SlideShare a Scribd company logo
1 of 25
Power Electronics
Dr. Imtiaz Hussain
Assistant Professor
email: imtiaz.hussain@faculty.muet.edu.pk
URL :http://imtiazhussainkalwar.weebly.com/
Lecture-1
Introduction
1
Lecture Outline
2
Course Outline
3
Power Electronic Devices
• Diodes
• Power Transistors
• IGBTs
• etc.
Power Converters
• Uncontrolled Rectifiers
• Controlled rectifiers
• Inverters
• Converters
What is power electronics?
1) Definition
• Power Electronics: is the electronics applied to conversion and
control of electric power.
Electric
Power
Converter
Power
output
Power
input
Control
input
4
What is power electronics?
A more exact explanation:
• The primary task of power electronics is to process and control
the flow of electric energy by supplying voltages and currents in
a form that is optimally suited for user loads.
5
Prerequisites
• Power electronics incorporates concepts
from the fields of
– Analog circuits
– Electronic devices
– Control systems
– Power systems
– Magnetics
– Electric machines
– Numerical simulation
6
Scope
• It is not possible to build practical computers, cell phones, personal
data devices, cars, airplanes, industrial processes, and other
everyday products without power electronics.
• Alternative energy systems such as wind generators, solar power,
fuel cells, and others require power electronics to function.
• Technology advances such as electric and hybrid vehicles, laptop
computers, microwave ovens, flat-panel displays, LED lighting, and
hundreds of other innovations were not possible until advances in
power electronics enabled their implementation.
• Although no one can predict the future, it is certain that power
electronics will be at the heart of fundamental energy innovations.
7
Applications: Electric Vehicle
Tesla Model S
Functions of the power electronics:
1. Convert the DC battery voltage to
the variable AC required to drive
the AC motor
• 240 V battery
• Variable-frequency, variable-
voltage AC drives the motor
• AC motor propels the rear axle
• Up to 330 kW (acceleration)
• Up to 60 kW regenerative braking
2. Control charging of the battery
• Interface to 240 V 60 Hz 1φ 100 A circuit in
garage.
• Control AC current waveform to be sinusoidal,
unity power factor.
• Control charging of battery to maximize life. 8
Applications: Hybrid Vehicles
Prius
Power Electronics Module:
• Convert the DC battery voltage to the
variable AC required to drive the AC
motor.
• Includes dc-dc boost converter and
dc-3φ ac inverter
• Control system can operate in all-
electric mode or in hybrid gas+electric
mode
• Partial-power electronics
Under the hood:
Gas engine
Power electronics module
9
Applications: Variable-Speed Wind Turbine Systems
• AC generator produces “wild ac”:
frequency and amplitude change
with wind speed.
• Utility operates with constant
frequency (60 Hz) constant voltage
ac.
• Power electronics changes the
frequency and voltage, and also
implements control functions
• Cycloconverter, or
• DC link system: rectifier, boost
dc-dc, inverter
10
Applications: Photovoltaic Solar Power Systems
DC
Transformer
1:8
Zero-voltage
switching
Buck-boost
converter
(noninverting)
+
48 V
–
PV
input
12-
100 V
+
400 V
–
Output
to
inverter
Controller
Grid-tied solar: inverter converts
dc of solar panels to ac for grid.
Stand-alone solar: dc-dc converter
interfaces solar panels to batteries
11
A standalone photovoltaic power
system
The system constructed in ECEN 4517/5517 Power
Electronics and Photovoltaic Systems Laboratory
12
Applications: Computer power supply systems
vac(t)
iac(t) Charger
PWM
Rectifier
Lithium
battery
ac line input
85–265 Vrms
Inverter
Buck
converter
Boost
converter
Display
backlighting
Microprocessor
Power
management
Disk
drive
Laptop power system
iPhone power system and charger
13
Trends in Power Supplies
• Two distinct trends drive electronic power supplies, one
of the major classes of power electronic circuits.
– At one end, microprocessors, memory chips, and other
advanced digital circuits require increasing power levels and
increasing performance at very low voltage.
– At the other end, the explosive growth of portable devices
with rechargeable batteries. The power supplies for these
devices and for other consumer products must be cheap and
efficient.
14
Trends in Power Supplies
• In the past, bulky “linear” power supplies were designed
with transformers and rectifiers from the ac line
frequency to provide dc voltages for electronic circuits.
• In a well-designed power electronics arrangement
today, called a switch-mode power supply, an ac source
from a wall outlet is rectified without direct
transformation.
• The resulting high dc voltage is converted through a dc–
dc converter to the 1, 3, 5, and 12V, or other levels
required.
15
Trends in Power Supplies
• A personal computer commonly requires multiple 3.3-
and 5-V supplies, 12-V supplies, additional levels, and a
separate converter for 1-V delivery to the
microprocessor.
• Only a switch-mode supply can support such complex
requirements with acceptable costs.
16
Key Characteristics of Power Converter
• All power electronic circuits manage the flow of electrical
energy between an electrical source and a load.
• The parts in a circuit must direct electrical flows, not impede
them.
• The function of the power converter in the middle is to control
the energy flow between a source and a load.
• A crucial point emerges: to build a power converter, we should
consider only lossless components.
• A realistic converter design must approach 100% efficiency. 17
Devices Available to the circuit designer
18
Devices available to the circuit
designer
Signal processing: avoid magnetics
19
Devices available to the circuit
designer
Power processing: avoid lossy elements
20
Power loss in an ideal switch
• Switch closed: v(t) = 0
• Switch open: i(t) = 0
• In either event: p(t) = v(t) i(t) = 0
• Ideal switch consumes zero power
i
v
+
–
1
0
21
Power Electronic Devices
• The power Electronic devices provides the
utility of switching.
• The flow of power through these devices can
be controlled via small currents.
• Power electronics devices differ from ordinary
electronics devices in terms of their
characteristics.
22
Power Electronic Devices
• Power Semiconductor Devices can be
classified into three groups according to their
degree of controllability.
– Diodes (on and off controlled by power circuit)
– Thyristors (latched on by control signal but must
be turned off by power circuit)
– Controllable Switches (turned on and off by
control signal)
23
Conversion Examples
• Single-Switch Circuits
– Consider the circuit shown in figure.
– It contains an ac source, a switch, and a resistive load.
– It is a simple but complete power electronic system.
24
• What if the switch is turned on whenever Vac >0, and
turned off otherwise?
END OF LECTURE-1
To download this lecture visit
http://imtiazhussainkalwar.weebly.com/
25

