Large Numbers
Grade 5
Nisha Mahajan
Topics Covered
 Place Value – Value of a number according to it Place
 Face Value – Absolute value of a number i.e. Digit.
 Indian Place Value system
 International Place Value System
 8 digit number
 Numeration of a number - Indian and International place value
 Long Expanded form
 Short Expanded form
 Standard form
Place Value
Q . Write the place value of 2 in:
a) 5428 b) 7246
Th H T O Th H T O
5 4 2 8 7 2 4 6
Ans . 20 Ans. 200
Indian Place Value
International Place Value
Standard Form – 8 digit
Crores Lakhs Thousands Ones
T Cr Cr T L L T Th Th H T O
5 4 2 8 7 2 4 6
Millions Thousands Ones
H M T M M H Th T Th Th H T O
5 4 2 8 7 2 4 6
Indian Place Value System
International Place Value System
Solution – 5,42,87,246
Solution – 54,287,246
Word Numeration/Number names – 8 digit
 54,287,246
 Fifty four millions two hundred eighty seven thousands two
hundred and forty six
Millions Thousands Ones
H M T M M H Th T Th Th H T O
100,000,000 10,000,000 1,000,000 100,000 10,000 1000 100 10 1
5 4 2 8 7 2 4 6
Expanded Form – 8 digit
 54,287,246
 Long Expanded Form
(5 x 10,000,000) + (4 x 1,000,000) + (2 x 100,000) + (8 x 10,000) + (7 x 1000)
. + (2 x 100) + (4 x 10) + (6 x 1)
 Short Expanded Form
50,000,000 + 4,000,000 + 200,000 + 80,000 + 7,000 + 2000 + 40 + 6
Millions Thousands Ones
H M T M M H Th T Th Th H T O
100,000,000 10,000,000 1,000,000 100,000 10,000 1000 100 10 1
5 4 2 8 7 2 4 6
Expanded Form – 9 digit
 154287246
 Standard Form 154,287,246
 Word/Number Name : One hundred fifty four millions two hundred eighty seven thousands
two hundred and forty six
 Long Expanded Form
(1 x 100,000,000) + (5 x 10,000,000) + (4 x 1,000,000) + (2 x 100,000)
+ (8 x 10,000) + (7 x 1000) + (2 x 100) + (4 x 10) + (6 x 1)
 Short Expanded Form
100,000,000 + 50,000,000 + 4,000,000 + 200,000 + 80,000 + 7,000 + 2000 + 40 + 6
Millions Thousands Ones
H M T M M H Th T Th Th H T O
100,000,000 10,000,000 1,000,000 100,000 10,000 1000 100 10 1
1 5 4 2 8 7 2 4 6
Largest and Smallest number
 Smallest 8 digit number – 10,000,000
 Largest 8 digit number – 99,999,999
 Smallest 9 digit number – 100,000,000
 Largest 9 digit number – 999,999,999
Fun Fact
 Largest n digit number + 1 = smallest n+1 digit number
Eg. largest 8 digit number = smallest 9 digit number
i.e. 99,999,999 + 1 = 100,000,000
Building greatest and smallest numbers
 To get greatest number , we arrange the digits in descending order.
Eg. 7 ,2, 0 , 1 , 8 , 3 , 4
8 7 4 3 2 1 0
 To get the smallest number , we arrange the digit in ascending order. ( we do
not place 0 at extreme left )
Eg. 7 ,2, 0 , 1 , 8 , 3 , 4
1 0 2 3 4 7 8
Homework
 Write the following in place value chart:
a) 48374951 b) 200091386 c) 165329814
 Write the following numbers in standard form and in words:
a) 325102014 b) 700000008 c) 6839205
 Write the following numbers in short expanded form:
a) 47392469 b) 789542370
 Write the Successor of
a) Greatest 7 digit number
b) Smallest 6 digit number
Homework
 Write the Successor of
a) Smallest 9 digit number
b) Greatest 8 digit number
 Write the greatest and smallest 7 digit number using ( without repeating the
digits)
A) 4, 7 , 6 , 3 , 2 , 9 and 1 B) 2, 5 , 6 , 0 , 4 , 3 and 7
 Find place value of
a) 2 in 523,567,986 b) 1 in 170,364 c) 7 in 876,892,046
 Write the following number in figures
a) Three hundred fifteen thousand , four hundred nineteen
b) Thirty two million four hundred seventy five thousand four
Successor
 Successor of number is one more than the number.
 Eg. 567,892,876
Successor – 567,892,876 + 1 = 567,892,877
Predecessor
 Predecessor of number is one less than the number.
