SlideShare a Scribd company logo
Learning the MMSE Channel Estimator
EESC 6353 Project
Shamman Noor
Introduction
• System Model
• MMSE Estimation:
- Discrete MMSE estimation
- Structured MMSE estimation
- Circulant structure
- Toeplitz structure
- Fast MMSE estimation
- CNN based fast MMSE estimation
• CNN Model and parameters
Software used:
• MATLAB – 2018a
• Python – 3.7
• TensorFlow – 1.13.1
System Model
…
Base station
(M antennas)
UE
(single antenna)
…
𝑦𝑡 = ℎ 𝑡 + 𝑧𝑡
ℎ1,1
ℎ1,2
ℎ1,𝑀 𝑧𝑡 ~ 𝑁𝐶(0, Σ)
Σ = 𝜎2 𝐼 ~ 𝑎𝑠𝑠𝑢𝑚𝑒𝑑
𝜎2 ~ 𝑘𝑛𝑜𝑤𝑛
ℎ 𝑡|𝛿 ~ 𝑁𝐶(0, 𝐶 𝛿)
𝛿 ~ 𝑝(𝛿)
𝑦𝑡|ℎ 𝑡 ~ 𝑁𝐶(ℎ 𝑡, Σ)
𝑇ℎ𝑒 𝑔𝑜𝑎𝑙 𝑖𝑠 𝑡𝑜 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝒉 𝒕,
𝑓𝑟𝑜𝑚 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙, 𝑦𝑡
𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑓ℎ 𝑡, 𝑦𝑡 𝑎𝑛𝑑 𝑧𝑡
System Model
…
Base station
(M antennas)
UE
(single antenna)
…
ℎ1,1
ℎ1,2
ℎ1,𝑀
MMSE channel estimation
𝑊𝛿 = 𝐶 𝛿(𝐶 𝛿 + 𝛴)−1
𝐶 =
1
𝜎2
𝑡=1
𝑇
𝑦𝑡 𝑦𝑡
𝐻 𝑊∗ 𝐶 =
𝑒𝑥𝑝(𝑡𝑟 𝑊𝛿 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑊𝛿 ) 𝑊𝛿 𝑝(𝛿) 𝑑𝛿
𝑒𝑥𝑝(𝑡𝑟 𝑊𝛿 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑊𝛿 ) 𝑝(𝛿) 𝑑𝛿
𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡)
𝑝(𝛿)Distribution of channel parameters,
𝑦𝑡
𝜎2Know noise variance,
Received signal,
Channel covariance matrix
Sample covariance matrix
(estimated)
MMSE filter coefficients
MMSE filter (estimated)
ℎ = 𝑊∗ 𝐶 𝑦
Estimated channel
ℎ 𝑡Generated channel,
General MMSE Estimator:
𝐸 ℎ 𝑡 𝑌, 𝛿 = 𝑊𝛿 𝑦𝑡
ℎ 𝑡 = 𝐸 ℎ 𝑡 𝑌 = 𝑊∗ 𝐶 𝑦𝑡
MMSE channel estimation
𝐶 =
1
𝜎2
𝑡=1
𝑇
𝑦𝑡 𝑦𝑡
𝐻 𝑊∗ 𝐶 =
𝑒𝑥𝑝(𝑡𝑟 𝑊𝛿 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑊𝛿 ) 𝑊𝛿 𝑝(𝛿) 𝑑𝛿
𝑒𝑥𝑝(𝑡𝑟 𝑊𝛿 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑊𝛿 ) 𝑝(𝛿) 𝑑𝛿
𝑝(𝛿)Distribution of channel parameters,
Sample covariance matrix
(estimated)
MMSE filter (estimated)
ℎ = 𝑾 𝜹 𝑦
Estimated channel
Genie Aided MMSE Estimator (for a lower bound performance):
𝑦𝑡
𝜎2Know noise variance,
Received signal,
𝑾 𝜹 = 𝐶 𝛿(𝐶 𝛿 + 𝛴)−1𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡)
Channel covariance matrix MMSE filter coefficients
ℎ 𝑡Generated channel,
MMSE channel estimation
𝐶 =
1
𝜎2
𝑡=1
𝑇
𝑦𝑡 𝑦𝑡
𝐻 𝑾 𝑮𝑬 𝑪 =
𝑒𝑥𝑝(𝑡𝑟 𝑊𝛿 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑊𝛿 ) 𝑊𝛿 𝑝(𝛿) 𝑑𝛿
𝑒𝑥𝑝(𝑡𝑟 𝑊𝛿 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑊𝛿 ) 𝑝(𝛿) 𝑑𝛿𝑦𝑡
𝜎2Know noise variance,
Received signal,
Sample covariance matrix
(estimated)
MMSE filter (estimated)
ℎ = 𝑾 𝑮𝑬 𝑪 𝑦
Estimated channel
Gridded MMSE Estimator:
𝑊𝛿 = 𝐶 𝛿(𝐶 𝛿 + 𝛴)−1𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡)
Channel covariance matrix MMSE filter coefficients
ℎ 𝑡Generated channel,
Assumption 1: 𝑝 𝛿𝑖 =
1
𝑁
, ∀𝑖 = 1, … , 𝑁
N = 16M
M = number of antennas
MMSE channel estimation
𝐶 =
1
𝜎2
𝑡=1
𝑇
𝑦𝑡 𝑦𝑡
𝐻 𝑾 𝑮𝑬 𝑪 =
𝑒𝑥𝑝(𝑡𝑟 𝑊𝛿 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑊𝛿 ) 𝑊𝛿 𝑝(𝛿) 𝑑𝛿