More Related Content

Similar to lecture_1jjjjjjjjj*jjjjjjjjjjjjjjjjkkkkkkkkkkkkkkkkkk

POWER-ELECTRONICS.ppt
POWER-ELECTRONICS.pptPOWER-ELECTRONICS.ppt
POWER-ELECTRONICS.pptsuresh386785
 
POWER-ELECTRONICS for renewable energy systems.ppt
POWER-ELECTRONICS for renewable energy systems.pptPOWER-ELECTRONICS for renewable energy systems.ppt
POWER-ELECTRONICS for renewable energy systems.pptsuresh386785
 
Intro_PowerElectronics.pdf
Intro_PowerElectronics.pdfIntro_PowerElectronics.pdf
Intro_PowerElectronics.pdfEricRapirap1
 
Modern electric trends in electric drives
Modern electric trends in electric drivesModern electric trends in electric drives
Modern electric trends in electric drivesSurinder Kumar
 
dokumen.tips_electrical-drives-ppt.ppt
dokumen.tips_electrical-drives-ppt.pptdokumen.tips_electrical-drives-ppt.ppt
dokumen.tips_electrical-drives-ppt.pptDibyadipRoy1
 
Power electronics and its applications.pptx
Power electronics and its applications.pptxPower electronics and its applications.pptx
Power electronics and its applications.pptxSHIVANICHAUUHAN1
 
chapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.pptchapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.pptLiewChiaPing
 
Fundamentals of Smart Metering
Fundamentals of Smart MeteringFundamentals of Smart Metering
Fundamentals of Smart MeteringLiving Online
 
SOLAR PANEL POWERED BATTERY E VEHICLE....
SOLAR PANEL POWERED BATTERY E VEHICLE....SOLAR PANEL POWERED BATTERY E VEHICLE....
SOLAR PANEL POWERED BATTERY E VEHICLE....DeepakK547422
 