 Eg. 567,892,876
Successor – 567,892,876 - 1 = 567,892,875
Fun Fact –
Successor of Largest n digit number + 1 = smallest n+1 digit number
Eg. Successor of largest 6 digit number = smallest 7 digit number
i.e. 999,999 + 1 = 1,000,000
Conversion
 70 X ______ = 7 Million
70 x _____ = 7,000,000
 4 Thousand X ______ = 400 Million
4000 x _____ = 400,000,000
 7 Hundred X ______ = 700 Million
700 x _____ = 700,000,000
Millions Thousands Ones
H M T M M H Th T Th Th H T O
100,000,000 10,000,000 1,000,000 100,000 10,000 1000 100 10 1
Comparing large number
 Number with more digit is greater .
Eg. 76,089,364 > 9,735,367
 If both numbers have equal no. of digits, then the number with the greatest
digit in largest place is greater.
Eg. 76,089,364 < 98,735,367
76,098,653 < 76,099,763
Practice
 Find the successor of :
1. 9,825,799
2. 19,999,999
3. Greatest 7 digit number
 Find the predecessor of
1. 73,500,000
2. 98,563,110
3. Smallest 8 digit number
 Write the greatest and the smallest 6 digit number , without repetition
1. 2 , 9 , 3 , 6 , 1 , 5
2. 7 , 2 , 8 , 0 , 1 , 1
Practice
 Complete the pattern
1. 534,027 , 534,127 , 534,227, _______, _______, ______.
2. 4,312,563, 4,322,563, 4,332,563, _______, ______, _______.
 Compare
1. 357,412 _____ 1,541,378
2. 35,192,570 _____31,927,053
3. 87,378,839 _____ 87,378,840
4. 927,278 _____ 927,179
Rounding off number nearest 10
1. We replace the digit in ones place by 0.
2. If the unit or ones place is > 5 , we increase the digit in tens place by 1 else make
no change.
Eg. 2546
Here 6 > 5 , there for we will replace ones place i.e. 6 by 0 and increase tens place
digit i.e. 4 by 1
Ans – 2550
Eg. 2543
Here 3 < 5 , there for we will replace 3 by 0
Ans – 2540
Q. Round off to nearest 10.
a) 73 b) 145 c) 295 d) 3,244 e) 51,766
Rounding off number nearest 100
1. We replace the digit in tens and ones place by 00.
2. If the tens place is > 5 , we increase the digit in hundreds place by 1, else make
nu changes
Eg. 2543
Here 4 < 5 , there for we will replace tens and ones place by 00
Ans – 2500
Eg. 2563
Here 6 > 5 , there for we will replace tens and ones place by 00 and increase hundreds
place digit i.e. 5 by 1
Ans – 2600
Q.Round off to nearest 100
a) 263 b) 1350 c) 4731 d) 5660 e) 32,892
Rounding off number nearest 1000
1. We replace the digit in hundreds ,tens and ones place by 000.
2. If the hundreds digit is > 5 , we increase the digit in thousands place by 1, else
make n0 changes
Eg. 25430
Here 4 < 5 , there for we will replace hundreds , tens and ones place by 000
Ans – 25000
Eg. 25630
Here 6 > 5 , there for we will replace hundreds, tens and ones place by 000 and
increase thousands place digit i.e. 5 by 1
Ans – 2600
Q. Round of to nearest 1000
a) 971 b) 3501 c) 8489 d) 29,604 e) 599,512
Practice
1. A 3-digit number was rounded off to the nearest hundred and the result was
600. Find the interval of the original number.
Solution :
Each number from 550 to 599 can be rounded off to 600
Each number from 601 to 649 can be rounded of as 600.
So, interval of the original number is 550 to 649
Roman Numerals
I V X L C D M
1 5 10 50 100 500 1000
 There are no roman numerals for 0.
 When a symbol is repeated , the value of roman number = Value of
roman numeral X times it is repeated
Eg. I I = 1 X 2 = 2
X X = 10 X 2 = 20
 Symbols V , L and D are never repeated.
X = 10 and not VV
Roman Numerals
I V X L C D M
1 5 10 50 100 500 1000
 If a numeral is written to right of another symbol of greater value,
the value of numbers is sum of value of symbols.
Eg. X I = 10 + 1 = 11
V I = 5 + 1 = 6
 If a numeral is written to left of another symbol of greater value, the
value of numbers is difference of value of symbols.
Eg. I X = 10 - 1 = 9
I V = 5 - 1 = 4
Roman Numerals
I V X L C D M
1 5 10 50 100 500 1000
 If symbols are combined, the value of smaller symbol in middle of
two greater symbol is subtracted from value of symbol on the right.
Eg. X I V = 10 + ( 5 -1) = 14
X X X I X = 10 + 10 + 10 + ( 10 – 1) = 39

Large numbers

  • 1.