𝑒𝑥𝑝(𝑡𝑟 𝑊𝛿 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑊𝛿 ) 𝑝(𝛿) 𝑑𝛿
Assumption 1: 𝑝 𝛿𝑖 =
1
𝑁
, ∀𝑖 = 1, … , 𝑁
N = 16M
M = number of antennas
𝑦𝑡
𝜎2Know noise variance,
Received signal,
Sample covariance matrix
(estimated)
MMSE filter (estimated)
ℎ = 𝑾 𝑮𝑬 𝑪 𝑦
Estimated channel
Gridded MMSE Estimator :
𝑣𝑒𝑐 𝑊𝛿 ∈ 𝐂 𝑀2 𝑥𝑁
→ 𝛰(𝑀2
𝑁) → 𝑂(𝑀3
)
𝑊𝛿 = 𝐶 𝛿(𝐶 𝛿 + 𝛴)−1𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡)
Channel covariance matrix MMSE filter coefficients
ℎ 𝑡Generated channel,
MMSE channel estimation
𝑪 =
𝟏
𝝈 𝟐
𝒕=𝟏
𝑻
𝑸𝒚 𝒕
𝟐 𝑾 𝑺𝑬 𝑪 =
𝑒𝑥𝑝(𝑡𝑟 𝑊𝑆𝐸 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑄 𝐻 𝑊𝛿 𝑄 ) 𝑊𝑆𝐸 𝑝(𝛿) 𝑑𝛿
𝑒𝑥𝑝(𝑡𝑟 𝑊𝑆𝐸 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑄 𝐻 𝑊𝛿 𝑄 ) 𝑝(𝛿) 𝑑𝛿
𝑝(𝛿)Distribution of channel parameters,
𝑦𝑡
𝜎2Know noise variance,
Received signal,
Sample covariance matrix
(estimated)
MMSE filter (estimated)
ℎ = 𝑄 𝐻 𝑾 𝑺𝑬 𝑪 𝑄𝑦
Estimated channel
Structured MMSE Estimator:
Assumption 2: 𝑊𝛿 = 𝑄 𝐻
𝑑𝑖𝑎𝑔 𝑤 𝛿 𝑄
𝑤 𝛿 = 𝑑𝑖𝑎𝑔(𝑄𝑊𝛿 𝑄 𝐻
)
𝑄 =
𝐹, 𝑓𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟
𝐹2, 𝑓𝑜𝑟 𝑡𝑜𝑒𝑝𝑙𝑖𝑡𝑧 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟
𝑊𝑆𝐸 = 𝑄𝑊𝛿 𝑄 𝐻𝑊𝛿 = 𝐶 𝛿(𝐶 𝛿 + 𝛴)−1𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡)
Channel covariance matrix MMSE filter coefficients
ℎ 𝑡Generated channel,
MMSE channel estimation
𝑪 =
𝟏
𝝈 𝟐
𝒕=𝟏
𝑻
𝑸𝒚 𝒕
𝟐 𝑾 𝑺𝑬 𝑪 =
𝑒𝑥𝑝(𝑡𝑟 𝑊𝑆𝐸 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑄 𝐻 𝑊𝛿 𝑄 ) 𝑊𝑆𝐸 𝑝(𝛿) 𝑑𝛿
𝑒𝑥𝑝(𝑡𝑟 𝑊𝑆𝐸 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑄 𝐻 𝑊𝛿 𝑄 ) 𝑝(𝛿) 𝑑𝛿
𝑝(𝛿)Distribution of channel parameters,
𝑦𝑡
𝜎2Know noise variance,
Received signal,
Sample covariance matrix
(estimated)
MMSE filter (estimated)
ℎ = 𝑄 𝐻 𝑾 𝑺𝑬 𝑪 𝑄𝑦
Estimated channel
Structured MMSE Estimator:
𝑊𝑆𝐸 = 𝑄𝑊𝛿 𝑄 𝐻
𝑊𝑆𝐸 ∈ 𝐂 𝑀𝑥𝑁
→ 𝛰(𝑀𝑁) → 𝑂(𝑀2
)
𝑊𝛿 = 𝐶 𝛿(𝐶 𝛿 + 𝛴)−1𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡)
Channel covariance matrix MMSE filter coefficients
ℎ 𝑡Generated channel,
Assumption 2: 𝑊𝛿 = 𝑄 𝐻
𝑑𝑖𝑎𝑔 𝑤 𝛿 𝑄
𝑤 𝛿 = 𝑑𝑖𝑎𝑔(𝑄𝑊𝛿 𝑄 𝐻
)
𝑄 =
𝐹, 𝑓𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟
𝐹2, 𝑓𝑜𝑟 𝑡𝑜𝑒𝑝𝑙𝑖𝑡𝑧 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟
MMSE channel estimation
𝑾 𝑭𝑬 𝑪 =
𝑒𝑥𝑝(𝑡𝑟 𝐹 𝐻 𝑾 𝟎 𝐹 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑾 𝑭𝑬 ) 𝐹 𝐻 𝑾 𝟎 𝐹𝑝(𝛿) 𝑑𝛿
𝑒𝑥𝑝(𝑡𝑟 𝐹 𝐻 𝑾 𝟎 𝐹 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑾 𝑭𝑬 ) 𝑝(𝛿) 𝑑𝛿
𝑝(𝛿)Distribution of channel parameters,
𝑦𝑡
𝜎2Know noise variance,
Received signal,
Sample covariance matrix
(estimated)
MMSE filter (estimated)
ℎ = 𝐹 𝐻 𝑾 𝑭𝑬 𝑪 𝐹𝑦
Estimated channel
Fast MMSE Estimator:
Generated channel, 𝑾 𝑭𝑬 = 𝐶𝑐(𝐶𝑐 + 𝛴)−1𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡)
Channel covariance matrix MMSE filter coefficients
ℎ 𝑡Generated channel, 𝑪 𝒄 = 𝑐𝑖𝑟𝑐(𝐶 𝛿)
Circulant approximation of
channel covariance matrix