Transformer protection using microcontroller and gsm technology
Transformer protection using microcontroller and gsm technologyTransformer protection using microcontroller and gsm technology
Transformer protection using microcontroller and gsm technologyKartik Patel
 
Electric Vehicle Charging Method for Smart Homes/Buildings with a Photovoltai...
Electric Vehicle Charging Method for SmartHomes/Buildings with a Photovoltai...Electric Vehicle Charging Method for SmartHomes/Buildings with a Photovoltai...
Electric Vehicle Charging Method for Smart Homes/Buildings with a Photovoltai...Bharath University
 
power electronics digital notes.pdf
power electronics digital notes.pdfpower electronics digital notes.pdf
power electronics digital notes.pdfLucasMogaka
 
lecture 10 - electrical machines - dc to dc converters 1.pptx
lecture 10 - electrical machines - dc to dc converters 1.pptxlecture 10 - electrical machines - dc to dc converters 1.pptx
lecture 10 - electrical machines - dc to dc converters 1.pptxJohnkamanda3
 
POWER-ELECTRONICS.pptx
POWER-ELECTRONICS.pptxPOWER-ELECTRONICS.pptx
POWER-ELECTRONICS.pptxDebjit Doira
 
Powerelectronicsnote 121011031400-phpapp02 (1)
Powerelectronicsnote 121011031400-phpapp02 (1)Powerelectronicsnote 121011031400-phpapp02 (1)
Powerelectronicsnote 121011031400-phpapp02 (1)neomindx
 

Similar to lecture_1jjjjjjjjj*jjjjjjjjjjjjjjjjkkkkkkkkkkkkkkkkkk (20)

POWER-ELECTRONICS.ppt
POWER-ELECTRONICS.pptPOWER-ELECTRONICS.ppt
POWER-ELECTRONICS.ppt
 
POWER-ELECTRONICS for renewable energy systems.ppt
POWER-ELECTRONICS for renewable energy systems.pptPOWER-ELECTRONICS for renewable energy systems.ppt
POWER-ELECTRONICS for renewable energy systems.ppt
 
Intro_PowerElectronics.pdf
Intro_PowerElectronics.pdfIntro_PowerElectronics.pdf
Intro_PowerElectronics.pdf
 
Modern electric trends in electric drives
Modern electric trends in electric drivesModern electric trends in electric drives
Modern electric trends in electric drives
 
dokumen.tips_electrical-drives-ppt.ppt
dokumen.tips_electrical-drives-ppt.pptdokumen.tips_electrical-drives-ppt.ppt
dokumen.tips_electrical-drives-ppt.ppt
 
Power electronics and its applications.pptx
Power electronics and its applications.pptxPower electronics and its applications.pptx
Power electronics and its applications.pptx
 
chapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.pptchapter_1 Intro. to electonic Devices.ppt
chapter_1 Intro. to electonic Devices.ppt
 
Phase 4
Phase 4Phase 4
Phase 4
 
Fundamentals of Smart Metering
Fundamentals of Smart MeteringFundamentals of Smart Metering
Fundamentals of Smart Metering
 
SOLAR PANEL POWERED BATTERY E VEHICLE....
SOLAR PANEL POWERED BATTERY E VEHICLE....SOLAR PANEL POWERED BATTERY E VEHICLE....
SOLAR PANEL POWERED BATTERY E VEHICLE....
 
SMPS
SMPSSMPS
SMPS
 
Transformer protection using microcontroller and gsm technology
Transformer protection using microcontroller and gsm technologyTransformer protection using microcontroller and gsm technology
Transformer protection using microcontroller and gsm technology
 
Electric Vehicle Charging Method for Smart Homes/Buildings with a Photovoltai...
Electric Vehicle Charging Method for SmartHomes/Buildings with a Photovoltai...Electric Vehicle Charging Method for SmartHomes/Buildings with a Photovoltai...
Electric Vehicle Charging Method for Smart Homes/Buildings with a Photovoltai...
 
power electronics digital notes.pdf
power electronics digital notes.pdfpower electronics digital notes.pdf
power electronics digital notes.pdf
 
lecture 10 - electrical machines - dc to dc converters 1.pptx
lecture 10 - electrical machines - dc to dc converters 1.pptxlecture 10 - electrical machines - dc to dc converters 1.pptx
lecture 10 - electrical machines - dc to dc converters 1.pptx
 
