SlideShare a Scribd company logo
前回のCasual Talkでいただいた
ご要望に対する進捗状況

Jubatus チーム
小田 哲

© 2013 Jubatusチーム
要望:Java版クライアントをなんとかせよ

© 2013 NTT Software Innovation Center

2
これまでの対応(完了)
自動生成されるクライアントを見直しました。
例:jubatus-java-skelton
Datum d = new Datum();
d.string_values = new ArrayList<TupleStringString>();
d.num_values = new ArrayList<TupleStringDouble>();
TupleStringDouble tuple1, tuple2, tuple3;
// user01
tuple1 = new TupleStringDouble();
tuple1.first = "movie_A";
tuple1.second = 5;
d.num_values.add(tuple1);
tuple2 = new TupleStringDouble();
tuple2.first = "movie_B";
tuple2.second = 2;
d.num_values.add(tuple2);
tuple3 = new TupleStringDouble();
tuple3.first = "movie_C";
tuple3.second = 3;
d.num_values.add(tuple3);
r.update_row(NAME, "user01", d);
// user02
tuple1 = new TupleStringDouble();
tuple1.first = "movie_A";
tuple1.second = 2;
d.num_values.add(tuple1);
tuple2 = new TupleStringDouble();
tuple2.first = "movie_B";
tuple2.second = 5;
d.num_values.add(tuple2);

Datum d;
// user01
d = new Datum().addNumber("movie_A", 5).addNumber("movie_B", 2)
.addNumber("movie_C", 3);
r.updateRow("user01", d);
// user02
d = new Datum().addNumber("movie_A", 2).addNumber("movie_B", 5)
.addNumber("movie_C", 1);
r.updateRow("user02", d);
// user03
d = new Datum().addNumber("movie_A", 5).addNumber("movie_B", 1)
.addNumber("movie_C", 4);
r.updateRow("user03", d);

tuple3 = new TupleStringDouble();
tuple3.first = "movie_C";
tuple3.second = 1;
d.num_values.add(tuple3);
r.update_row(NAME, "user02", d);
// user03
tuple1 = new TupleStringDouble();
tuple1.first = "movie_A";
tuple1.second = 5;
d.num_values.add(tuple1);
tuple2 = new TupleStringDouble();
tuple2.first = "movie_B";
tuple2.second = 1;
d.num_values.add(tuple2);
tuple3 = new TupleStringDouble();
tuple3.first = "movie_C";
tuple3.second = 4;
d.num_values.add(tuple3);
r.update_row(NAME, "user03", d);

© 2013 NTT Software Innovation Center

3
要望:モデルを取得できるように
これまでの対応(70%・スタック)

Jubadumpというsaveしたデータをdumpするサポートアプリケーションを公
開しました。

• 対応済み
• classifier, (NN,Recommender等の)inverted_index

• 未対応
• regression, bit_vector

• チームがかかえる悩み
• ハッシュ値を表示しても意味が分からない。どうすればいいか?
© 2013 NTT Software Innovation Center

4
想定する使い方
• 学習中にsave APIを呼び出す。
• 出力されたモデルデータ(binary形式)をjubadumpに入
力する。
• 出力されたJSON形式のモデルを表示し、中の状態を確
認する。

デー
タ
ソー
ス

分析用
クライアン
ト
save API
学習用
クライアン
ト

Jubatus
サーバ

学習モデル
○○○.js

jubadump

© 2013 NTT Software Innovation Center

JSON形式
のモデル

5
要望:障害に対する配慮を
• エラーメッセージを見て何が起きているのか分からない
• 障害に対する作りこみが足りない

© 2013 NTT Software Innovation Center

6
これまでの対応(30%)
• エラーメッセージについて
• エラーメッセージを一部改善しました。
• 悪名高きRPC Error 2がでなくなりました。

• エラーメッセージ対応表を作成中です。
• classifier, recommender

• サーバの追加、離脱において、極端に精度が悪化する問
題について対応中です。
• 0.5.Xもしくは、0.6.0にマージするための作業を実施中です。
起きうる動作

期待した動作

プロセス
1

プロセス
1
プロセス
2
プロセス
3

© 2013 NTT Software Innovation Center

プロセス
2
プロセス
3

7
要望:ミドルウェアとしてもっとシンプルに
• 依存ライブラリが多すぎる
• pficommon, msgpack, jubatus-messegepack-rpc, jubatusmpio, Google glog, pkg-config, zookeeper-c-client, re2,
mecab, ux

• 実装言語が多すぎる
• C++, python, Haskell, Ocaml

• 上記によりメンテナンスコストが膨大である。

© 2013 NTT Software Innovation Center

8
これまでの対応(50%)
• 依存ライブラリを見直しました。
• ABIが発展途上であるpficommon, re2の依存をなくしました。
• 必須の依存ライブラリで、ライセンス的に問題ないものは同梱
するようになりました。
• バージョンの違いによる動作検証が減りました。

• 今後も必須ではないミドルウェアへの依存を減らしていきたい
と考えています。
• 優先順位付けとそれに伴うpull requestをお待ちしております。

• 実装言語を減らしました。
• コードの自動生成に利用していたmpidl相当の機能を、
jeneratorに統合しました。これにより、Haskellを使わずに
コード生成ができるようになりました。

© 2013 NTT Software Innovation Center

9
要望:Mixの利点を示せ

http://www.slideshare.net/hadoopxnttdata/jubatus-5より
© 2013 NTT Software Innovation Center