𝑾 𝟎 = 𝐹𝑾 𝑭𝑬
FFT of filter
𝑪 =
𝟏
𝝈 𝟐
𝒕=𝟏
𝑻
𝐹𝒚 𝒕
𝟐
Assumption 3: 𝐯𝐞𝐜(𝑊𝛿) = 𝐹 𝐻
𝑑𝑖𝑎𝑔 𝐹𝑤 𝛿 𝐹
MMSE channel estimation
𝑾 𝑭𝑬 𝑪 =
𝑒𝑥𝑝(𝑡𝑟 𝐹 𝐻 𝑾 𝟎 𝐹 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑾 𝑭𝑬 ) 𝐹 𝐻 𝑾 𝟎 𝐹𝑝(𝛿) 𝑑𝛿
𝑒𝑥𝑝(𝑡𝑟 𝐹 𝐻 𝑾 𝟎 𝐹 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑾 𝑭𝑬 ) 𝑝(𝛿) 𝑑𝛿
𝑝(𝛿)Distribution of channel parameters,
𝑦𝑡
𝜎2Know noise variance,
Received signal,
Sample covariance matrix
(estimated)
MMSE filter (estimated)
ℎ = 𝐹 𝐻 𝑾 𝑭𝑬 𝑪 𝐹𝑦
Estimated channel
Fast MMSE Estimator:
Generated channel, 𝑾 𝑭𝑬 = 𝐶𝑐(𝐶𝑐 + 𝛴)−1𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡)
Channel covariance matrix MMSE filter coefficients
ℎ 𝑡Generated channel, 𝑪 𝒄 = 𝑐𝑖𝑟𝑐(𝐶 𝛿)
Circulant approximation of
channel covariance matrix
𝑾 𝟎 = 𝐹𝑾 𝑭𝑬
FFT of filter
𝑪 =
𝟏
𝝈 𝟐
𝒕=𝟏
𝑻
𝐹𝒚 𝒕
𝟐
𝑊𝑆𝐸 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 → 𝛰(𝑀log𝑀)
MMSE channel estimation
𝑾 𝑭𝑬 𝑪 =
𝑒𝑥𝑝(𝑡𝑟 𝐹 𝐻 𝑾 𝟎 𝐹 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑾 𝑭𝑬 ) 𝐹 𝐻 𝑾 𝟎 𝐹𝑝(𝛿) 𝑑𝛿
𝑒𝑥𝑝(𝑡𝑟 𝐹 𝐻 𝑾 𝟎 𝐹 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑾 𝑭𝑬 ) 𝑝(𝛿) 𝑑𝛿
𝑝(𝛿)Distribution of channel parameters,
𝑦𝑡
𝜎2Know noise variance,
Received signal,
Sample covariance matrix
(estimated)
MMSE filter (estimated)
ℎ = 𝐹 𝐻 𝑾 𝑭𝑬 𝑪 𝐹𝑦
Estimated channel
Motivation for Low-Complexity Neural Network:
Generated channel, 𝑾 𝑭𝑬 = 𝐶𝑐(𝐶𝑐 + 𝛴)−1𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡)
Channel covariance matrix MMSE filter coefficients
ℎ 𝑡Generated channel, 𝑪 𝒄 = 𝑐𝑖𝑟𝑐(𝐶 𝛿)
Circulant approximation of
channel covariance matrix
𝑾 𝟎 = 𝐹𝑾 𝑭𝑬
FFT of filter
𝑪 =
𝟏
𝝈 𝟐
𝒕=𝟏
𝑻
𝐹𝒚 𝒕
𝟐
𝑭 𝑯
𝒅𝒊𝒂𝒈 𝑭𝒂 𝑭𝒙 = 𝒂 ∗ 𝒙
MMSE channel estimation
Learning Fast MMSE Estimator using a Convolutional Neural Network:
𝑦𝑡
𝜎2Know noise variance,
Received signal,
ℎ = 𝐹 𝐻 𝑾 𝑪𝑵𝑵 𝐹𝑦
Estimated channel
ℎ 𝑡Generated channel,
Conv ReLU Conv
Bias Bias
𝑾 𝑪𝑵𝑵
𝑦𝑡Generated channel,
Parameter Value
Epochs 10 000
Training batch size 600
Testing batch size 100
Learning rate (64/M)*1e-4
Convolutional layer 2
Hierarchical Training
1. Train CNN for M antennas
2. Interpolate kernel from length M to 2M
3. Use interpolated values of kernel from previous step
for initializing CNN when training for M antennas.
MMSE channel estimation
Learning Fast MMSE Estimator using a Convolutional Neural Network:
ℎ 𝑡Generated channel,
Conv ReLU Conv
Bias Bias
𝑾 𝑪𝑵𝑵
𝑦𝑡Generated channel,
MSE per antenna at an SNR of 0 dB for estimation from a single snapshot (T=1). Channel model with
one propagation path with uniformly distributed angle.
MSE per antenna at an SNR of 0 dB for estimation from a single snapshot (T=1). Channel model with
three propagation paths.
MSE per antenna for M = 64 antennas and for estimation from a single snapshot (T = 1). Channel
model with three propagation paths.
Thank You