SMPS
SMPSSMPS
SMPS
 
1. Introduction.pdf
1. Introduction.pdf1. Introduction.pdf
1. Introduction.pdf
 
Power Electronics
Power ElectronicsPower Electronics
Power Electronics
 
POWER-ELECTRONICS.pptx
POWER-ELECTRONICS.pptxPOWER-ELECTRONICS.pptx
POWER-ELECTRONICS.pptx
 
Powerelectronicsnote 121011031400-phpapp02 (1)
Powerelectronicsnote 121011031400-phpapp02 (1)Powerelectronicsnote 121011031400-phpapp02 (1)
Powerelectronicsnote 121011031400-phpapp02 (1)
 

More from ManhHoangVan

1 circuit variables1 circuit variables.pdf
1 circuit variables1 circuit variables.pdf1 circuit variables1 circuit variables.pdf
1 circuit variables1 circuit variables.pdfManhHoangVan
 
Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06
Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06
Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06ManhHoangVan
 
Lllsjjsjsjjshshjshjsjjsjjsjjzjsjjzjjzjjzj
LllsjjsjsjjshshjshjsjjsjjsjjzjsjjzjjzjjzjLllsjjsjsjjshshjshjsjjsjjsjjzjsjjzjjzjjzj
LllsjjsjsjjshshjshjsjjsjjsjjzjsjjzjjzjjzjManhHoangVan
 
discrete_state_spaceeeeeerrrrrrrrrrrrrrrr
discrete_state_spaceeeeeerrrrrrrrrrrrrrrrdiscrete_state_spaceeeeeerrrrrrrrrrrrrrrr
discrete_state_spaceeeeeerrrrrrrrrrrrrrrrManhHoangVan
 
Labhbbbbbbbbbbbb;ggghhhhhhhhhhhhhhhhhhhhhhhhhhhh
Labhbbbbbbbbbbbb;ggghhhhhhhhhhhhhhhhhhhhhhhhhhhhLabhbbbbbbbbbbbb;ggghhhhhhhhhhhhhhhhhhhhhhhhhhhh
Labhbbbbbbbbbbbb;ggghhhhhhhhhhhhhhhhhhhhhhhhhhhhManhHoangVan
 
lecture_5_thyristorshjjjjjkjkkkmmmmmmmmmmm
lecture_5_thyristorshjjjjjkjkkkmmmmmmmmmmmlecture_5_thyristorshjjjjjkjkkkmmmmmmmmmmm
lecture_5_thyristorshjjjjjkjkkkmmmmmmmmmmmManhHoangVan
 
lecture_2_getting_startedhhjjjjjjkkkkkkkk
lecture_2_getting_startedhhjjjjjjkkkkkkkklecture_2_getting_startedhhjjjjjjkkkkkkkk
lecture_2_getting_startedhhjjjjjjkkkkkkkkManhHoangVan
 
lecture_11_invertershhhhjjjjjjj*hbbbnnnnn
lecture_11_invertershhhhjjjjjjj*hbbbnnnnnlecture_11_invertershhhhjjjjjjj*hbbbnnnnn
lecture_11_invertershhhhjjjjjjj*hbbbnnnnnManhHoangVan
 
Extracted pages from LightTools-Basic-Training-E-learning_5.pdf
Extracted pages from LightTools-Basic-Training-E-learning_5.pdfExtracted pages from LightTools-Basic-Training-E-learning_5.pdf
Extracted pages from LightTools-Basic-Training-E-learning_5.pdfManhHoangVan
 

More from ManhHoangVan (9)

1 circuit variables1 circuit variables.pdf
1 circuit variables1 circuit variables.pdf1 circuit variables1 circuit variables.pdf
1 circuit variables1 circuit variables.pdf
 
Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06
Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06
Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06Lect-06
 
Lllsjjsjsjjshshjshjsjjsjjsjjzjsjjzjjzjjzj
LllsjjsjsjjshshjshjsjjsjjsjjzjsjjzjjzjjzjLllsjjsjsjjshshjshjsjjsjjsjjzjsjjzjjzjjzj
Lllsjjsjsjjshshjshjsjjsjjsjjzjsjjzjjzjjzj
 
discrete_state_spaceeeeeerrrrrrrrrrrrrrrr
discrete_state_spaceeeeeerrrrrrrrrrrrrrrrdiscrete_state_spaceeeeeerrrrrrrrrrrrrrrr
discrete_state_spaceeeeeerrrrrrrrrrrrrrrr
 