  • 2.
    Topics Covered  PlaceValue – Value of a number according to it Place  Face Value – Absolute value of a number i.e. Digit.  Indian Place Value system  International Place Value System  8 digit number  Numeration of a number - Indian and International place value  Long Expanded form  Short Expanded form  Standard form
  • 3.
    Place Value Q .Write the place value of 2 in: a) 5428 b) 7246 Th H T O Th H T O 5 4 2 8 7 2 4 6 Ans . 20 Ans. 200
  • 4.
  • 5.
    Standard Form –8 digit Crores Lakhs Thousands Ones T Cr Cr T L L T Th Th H T O 5 4 2 8 7 2 4 6 Millions Thousands Ones H M T M M H Th T Th Th H T O 5 4 2 8 7 2 4 6 Indian Place Value System International Place Value System Solution – 5,42,87,246 Solution – 54,287,246
  • 6.
    Word Numeration/Number names– 8 digit  54,287,246  Fifty four millions two hundred eighty seven thousands two hundred and forty six Millions Thousands Ones H M T M M H Th T Th Th H T O 100,000,000 10,000,000 1,000,000 100,000 10,000 1000 100 10 1 5 4 2 8 7 2 4 6
  • 7.
    Expanded Form –8 digit  54,287,246  Long Expanded Form (5 x 10,000,000) + (4 x 1,000,000) + (2 x 100,000) + (8 x 10,000) + (7 x 1000) . + (2 x 100) + (4 x 10) + (6 x 1)  Short Expanded Form 50,000,000 + 4,000,000 + 200,000 + 80,000 + 7,000 + 2000 + 40 + 6 Millions Thousands Ones H M T M M H Th T Th Th H T O 100,000,000 10,000,000 1,000,000 100,000 10,000 1000 100 10 1 5 4 2 8 7 2 4 6
  • 8.
    Expanded Form –9 digit  154287246  Standard Form 154,287,246  Word/Number Name : One hundred fifty four millions two hundred eighty seven thousands two hundred and forty six  Long Expanded Form (1 x 100,000,000) + (5 x 10,000,000) + (4 x 1,000,000) + (2 x 100,000) + (8 x 10,000) + (7 x 1000) + (2 x 100) + (4 x 10) + (6 x 1)  Short Expanded Form 100,000,000 + 50,000,000 + 4,000,000 + 200,000 + 80,000 + 7,000 + 2000 + 40 + 6 Millions Thousands Ones H M T M M H Th T Th Th H T O 100,000,000 10,000,000 1,000,000 100,000 10,000 1000 100 10 1 1 5 4 2 8 7 2 4 6
  • 9.
    Largest and Smallestnumber  Smallest 8 digit number – 10,000,000  Largest 8 digit number – 99,999,999  Smallest 9 digit number – 100,000,000  Largest 9 digit number – 999,999,999 Fun Fact  Largest n digit number + 1 = smallest n+1 digit number Eg. largest 8 digit number = smallest 9 digit number i.e. 99,999,999 + 1 = 100,000,000
  • 10.
    Building greatest andsmallest numbers  To get greatest number , we arrange the digits in descending order. Eg. 7 ,2, 0 , 1 , 8 , 3 , 4 8 7 4 3 2 1 0  To get the smallest number , we arrange the digit in ascending order. ( we do not place 0 at extreme left ) Eg. 7 ,2, 0 , 1 , 8 , 3 , 4 1 0 2 3 4 7 8
  • 11.
    Homework  Write thefollowing in place value chart: a) 48374951 b) 200091386 c) 165329814  Write the following numbers in standard form and in words: a) 325102014 b) 700000008 c) 6839205  Write the following numbers in short expanded form: a) 47392469 b) 789542370  Write the Successor of a) Greatest 7 digit number b) Smallest 6 digit number
  • 12.
    Homework  Write theSuccessor of a) Smallest 9 digit number b) Greatest 8 digit number  Write the greatest and smallest 7 digit number using ( without repeating the digits) A) 4, 7 , 6 , 3 , 2 , 9 and 1 B) 2, 5 , 6 , 0 , 4 , 3 and 7  Find place value of a) 2 in 523,567,986 b) 1 in 170,364 c) 7 in 876,892,046  Write the following number in figures a) Three hundred fifteen thousand , four hundred nineteen b) Thirty two million four hundred seventy five thousand four
  • 13.
    Successor  Successor ofnumber is one more than the number.  Eg. 567,892,876 Successor – 567,892,876 + 1 = 567,892,877 Predecessor  Predecessor of number is one less than the number.  Eg. 567,892,876 Successor – 567,892,876 - 1 = 567,892,875 Fun Fact – Successor of Largest n digit number + 1 = smallest n+1 digit number Eg. Successor of largest 6 digit number = smallest 7 digit number i.e. 999,999 + 1 = 1,000,000
  • 14.