More Related Content

Similar to Learning the mmse channel estimators

Icmmse slides
Icmmse slidesIcmmse slides
Icmmse slides
Manoj Shukla
 
Blind PNLMS Adaptive Algorithm for SIMO FIR Channel Estimation
Blind PNLMS  Adaptive Algorithm for SIMO FIR Channel EstimationBlind PNLMS  Adaptive Algorithm for SIMO FIR Channel Estimation
Blind PNLMS Adaptive Algorithm for SIMO FIR Channel Estimation
ardodul
 
Adaptive analog beamforming
Adaptive analog beamformingAdaptive analog beamforming
Adaptive analog beamforming
Khalid Hussain
 
Communication Systems_B.P. Lathi and Zhi Ding (Lecture No 22-30)
Communication Systems_B.P. Lathi and Zhi Ding (Lecture No 22-30)Communication Systems_B.P. Lathi and Zhi Ding (Lecture No 22-30)
Communication Systems_B.P. Lathi and Zhi Ding (Lecture No 22-30)
Adnan Zafar
 
Amplitude modulated-systems
Amplitude modulated-systemsAmplitude modulated-systems
Amplitude modulated-systems
Bharti Airtel Ltd.
 
Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...
Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...
Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...
ijcnac
 
Project session part_I
Project  session part_IProject  session part_I
Project session part_I
Mina Yonan
 
ADC PPT.pptx
ADC PPT.pptxADC PPT.pptx
ADC PPT.pptx
SANDAADITYAVARDHAN
 
Channel Equalisation
Channel EqualisationChannel Equalisation
Channel Equalisation
Poonan Sahoo
 
Bandpass Differentiator FM Receiver
Bandpass Differentiator FM ReceiverBandpass Differentiator FM Receiver
Bandpass Differentiator FM Receiver
Nathan Wendt
 
Channel Equalization of WCDMA Downlink System Using Finite Length MMSE-DFE
Channel Equalization of WCDMA Downlink System Using Finite Length MMSE-DFEChannel Equalization of WCDMA Downlink System Using Finite Length MMSE-DFE
Channel Equalization of WCDMA Downlink System Using Finite Length MMSE-DFE
IOSR Journals
 
Channel Equalization of WCDMA Downlink System Using Finite Length MMSE-DFE
Channel Equalization of WCDMA Downlink System Using Finite Length MMSE-DFEChannel Equalization of WCDMA Downlink System Using Finite Length MMSE-DFE
Channel Equalization of WCDMA Downlink System Using Finite Length MMSE-DFE
IOSR Journals
 
Voice Activity Detection using Single Frequency Filtering
Voice Activity Detection using Single Frequency FilteringVoice Activity Detection using Single Frequency Filtering
Voice Activity Detection using Single Frequency Filtering
Tejus Adiga M
 
Channel equalization
Channel equalizationChannel equalization
Channel equalization
Munnangi Anirudh
 
Equalization
EqualizationEqualization
Equalization
bhabendu
 
fading channels
 fading channels fading channels
fading channels
Faisal Farooq
 
Support Vector Machine Techniques for Nonlinear Equalization
Support Vector Machine Techniques for Nonlinear EqualizationSupport Vector Machine Techniques for Nonlinear Equalization
Support Vector Machine Techniques for Nonlinear Equalization
Shamman Noor Shoudha
 
Intelligent Selection of Transmission Waveform for Active Sonar Using Predict...
Intelligent Selection of Transmission Waveform for Active Sonar Using Predict...Intelligent Selection of Transmission Waveform for Active Sonar Using Predict...
Intelligent Selection of Transmission Waveform for Active Sonar Using Predict...
Venkata Sasikiran Veeramachaneni
 
Fundamentals of music processing chapter 5 발표자료
Fundamentals of music processing chapter 5 발표자료Fundamentals of music processing chapter 5 발표자료
Fundamentals of music processing chapter 5 발표자료
Jeong Choi
 
Amplitude modulated-systmes
Amplitude modulated-systmesAmplitude modulated-systmes
Amplitude modulated-systmes
Bharti Airtel Ltd.
 

Similar to Learning the mmse channel estimators (20)

Icmmse slides
Icmmse slidesIcmmse slides
Icmmse slides
 
Blind PNLMS Adaptive Algorithm for SIMO FIR Channel Estimation
Blind PNLMS  Adaptive Algorithm for SIMO FIR Channel EstimationBlind PNLMS  Adaptive Algorithm for SIMO FIR Channel Estimation
Blind PNLMS Adaptive Algorithm for SIMO FIR Channel Estimation
 
Adaptive analog beamforming
Adaptive analog beamformingAdaptive analog beamforming
Adaptive analog beamforming
 
Communication Systems_B.P. Lathi and Zhi Ding (Lecture No 22-30)
Communication Systems_B.P. Lathi and Zhi Ding (Lecture No 22-30)Communication Systems_B.P. Lathi and Zhi Ding (Lecture No 22-30)
Communication Systems_B.P. Lathi and Zhi Ding (Lecture No 22-30)
 
Amplitude modulated-systems
Amplitude modulated-systemsAmplitude modulated-systems
Amplitude modulated-systems
 
Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...
Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...
Performance Comparison of Modified Variable Step Size Leaky LMS Algorithm for...
 