Labhbbbbbbbbbbbb;ggghhhhhhhhhhhhhhhhhhhhhhhhhhhh
Labhbbbbbbbbbbbb;ggghhhhhhhhhhhhhhhhhhhhhhhhhhhhLabhbbbbbbbbbbbb;ggghhhhhhhhhhhhhhhhhhhhhhhhhhhh
Labhbbbbbbbbbbbb;ggghhhhhhhhhhhhhhhhhhhhhhhhhhhh
 
lecture_5_thyristorshjjjjjkjkkkmmmmmmmmmmm
lecture_5_thyristorshjjjjjkjkkkmmmmmmmmmmmlecture_5_thyristorshjjjjjkjkkkmmmmmmmmmmm
lecture_5_thyristorshjjjjjkjkkkmmmmmmmmmmm
 
lecture_2_getting_startedhhjjjjjjkkkkkkkk
lecture_2_getting_startedhhjjjjjjkkkkkkkklecture_2_getting_startedhhjjjjjjkkkkkkkk
lecture_2_getting_startedhhjjjjjjkkkkkkkk
 
lecture_11_invertershhhhjjjjjjj*hbbbnnnnn
lecture_11_invertershhhhjjjjjjj*hbbbnnnnnlecture_11_invertershhhhjjjjjjj*hbbbnnnnn
lecture_11_invertershhhhjjjjjjj*hbbbnnnnn
 
Extracted pages from LightTools-Basic-Training-E-learning_5.pdf
Extracted pages from LightTools-Basic-Training-E-learning_5.pdfExtracted pages from LightTools-Basic-Training-E-learning_5.pdf
Extracted pages from LightTools-Basic-Training-E-learning_5.pdf
 

Recently uploaded

Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture designssuser87fa0c1
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixingviprabot1
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 

Recently uploaded (20)

Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture design
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixing
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 

