El logaritmo y sus propiedades
 Sea 0 < a, a = 1 y 0 < x

                          y = loga x          sii, por definici´n,
                                                              o     x = ay

 Sean 0 < a, 0 < b, a = 1, b = 1, 0 < x, 0 < y, m = 0, n = 0, 0 < mn, r = 0
                    loga x
 1. logb x =        loga b

                      1
 2. logb a =        loga b

      logb x       loga x
 3.   logb y
               =   loga y

 4. loga (xy) = loga x + loga y

 5. loga ( x ) = loga x − loga y
           y

 6. loga xc = c loga x
                      c
 7. logad xc =        d
                          loga x

 8. loga (mn) = loga |m| + loga |n|

 9. loga ( m ) = loga |m| − loga |n|
           n

10. loga m2c = 2c loga |m|
                             c
11. logr2d m2c =             d
                                 log|r| |m|

Logaritmos

  • 1.
    El logaritmo ysus propiedades Sea 0 < a, a = 1 y 0 < x y = loga x sii, por definici´n, o x = ay Sean 0 < a, 0 < b, a = 1, b = 1, 0 < x, 0 < y, m = 0, n = 0, 0 < mn, r = 0 loga x 1. logb x = loga b 1 2. logb a = loga b logb x loga x 3. logb y = loga y 4. loga (xy) = loga x + loga y 5. loga ( x ) = loga x − loga y y 6. loga xc = c loga x c 7. logad xc = d loga x 8. loga (mn) = loga |m| + loga |n| 9. loga ( m ) = loga |m| − loga |n| n 10. loga m2c = 2c loga |m| c 11. logr2d m2c = d log|r| |m|