Project session part_I
Project  session part_IProject  session part_I
Project session part_I
 
ADC PPT.pptx
ADC PPT.pptxADC PPT.pptx
ADC PPT.pptx
 
Channel Equalisation
Channel EqualisationChannel Equalisation
Channel Equalisation
 
Bandpass Differentiator FM Receiver
Bandpass Differentiator FM ReceiverBandpass Differentiator FM Receiver
Bandpass Differentiator FM Receiver
 
Channel Equalization of WCDMA Downlink System Using Finite Length MMSE-DFE
Channel Equalization of WCDMA Downlink System Using Finite Length MMSE-DFEChannel Equalization of WCDMA Downlink System Using Finite Length MMSE-DFE
Channel Equalization of WCDMA Downlink System Using Finite Length MMSE-DFE
 
Channel Equalization of WCDMA Downlink System Using Finite Length MMSE-DFE
Channel Equalization of WCDMA Downlink System Using Finite Length MMSE-DFEChannel Equalization of WCDMA Downlink System Using Finite Length MMSE-DFE
Channel Equalization of WCDMA Downlink System Using Finite Length MMSE-DFE
 
Voice Activity Detection using Single Frequency Filtering
Voice Activity Detection using Single Frequency FilteringVoice Activity Detection using Single Frequency Filtering
Voice Activity Detection using Single Frequency Filtering
 
Channel equalization
Channel equalizationChannel equalization
Channel equalization
 
Equalization
EqualizationEqualization
Equalization
 
fading channels
 fading channels fading channels
fading channels
 
Support Vector Machine Techniques for Nonlinear Equalization
Support Vector Machine Techniques for Nonlinear EqualizationSupport Vector Machine Techniques for Nonlinear Equalization
Support Vector Machine Techniques for Nonlinear Equalization
 
Intelligent Selection of Transmission Waveform for Active Sonar Using Predict...
Intelligent Selection of Transmission Waveform for Active Sonar Using Predict...Intelligent Selection of Transmission Waveform for Active Sonar Using Predict...
Intelligent Selection of Transmission Waveform for Active Sonar Using Predict...
 
Fundamentals of music processing chapter 5 발표자료
Fundamentals of music processing chapter 5 발표자료Fundamentals of music processing chapter 5 발표자료
Fundamentals of music processing chapter 5 발표자료
 
Amplitude modulated-systmes
Amplitude modulated-systmesAmplitude modulated-systmes
Amplitude modulated-systmes
 

Recently uploaded

原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
ydzowc
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
Hitesh Mohapatra
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
Nada Hikmah
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
Yasser Mahgoub
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
ecqow
 
Material for memory and display system h
Material for memory and display system hMaterial for memory and display system h
Material for memory and display system h
gowrishankartb2005
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
shadow0702a
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
bijceesjournal
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
Madan Karki
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
IJECEIAES
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
UReason
 
cnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classicationcnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classication
SakkaravarthiShanmug
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
Transformers design and coooling methods
Transformers design and coooling methodsTransformers design and coooling methods
Transformers design and coooling methods
Roger Rozario
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
MDSABBIROJJAMANPAYEL
 
Hematology Analyzer Machine - Complete Blood Count
Hematology Analyzer Machine - Complete Blood CountHematology Analyzer Machine - Complete Blood Count
Hematology Analyzer Machine - Complete Blood Count
shahdabdulbaset
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
171ticu
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
LAXMAREDDY22
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
sachin chaurasia
 

Recently uploaded (20)

原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
原版制作(Humboldt毕业证书)柏林大学毕业证学位证一模一样
 
Generative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of contentGenerative AI leverages algorithms to create various forms of content
Generative AI leverages algorithms to create various forms of content
 
Curve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods RegressionCurve Fitting in Numerical Methods Regression
Curve Fitting in Numerical Methods Regression
 
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
2008 BUILDING CONSTRUCTION Illustrated - Ching Chapter 02 The Building.pdf
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
一比一原版(CalArts毕业证)加利福尼亚艺术学院毕业证如何办理
 
Material for memory and display system h
Material for memory and display system hMaterial for memory and display system h
Material for memory and display system h
 
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
Use PyCharm for remote debugging of WSL on a Windo cf5c162d672e4e58b4dde5d797...
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
 
spirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptxspirit beverages ppt without graphics.pptx
spirit beverages ppt without graphics.pptx
 
Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...Advanced control scheme of doubly fed induction generator for wind turbine us...
Advanced control scheme of doubly fed induction generator for wind turbine us...
 
Data Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason WebinarData Driven Maintenance | UReason Webinar
Data Driven Maintenance | UReason Webinar
 
cnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classicationcnn.pptx Convolutional neural network used for image classication
cnn.pptx Convolutional neural network used for image classication
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
Transformers design and coooling methods
Transformers design and coooling methodsTransformers design and coooling methods
Transformers design and coooling methods
 
Properties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptxProperties Railway Sleepers and Test.pptx
Properties Railway Sleepers and Test.pptx
 
Hematology Analyzer Machine - Complete Blood Count
Hematology Analyzer Machine - Complete Blood CountHematology Analyzer Machine - Complete Blood Count
Hematology Analyzer Machine - Complete Blood Count
 
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样官方认证美国密歇根州立大学毕业证学位证书原版一模一样
官方认证美国密歇根州立大学毕业证学位证书原版一模一样
 
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdfBRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
 

