and Norwalk-like viruses have  been  implicated  in  foodborne  outbreaks.  Several  other  enteric  viruses,  such as polio, echo, and Coxsackie virus, can cause foodborne diseases. In  some countries where the level of sanitation is not very high, they can  contaminate foods and cause disease.  Some  bacterial  viruses  (bacteriophages)  are  used  to  identify  some  pathogens (Salmonella spp., Staphylococcus aureus strains) on the basis of the sensitivity of the  cells  to  a  series  of  bacteriophages  at  appropriate  dilutions.   Bacteriophages  are  used  to  transfer  genetic  traits  in  some  bacterial  species or strains by a process called transduction (e.g., in Escherichia coli or Lactococcus lactis).  Finally,  some  bacteriophages  can  be  very  important  because  they  can  cause  fermentation  failure.  Many  lactic  acid  bacteria,  used  as  starter  cultures in food fermentation, are sensitive to different bacteriophages.  They  can  infect  and  destroy  starter-culture  bacteria,  causing  product  failure.  Among  the  lactic  acid  bacteria,  bacteriophages  have  been  isolated  for  many  species  in  the  genera  Lactococcus, Streptococcus, Leuconostoc, and Lactobacillus; no bacteriophage of Pediococcus is yet  known. Methods are being devised to genetically engineer lactic starter  cultures so that they become resistant to multiple bacteriophages.
  • 81. Bacterial Groups in Foods Among the microorganisms found in foods, bacteria constitute  major important groups. This is not only because many different species but also because  of their rapid growth rate, ability to utilize food nutrients, and  ability to grow under a wide range of temperatures, aerobiosis,  pH,  and  water  activity,  as  well  as  to  better  survive  adverse  situations, such as survival of spores at high temperature.  For  convenience,  bacteria  important  in  foods  have  been  arbitrarily divided into several groups on the basis of similarities  in certain characteristics.  This grouping does not have any taxonomic significance. Some  of these groups and their importance in foods are listed here.
  • 82. A. Lactic Acid Bacteria  They are bacteria that produce relatively large quantities of lactic acid from  carbohydrates.  Species  mainly  from  genera  Lactococcus, Leuconostoc, Pediococcus, Lactobacillus, and  Streptococcus thermophilus are included in this group. B. Acetic Acid Bacteria  They are bacteria that produce acetic acid, such as Acetobacter aceti. C. Propionic Acid Bacteria  They  are  bacteria  that  produce  propionic  acid  and  are  used  in  dairy  fermentation. Species such as Propionibacterium freudenreichii are included in this group. D. Butyric Acid Bacteria  They are bacteria that produce butyric acid in relatively large amounts. Some  Clostridium spp. such as Clostridium butyricum are included in this group. E. Proteolytic Bacteria  They  are  bacteria  that  can  hydrolyze  proteins  because  they  produce  extracellular proteinases.   Species  in  genera  Micrococcus, Staphylococcus, Bacillus, Clostridium, Pseudomonas, Alteromonas, Flavobacterium, Alcaligenes, some in Enterobacteriaceae, and Brevibacterium are included in this group. Bacterial Groups in Foods……
  • 83. F. Lipolytic Bacteria They  are  bacteria  that  are  able  to  hydrolyze  triglycerides  because  they produce extracellular lipases.  Species  in  genera  Micrococcus, Staphylococcus, Pseudomonas, Alteromonas, and Flavobacterium are included in this group. G. Saccharolytic Bacteria They are bacteria that are able to hydrolyze complex carbohydrates.  Species in genera Bacillus, Clostridium, Aeromonas, Pseudomonas, and Enterobacter are included in this group. H. Thermophilic Bacteria They are bacteria that are able to grow at 500 C and above.  Species from genera Bacillus, Clostridium, Pediococcus, Streptococcus, and Lactobacillus are included in this group. I. Psychrotrophic Bacteria They are bacteria that are able to grow at refrigerated temperature  (<5􀁲C).  Some  species  from  Pseudomonas, Alteromonas, Alcaligenes, Flavobacterium, Serratia, Bacillus, Clostridium, Lactobacillus, Leuconostoc, Carnobacterium, Brochothrix, Listeria, Yersinia, and Aeromonas are included in this group. Bacterial Groups in Foods……