    Conversion  70 X______ = 7 Million 70 x _____ = 7,000,000  4 Thousand X ______ = 400 Million 4000 x _____ = 400,000,000  7 Hundred X ______ = 700 Million 700 x _____ = 700,000,000 Millions Thousands Ones H M T M M H Th T Th Th H T O 100,000,000 10,000,000 1,000,000 100,000 10,000 1000 100 10 1
  • 15.
    Comparing large number Number with more digit is greater . Eg. 76,089,364 > 9,735,367  If both numbers have equal no. of digits, then the number with the greatest digit in largest place is greater. Eg. 76,089,364 < 98,735,367 76,098,653 < 76,099,763
  • 16.
    Practice  Find thesuccessor of : 1. 9,825,799 2. 19,999,999 3. Greatest 7 digit number  Find the predecessor of 1. 73,500,000 2. 98,563,110 3. Smallest 8 digit number  Write the greatest and the smallest 6 digit number , without repetition 1. 2 , 9 , 3 , 6 , 1 , 5 2. 7 , 2 , 8 , 0 , 1 , 1
  • 17.
    Practice  Complete thepattern 1. 534,027 , 534,127 , 534,227, _______, _______, ______. 2. 4,312,563, 4,322,563, 4,332,563, _______, ______, _______.  Compare 1. 357,412 _____ 1,541,378 2. 35,192,570 _____31,927,053 3. 87,378,839 _____ 87,378,840 4. 927,278 _____ 927,179
  • 18.
    Rounding off numbernearest 10 1. We replace the digit in ones place by 0. 2. If the unit or ones place is > 5 , we increase the digit in tens place by 1 else make no change. Eg. 2546 Here 6 > 5 , there for we will replace ones place i.e. 6 by 0 and increase tens place digit i.e. 4 by 1 Ans – 2550 Eg. 2543 Here 3 < 5 , there for we will replace 3 by 0 Ans – 2540 Q. Round off to nearest 10. a) 73 b) 145 c) 295 d) 3,244 e) 51,766
  • 19.
    Rounding off numbernearest 100 1. We replace the digit in tens and ones place by 00. 2. If the tens place is > 5 , we increase the digit in hundreds place by 1, else make nu changes Eg. 2543 Here 4 < 5 , there for we will replace tens and ones place by 00 Ans – 2500 Eg. 2563 Here 6 > 5 , there for we will replace tens and ones place by 00 and increase hundreds place digit i.e. 5 by 1 Ans – 2600 Q.Round off to nearest 100 a) 263 b) 1350 c) 4731 d) 5660 e) 32,892
  • 20.
    Rounding off numbernearest 1000 1. We replace the digit in hundreds ,tens and ones place by 000. 2. If the hundreds digit is > 5 , we increase the digit in thousands place by 1, else make n0 changes Eg. 25430 Here 4 < 5 , there for we will replace hundreds , tens and ones place by 000 Ans – 25000 Eg. 25630 Here 6 > 5 , there for we will replace hundreds, tens and ones place by 000 and increase thousands place digit i.e. 5 by 1 Ans – 2600 Q. Round of to nearest 1000 a) 971 b) 3501 c) 8489 d) 29,604 e) 599,512
  • 21.
    Practice 1. A 3-digitnumber was rounded off to the nearest hundred and the result was 600. Find the interval of the original number. Solution : Each number from 550 to 599 can be rounded off to 600 Each number from 601 to 649 can be rounded of as 600. So, interval of the original number is 550 to 649
  • 24.
    Roman Numerals I VX L C D M 1 5 10 50 100 500 1000  There are no roman numerals for 0.  When a symbol is repeated , the value of roman number = Value of roman numeral X times it is repeated Eg. I I = 1 X 2 = 2 X X = 10 X 2 = 20  Symbols V , L and D are never repeated. X = 10 and not VV
  • 25.
    Roman Numerals I VX L C D M 1 5 10 50 100 500 1000  If a numeral is written to right of another symbol of greater value, the value of numbers is sum of value of symbols. Eg. X I = 10 + 1 = 11 V I = 5 + 1 = 6  If a numeral is written to left of another symbol of greater value, the value of numbers is difference of value of symbols. Eg. I X = 10 - 1 = 9 I V = 5 - 1 = 4
  • 26.
    Roman Numerals I VX L C D M 1 5 10 50 100 500 1000  If symbols are combined, the value of smaller symbol in middle of two greater symbol is subtracted from value of symbol on the right. Eg. X I V = 10 + ( 5 -1) = 14 X X X I X = 10 + 10 + 10 + ( 10 – 1) = 39