Learning the mmse channel estimators

  • 1. Learning the MMSE Channel Estimator EESC 6353 Project Shamman Noor
  • 2. Introduction • System Model • MMSE Estimation: - Discrete MMSE estimation - Structured MMSE estimation - Circulant structure - Toeplitz structure - Fast MMSE estimation - CNN based fast MMSE estimation • CNN Model and parameters Software used: • MATLAB – 2018a • Python – 3.7 • TensorFlow – 1.13.1
  • 3. System Model … Base station (M antennas) UE (single antenna) … 𝑦𝑡 = ℎ 𝑡 + 𝑧𝑡 ℎ1,1 ℎ1,2 ℎ1,𝑀 𝑧𝑡 ~ 𝑁𝐶(0, Σ) Σ = 𝜎2 𝐼 ~ 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝜎2 ~ 𝑘𝑛𝑜𝑤𝑛 ℎ 𝑡|𝛿 ~ 𝑁𝐶(0, 𝐶 𝛿) 𝛿 ~ 𝑝(𝛿) 𝑦𝑡|ℎ 𝑡 ~ 𝑁𝐶(ℎ 𝑡, Σ) 𝑇ℎ𝑒 𝑔𝑜𝑎𝑙 𝑖𝑠 𝑡𝑜 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝒉 𝒕, 𝑓𝑟𝑜𝑚 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙, 𝑦𝑡 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑠 𝑜𝑓ℎ 𝑡, 𝑦𝑡 𝑎𝑛𝑑 𝑧𝑡
  • 4. System Model … Base station (M antennas) UE (single antenna) … ℎ1,1 ℎ1,2 ℎ1,𝑀
  • 5. MMSE channel estimation 𝑊𝛿 = 𝐶 𝛿(𝐶 𝛿 + 𝛴)−1 𝐶 = 1 𝜎2 𝑡=1 𝑇 𝑦𝑡 𝑦𝑡 𝐻 𝑊∗ 𝐶 = 𝑒𝑥𝑝(𝑡𝑟 𝑊𝛿 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑊𝛿 ) 𝑊𝛿 𝑝(𝛿) 𝑑𝛿 𝑒𝑥𝑝(𝑡𝑟 𝑊𝛿 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑊𝛿 ) 𝑝(𝛿) 𝑑𝛿 𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡) 𝑝(𝛿)Distribution of channel parameters, 𝑦𝑡 𝜎2Know noise variance, Received signal, Channel covariance matrix Sample covariance matrix (estimated) MMSE filter coefficients MMSE filter (estimated) ℎ = 𝑊∗ 𝐶 𝑦 Estimated channel ℎ 𝑡Generated channel, General MMSE Estimator: 𝐸 ℎ 𝑡 𝑌, 𝛿 = 𝑊𝛿 𝑦𝑡 ℎ 𝑡 = 𝐸 ℎ 𝑡 𝑌 = 𝑊∗ 𝐶 𝑦𝑡
  • 6. MMSE channel estimation 𝐶 = 1 𝜎2 𝑡=1 𝑇 𝑦𝑡 𝑦𝑡 𝐻 𝑊∗ 𝐶 = 𝑒𝑥𝑝(𝑡𝑟 𝑊𝛿 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑊𝛿 ) 𝑊𝛿 𝑝(𝛿) 𝑑𝛿 𝑒𝑥𝑝(𝑡𝑟 𝑊𝛿 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑊𝛿 ) 𝑝(𝛿) 𝑑𝛿 𝑝(𝛿)Distribution of channel parameters, Sample covariance matrix (estimated) MMSE filter (estimated) ℎ = 𝑾 𝜹 𝑦 Estimated channel Genie Aided MMSE Estimator (for a lower bound performance): 𝑦𝑡 𝜎2Know noise variance, Received signal, 𝑾 𝜹 = 𝐶 𝛿(𝐶 𝛿 + 𝛴)−1𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡) Channel covariance matrix MMSE filter coefficients ℎ 𝑡Generated channel,
  • 7. MMSE channel estimation 𝐶 = 1 𝜎2 𝑡=1 𝑇 𝑦𝑡 𝑦𝑡 𝐻 𝑾 𝑮𝑬 𝑪 = 𝑒𝑥𝑝(𝑡𝑟 𝑊𝛿 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑊𝛿 ) 𝑊𝛿 𝑝(𝛿) 𝑑𝛿 𝑒𝑥𝑝(𝑡𝑟 𝑊𝛿 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑊𝛿 ) 𝑝(𝛿) 𝑑𝛿𝑦𝑡 𝜎2Know noise variance, Received signal, Sample covariance matrix (estimated) MMSE filter (estimated) ℎ = 𝑾 𝑮𝑬 𝑪 𝑦 Estimated channel Gridded MMSE Estimator: 𝑊𝛿 = 𝐶 𝛿(𝐶 𝛿 + 𝛴)−1𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡) Channel covariance matrix MMSE filter coefficients ℎ 𝑡Generated channel, Assumption 1: 𝑝 𝛿𝑖 = 1 𝑁 , ∀𝑖 = 1, … , 𝑁 N = 16M M = number of antennas