lecture_1jjjjjjjjj*jjjjjjjjjjjjjjjjkkkkkkkkkkkkkkkkkk

  • 1. Power Electronics Dr. Imtiaz Hussain Assistant Professor email: imtiaz.hussain@faculty.muet.edu.pk URL :http://imtiazhussainkalwar.weebly.com/ Lecture-1 Introduction 1
  • 3. Course Outline 3 Power Electronic Devices • Diodes • Power Transistors • IGBTs • etc. Power Converters • Uncontrolled Rectifiers • Controlled rectifiers • Inverters • Converters
  • 4. What is power electronics? 1) Definition • Power Electronics: is the electronics applied to conversion and control of electric power. Electric Power Converter Power output Power input Control input 4
  • 5. What is power electronics? A more exact explanation: • The primary task of power electronics is to process and control the flow of electric energy by supplying voltages and currents in a form that is optimally suited for user loads. 5
  • 6. Prerequisites • Power electronics incorporates concepts from the fields of – Analog circuits – Electronic devices – Control systems – Power systems – Magnetics – Electric machines – Numerical simulation 6
  • 7. Scope • It is not possible to build practical computers, cell phones, personal data devices, cars, airplanes, industrial processes, and other everyday products without power electronics. • Alternative energy systems such as wind generators, solar power, fuel cells, and others require power electronics to function. • Technology advances such as electric and hybrid vehicles, laptop computers, microwave ovens, flat-panel displays, LED lighting, and hundreds of other innovations were not possible until advances in power electronics enabled their implementation. • Although no one can predict the future, it is certain that power electronics will be at the heart of fundamental energy innovations. 7
  • 8. Applications: Electric Vehicle Tesla Model S Functions of the power electronics: 1. Convert the DC battery voltage to the variable AC required to drive the AC motor • 240 V battery • Variable-frequency, variable- voltage AC drives the motor • AC motor propels the rear axle • Up to 330 kW (acceleration) • Up to 60 kW regenerative braking 2. Control charging of the battery • Interface to 240 V 60 Hz 1φ 100 A circuit in garage. • Control AC current waveform to be sinusoidal, unity power factor. • Control charging of battery to maximize life. 8
  • 9. Applications: Hybrid Vehicles Prius Power Electronics Module: • Convert the DC battery voltage to the variable AC required to drive the AC motor. • Includes dc-dc boost converter and dc-3φ ac inverter • Control system can operate in all- electric mode or in hybrid gas+electric mode • Partial-power electronics Under the hood: Gas engine Power electronics module 9
  • 10. Applications: Variable-Speed Wind Turbine Systems • AC generator produces “wild ac”: frequency and amplitude change with wind speed. • Utility operates with constant frequency (60 Hz) constant voltage ac. • Power electronics changes the frequency and voltage, and also implements control functions • Cycloconverter, or • DC link system: rectifier, boost dc-dc, inverter 10
  • 11. Applications: Photovoltaic Solar Power Systems DC Transformer 1:8 Zero-voltage switching Buck-boost converter (noninverting) + 48 V – PV input 12- 100 V + 400 V – Output to inverter Controller Grid-tied solar: inverter converts dc of solar panels to ac for grid. Stand-alone solar: dc-dc converter interfaces solar panels to batteries 11
  • 12. A standalone photovoltaic power system The system constructed in ECEN 4517/5517 Power Electronics and Photovoltaic Systems Laboratory 12
  • 13. Applications: Computer power supply systems vac(t) iac(t) Charger PWM Rectifier Lithium battery ac line input 85–265 Vrms Inverter Buck converter Boost converter Display backlighting Microprocessor Power management Disk drive Laptop power system iPhone power system and charger 13
  • 14. Trends in Power Supplies • Two distinct trends drive electronic power supplies, one of the major classes of power electronic circuits. – At one end, microprocessors, memory chips, and other advanced digital circuits require increasing power levels and increasing performance at very low voltage. – At the other end, the explosive growth of portable devices with rechargeable batteries. The power supplies for these devices and for other consumer products must be cheap and efficient. 14
  • 15. Trends in Power Supplies • In the past, bulky “linear” power supplies were designed with transformers and rectifiers from the ac line frequency to provide dc voltages for electronic circuits. • In a well-designed power electronics arrangement today, called a switch-mode power supply, an ac source from a wall outlet is rectified without direct transformation. • The resulting high dc voltage is converted through a dc– dc converter to the 1, 3, 5, and 12V, or other levels required. 15
  • 16. Trends in Power Supplies • A personal computer commonly requires multiple 3.3- and 5-V supplies, 12-V supplies, additional levels, and a separate converter for 1-V delivery to the microprocessor. • Only a switch-mode supply can support such complex requirements with acceptable costs. 16
  • 17. Key Characteristics of Power Converter • All power electronic circuits manage the flow of electrical energy between an electrical source and a load. • The parts in a circuit must direct electrical flows, not impede them. • The function of the power converter in the middle is to control the energy flow between a source and a load. • A crucial point emerges: to build a power converter, we should consider only lossless components. • A realistic converter design must approach 100% efficiency. 17
  • 18. Devices Available to the circuit designer 18
  • 19. Devices available to the circuit designer Signal processing: avoid magnetics 19
  • 20. Devices available to the circuit designer Power processing: avoid lossy elements 20
  • 21. Power loss in an ideal switch • Switch closed: v(t) = 0 • Switch open: i(t) = 0 • In either event: p(t) = v(t) i(t) = 0 • Ideal switch consumes zero power i v + – 1 0 21
  • 22. Power Electronic Devices • The power Electronic devices provides the utility of switching. • The flow of power through these devices can be controlled via small currents. • Power electronics devices differ from ordinary electronics devices in terms of their characteristics. 22
  • 23. Power Electronic Devices • Power Semiconductor Devices can be classified into three groups according to their degree of controllability. – Diodes (on and off controlled by power circuit) – Thyristors (latched on by control signal but must be turned off by power circuit) – Controllable Switches (turned on and off by control signal) 23
  • 24. Conversion Examples • Single-Switch Circuits – Consider the circuit shown in figure. – It contains an ac source, a switch, and a resistive load. – It is a simple but complete power electronic system. 24 • What if the switch is turned on whenever Vac >0, and turned off otherwise?
  • 25. END OF LECTURE-1 To download this lecture visit http://imtiazhussainkalwar.weebly.com/ 25