  • 84. J. Thermoduric Bacteria  They  are  bacteria  that  are  able  to  survive  pasteurization  temperature  treatment.   Some  species  from  Micrococcus, Enterococcus, Lactobacillus, Pediococcus, Bacillus (spores), and Clostridium (spores) are included in this group. K. Halotolerant Bacteria  They are bacteria that are able to survive high salt concentrations (>10%).   Some species from Bacillus, Micrococcus, Staphylococcus, Pediococcus, Vibrio, and Corynebacterium are included in this group. L. Aciduric Bacteria  They are bacteria that are able to survive at low pH (<4.0).   Some species from Lactobacillus, Pediococcus, Lactococcus, Enterococcus, and Streptococcus are included in this group. M. Osmophilic Bacteria  They are bacteria that can grow at a relatively higher osmotic environment  than  that  needed  for  other  bacteria.  Some  species  from  genera  Staphylococcus, Leuconostoc, and Lactobacillus are included in this group.  They are much less osmophilic than yeasts and molds. N. Gas-Producing Bacteria  They  are  bacteria  that  produce  gas  (CO2,  H2,  H2S)  during  metabolism  of  nutrients.  Species  from  Leuconostoc, Lactobacillus, Propionibacterium, Escherichia, Enterobacter, Clostridium, and Desulfotomaculum are included in this group. Bacterial Groups in Foods……
  • 85. O. Slime Producers  They  are  bacteria  that  produce  slime  because  they  synthesize  polysaccharides.   Some  species  or  strains  from  Xanthomonas, Leuconostoc, Alcaligenes, Enterobacter, Lactococcus,and Lactobacillus are included in this group. P. Spore Formers  They are bacteria having the ability to produce spores. Species from Bacillus, Clostridium, and Desulfotomaculum are included in this group.  They are further  divided into aerobic spore formers, anaerobic spore formers, flat sour spore  formers, thermophilic spore formers, and sulfide-producing spore formers. Q. Aerobes  They are bacteria that require oxygen for growth and multiplication. Species  from Pseudomonas, Bacillus, and Flavobacterium are included in this group. R. Anaerobes  They are bacteria that cannot grow in the presence of oxygen. Species from  Clostridium are included in this group. S. Facultative Anaerobes  They are bacteria that are able to grow in both the presence and absence of  oxygen. Lactobacillus, Pediococcus, Leuconostoc, enteric pathogens, and some species of Bacillus, Serratia, and coliforms are included in this group. Bacterial Groups in Foods……
  • 86. T. Coliforms  Species  from  Escherichia, Enterobacter, Citrobacter, and Klebsiella are included in this group. They are used as an index of sanitation. U. Fecal Coliforms  Mainly Escherichia coli is included in this group. They are also used as an index of sanitation. V. Enteric Pathogens  Pathogenic Salmonella, Shigella, Campylobacter, Yersinia, Escherichia, Vibrio, Listeria, hepatitis A, and others that can cause gastrointestinal infection are  included in this group. Bacterial Groups in Foods……
  • 87. SUMMARY Bacteria, yeast and moulds contribute majorly in food spoilage Some  bacteria  can  even  survive  pasteurization  and  vaccum  packaging Spoilage  leads  to  deterioration  of  product  and  render  it  unpalatable Bacteria  and  fungi  can  also  be  pathogen  and  may  lead  to  diseases and food poisoning Proper hygenic measures in production, processing, packaging  and  storage  can  render  food  free  from  spoilage  and  pathogenic organisms
  • 88. Thanks Acknowledgement: All the material/presentations available online on the subject are duly acknowledged. Disclaimer: The author bear no responsibility with regard to the source and authenticity of the content. Questions???