  • 8. MMSE channel estimation 𝐶 = 1 𝜎2 𝑡=1 𝑇 𝑦𝑡 𝑦𝑡 𝐻 𝑾 𝑮𝑬 𝑪 = 𝑒𝑥𝑝(𝑡𝑟 𝑊𝛿 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑊𝛿 ) 𝑊𝛿 𝑝(𝛿) 𝑑𝛿 𝑒𝑥𝑝(𝑡𝑟 𝑊𝛿 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑊𝛿 ) 𝑝(𝛿) 𝑑𝛿 Assumption 1: 𝑝 𝛿𝑖 = 1 𝑁 , ∀𝑖 = 1, … , 𝑁 N = 16M M = number of antennas 𝑦𝑡 𝜎2Know noise variance, Received signal, Sample covariance matrix (estimated) MMSE filter (estimated) ℎ = 𝑾 𝑮𝑬 𝑪 𝑦 Estimated channel Gridded MMSE Estimator : 𝑣𝑒𝑐 𝑊𝛿 ∈ 𝐂 𝑀2 𝑥𝑁 → 𝛰(𝑀2 𝑁) → 𝑂(𝑀3 ) 𝑊𝛿 = 𝐶 𝛿(𝐶 𝛿 + 𝛴)−1𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡) Channel covariance matrix MMSE filter coefficients ℎ 𝑡Generated channel,
  • 9. MMSE channel estimation 𝑪 = 𝟏 𝝈 𝟐 𝒕=𝟏 𝑻 𝑸𝒚 𝒕 𝟐 𝑾 𝑺𝑬 𝑪 = 𝑒𝑥𝑝(𝑡𝑟 𝑊𝑆𝐸 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑄 𝐻 𝑊𝛿 𝑄 ) 𝑊𝑆𝐸 𝑝(𝛿) 𝑑𝛿 𝑒𝑥𝑝(𝑡𝑟 𝑊𝑆𝐸 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑄 𝐻 𝑊𝛿 𝑄 ) 𝑝(𝛿) 𝑑𝛿 𝑝(𝛿)Distribution of channel parameters, 𝑦𝑡 𝜎2Know noise variance, Received signal, Sample covariance matrix (estimated) MMSE filter (estimated) ℎ = 𝑄 𝐻 𝑾 𝑺𝑬 𝑪 𝑄𝑦 Estimated channel Structured MMSE Estimator: Assumption 2: 𝑊𝛿 = 𝑄 𝐻 𝑑𝑖𝑎𝑔 𝑤 𝛿 𝑄 𝑤 𝛿 = 𝑑𝑖𝑎𝑔(𝑄𝑊𝛿 𝑄 𝐻 ) 𝑄 = 𝐹, 𝑓𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝐹2, 𝑓𝑜𝑟 𝑡𝑜𝑒𝑝𝑙𝑖𝑡𝑧 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑊𝑆𝐸 = 𝑄𝑊𝛿 𝑄 𝐻𝑊𝛿 = 𝐶 𝛿(𝐶 𝛿 + 𝛴)−1𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡) Channel covariance matrix MMSE filter coefficients ℎ 𝑡Generated channel,
  • 10. MMSE channel estimation 𝑪 = 𝟏 𝝈 𝟐 𝒕=𝟏 𝑻 𝑸𝒚 𝒕 𝟐 𝑾 𝑺𝑬 𝑪 = 𝑒𝑥𝑝(𝑡𝑟 𝑊𝑆𝐸 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑄 𝐻 𝑊𝛿 𝑄 ) 𝑊𝑆𝐸 𝑝(𝛿) 𝑑𝛿 𝑒𝑥𝑝(𝑡𝑟 𝑊𝑆𝐸 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑄 𝐻 𝑊𝛿 𝑄 ) 𝑝(𝛿) 𝑑𝛿 𝑝(𝛿)Distribution of channel parameters, 𝑦𝑡 𝜎2Know noise variance, Received signal, Sample covariance matrix (estimated) MMSE filter (estimated) ℎ = 𝑄 𝐻 𝑾 𝑺𝑬 𝑪 𝑄𝑦 Estimated channel Structured MMSE Estimator: 𝑊𝑆𝐸 = 𝑄𝑊𝛿 𝑄 𝐻 𝑊𝑆𝐸 ∈ 𝐂 𝑀𝑥𝑁 → 𝛰(𝑀𝑁) → 𝑂(𝑀2 ) 𝑊𝛿 = 𝐶 𝛿(𝐶 𝛿 + 𝛴)−1𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡) Channel covariance matrix MMSE filter coefficients ℎ 𝑡Generated channel, Assumption 2: 𝑊𝛿 = 𝑄 𝐻 𝑑𝑖𝑎𝑔 𝑤 𝛿 𝑄 𝑤 𝛿 = 𝑑𝑖𝑎𝑔(𝑄𝑊𝛿 𝑄 𝐻 ) 𝑄 = 𝐹, 𝑓𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑛𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝐹2, 𝑓𝑜𝑟 𝑡𝑜𝑒𝑝𝑙𝑖𝑡𝑧 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟
  • 11. MMSE channel estimation 𝑾 𝑭𝑬 𝑪 = 𝑒𝑥𝑝(𝑡𝑟 𝐹 𝐻 𝑾 𝟎 𝐹 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑾 𝑭𝑬 ) 𝐹 𝐻 𝑾 𝟎 𝐹𝑝(𝛿) 𝑑𝛿 𝑒𝑥𝑝(𝑡𝑟 𝐹 𝐻 𝑾 𝟎 𝐹 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑾 𝑭𝑬 ) 𝑝(𝛿) 𝑑𝛿 𝑝(𝛿)Distribution of channel parameters, 𝑦𝑡 𝜎2Know noise variance, Received signal, Sample covariance matrix (estimated) MMSE filter (estimated) ℎ = 𝐹 𝐻 𝑾 𝑭𝑬 𝑪 𝐹𝑦 Estimated channel Fast MMSE Estimator: Generated channel, 𝑾 𝑭𝑬 = 𝐶𝑐(𝐶𝑐 + 𝛴)−1𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡) Channel covariance matrix MMSE filter coefficients ℎ 𝑡Generated channel, 𝑪 𝒄 = 𝑐𝑖𝑟𝑐(𝐶 𝛿) Circulant approximation of channel covariance matrix 𝑾 𝟎 = 𝐹𝑾 𝑭𝑬 FFT of filter 𝑪 = 𝟏 𝝈 𝟐 𝒕=𝟏 𝑻 𝐹𝒚 𝒕 𝟐 Assumption 3: 𝐯𝐞𝐜(𝑊𝛿) = 𝐹 𝐻 𝑑𝑖𝑎𝑔 𝐹𝑤 𝛿 𝐹
  • 12. MMSE channel estimation 𝑾 𝑭𝑬 𝑪 = 𝑒𝑥𝑝(𝑡𝑟 𝐹 𝐻 𝑾 𝟎 𝐹 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑾 𝑭𝑬 ) 𝐹 𝐻 𝑾 𝟎 𝐹𝑝(𝛿) 𝑑𝛿 𝑒𝑥𝑝(𝑡𝑟 𝐹 𝐻 𝑾 𝟎 𝐹 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑾 𝑭𝑬 ) 𝑝(𝛿) 𝑑𝛿 𝑝(𝛿)Distribution of channel parameters, 𝑦𝑡 𝜎2Know noise variance, Received signal, Sample covariance matrix (estimated) MMSE filter (estimated) ℎ = 𝐹 𝐻 𝑾 𝑭𝑬 𝑪 𝐹𝑦 Estimated channel Fast MMSE Estimator: Generated channel, 𝑾 𝑭𝑬 = 𝐶𝑐(𝐶𝑐 + 𝛴)−1𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡) Channel covariance matrix MMSE filter coefficients ℎ 𝑡Generated channel, 𝑪 𝒄 = 𝑐𝑖𝑟𝑐(𝐶 𝛿) Circulant approximation of channel covariance matrix 𝑾 𝟎 = 𝐹𝑾 𝑭𝑬 FFT of filter 𝑪 = 𝟏 𝝈 𝟐 𝒕=𝟏 𝑻 𝐹𝒚 𝒕 𝟐 𝑊𝑆𝐸 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 → 𝛰(𝑀log𝑀)
  • 13. MMSE channel estimation 𝑾 𝑭𝑬 𝑪 = 𝑒𝑥𝑝(𝑡𝑟 𝐹 𝐻 𝑾 𝟎 𝐹 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑾 𝑭𝑬 ) 𝐹 𝐻 𝑾 𝟎 𝐹𝑝(𝛿) 𝑑𝛿 𝑒𝑥𝑝(𝑡𝑟 𝐹 𝐻 𝑾 𝟎 𝐹 𝐶 + 𝑇𝑙𝑜𝑔 𝐼 − 𝑾 𝑭𝑬 ) 𝑝(𝛿) 𝑑𝛿 𝑝(𝛿)Distribution of channel parameters, 𝑦𝑡 𝜎2Know noise variance, Received signal, Sample covariance matrix (estimated) MMSE filter (estimated) ℎ = 𝐹 𝐻 𝑾 𝑭𝑬 𝑪 𝐹𝑦 Estimated channel Motivation for Low-Complexity Neural Network: Generated channel, 𝑾 𝑭𝑬 = 𝐶𝑐(𝐶𝑐 + 𝛴)−1𝐶 𝛿 = 𝑐𝑜𝑣(ℎ 𝑡) Channel covariance matrix MMSE filter coefficients ℎ 𝑡Generated channel, 𝑪 𝒄 = 𝑐𝑖𝑟𝑐(𝐶 𝛿) Circulant approximation of channel covariance matrix 𝑾 𝟎 = 𝐹𝑾 𝑭𝑬 FFT of filter 𝑪 = 𝟏 𝝈 𝟐 𝒕=𝟏 𝑻 𝐹𝒚 𝒕 𝟐 𝑭 𝑯 𝒅𝒊𝒂𝒈 𝑭𝒂 𝑭𝒙 = 𝒂 ∗ 𝒙
  • 14. MMSE channel estimation Learning Fast MMSE Estimator using a Convolutional Neural Network: 𝑦𝑡 𝜎2Know noise variance, Received signal, ℎ = 𝐹 𝐻 𝑾 𝑪𝑵𝑵 𝐹𝑦 Estimated channel ℎ 𝑡Generated channel, Conv ReLU Conv Bias Bias 𝑾 𝑪𝑵𝑵 𝑦𝑡Generated channel, Parameter Value Epochs 10 000 Training batch size 600 Testing batch size 100 Learning rate (64/M)*1e-4 Convolutional layer 2 Hierarchical Training 1. Train CNN for M antennas 2. Interpolate kernel from length M to 2M 3. Use interpolated values of kernel from previous step for initializing CNN when training for M antennas.
  • 15. MMSE channel estimation Learning Fast MMSE Estimator using a Convolutional Neural Network: ℎ 𝑡Generated channel, Conv ReLU Conv Bias Bias 𝑾 𝑪𝑵𝑵 𝑦𝑡Generated channel,
  • 16. MSE per antenna at an SNR of 0 dB for estimation from a single snapshot (T=1). Channel model with one propagation path with uniformly distributed angle.
  • 17. MSE per antenna at an SNR of 0 dB for estimation from a single snapshot (T=1). Channel model with three propagation paths.
  • 18. MSE per antenna for M = 64 antennas and for estimation from a single snapshot (T = 1). Channel model with three propagation paths.