10
これまでの対応(継続検討中)
• Mixが活きる部分は以下のとおりと考えています
• classifier, regression
• 高次元でなかなか収束しない所

• recommender, clustering, NearestNeighbor
• update, analyze頻度が極めて高いところ

• 分散ハンズオンを実施しました
• AWSを利用して、分散環境でnearest neighborを動作させるハ
ンズオンを実施しました。
• http://download.jubat.us/event/handson_03/
• 今後とも、分散構成およびMixの使いドコロ、推奨設定、推奨
環境などの各種情報を提供してまいります。

© 2013 NTT Software Innovation Center

11
要望:分散動作モデルのあり方を示せ
• Shared-Everythingな動作モデルを前提とするのは正
しいのか?
• Updateの速度をあげるのか?
• 一台あたりが管理するデータの容量をさげるのか?

© 2013 NTT Software Innovation Center

12
これまでの対応(継続検討中)
• Jubatusの分散に対する2013年12月現在の考え方を整理し
ました。

Jubatusはスループットを上げるために分散を行います。応答速度(レイ
テンシ)は、オンラインアルゴリズムを積極的に選択する、などアルゴ
リズムレベルの改善を進めていきます。

上げたい速度

担当する個所

スループット

システム

レイテンシ

アルゴリズム

© 2013 NTT Software Innovation Center

13
ありがとうございます
• Jubatusチームでは、特に実際に使っていただけたこと
で出てくる課題、要望などにできるだけ取り組んでいき
たいと考えております。
• ご要望は以下まで
• Github issue(http://github.com/jubatus)
• Twitter @JubatusOfficial
• E-mail jubatus@googlegroups.com

• 引き続き、よろしくお願い致します。

© 2013 NTT Software Innovation Center

14

More Related Content

What's hot

Pythonによる機械学習入門〜基礎からDeep Learningまで〜
Pythonによる機械学習入門〜基礎からDeep Learningまで〜Pythonによる機械学習入門〜基礎からDeep Learningまで〜
Pythonによる機械学習入門〜基礎からDeep Learningまで〜
Yasutomo Kawanishi
 
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tatsuya Tojima
 
Active Object
Active ObjectActive Object
Active Object
y-uti
 
Jupyter NotebookとChainerで楽々Deep Learning
Jupyter NotebookとChainerで楽々Deep LearningJupyter NotebookとChainerで楽々Deep Learning
Jupyter NotebookとChainerで楽々Deep Learning
Jun-ya Norimatsu
 
機械学習を用いた予測モデル構築・評価
機械学習を用いた予測モデル構築・評価機械学習を用いた予測モデル構築・評価
機械学習を用いた予測モデル構築・評価
Shintaro Fukushima
 
論文紹介 Identifying Implementation Bugs in Machine Learning based Image Classifi...
論文紹介 Identifying Implementation Bugs in Machine Learning based Image Classifi...論文紹介 Identifying Implementation Bugs in Machine Learning based Image Classifi...
論文紹介 Identifying Implementation Bugs in Machine Learning based Image Classifi...
y-uti
 
Chainer の Trainer 解説と NStepLSTM について
Chainer の Trainer 解説と NStepLSTM についてChainer の Trainer 解説と NStepLSTM について
Chainer の Trainer 解説と NStepLSTM について
Retrieva inc.
 
最近のRのランダムフォレストパッケージ -ranger/Rborist-
最近のRのランダムフォレストパッケージ -ranger/Rborist-最近のRのランダムフォレストパッケージ -ranger/Rborist-
最近のRのランダムフォレストパッケージ -ranger/Rborist-
Shintaro Fukushima
 
画像認識で物を見分ける
画像認識で物を見分ける画像認識で物を見分ける
画像認識で物を見分ける
Kazuaki Tanida
 
「深層学習」勉強会LT資料 "Chainer使ってみた"
「深層学習」勉強会LT資料 "Chainer使ってみた"「深層学習」勉強会LT資料 "Chainer使ってみた"
「深層学習」勉強会LT資料 "Chainer使ってみた"
Ken'ichi Matsui
 
Why dont you_create_new_spark_jl
Why dont you_create_new_spark_jlWhy dont you_create_new_spark_jl
Why dont you_create_new_spark_jl
Shintaro Fukushima
 
機械学習 / Deep Learning 大全 (2) Deep Learning 基礎編
機械学習 / Deep Learning 大全 (2) Deep Learning 基礎編機械学習 / Deep Learning 大全 (2) Deep Learning 基礎編
機械学習 / Deep Learning 大全 (2) Deep Learning 基礎編
Daiyu Hatakeyama
 
統計解析言語Rにおける大規模データ管理のためのboost.interprocessの活用
統計解析言語Rにおける大規模データ管理のためのboost.interprocessの活用統計解析言語Rにおける大規模データ管理のためのboost.interprocessの活用
統計解析言語Rにおける大規模データ管理のためのboost.interprocessの活用
Shintaro Fukushima
 
Rユーザのためのspark入門
Rユーザのためのspark入門Rユーザのためのspark入門
Rユーザのためのspark入門
Shintaro Fukushima
 
Infer.netによるldaの実装
Infer.netによるldaの実装Infer.netによるldaの実装
Infer.netによるldaの実装
池田 直哉
 
201209 Biopackathon 12th
201209 Biopackathon 12th201209 Biopackathon 12th
201209 Biopackathon 12th
Satoshi Kume
 
不均衡データのクラス分類
不均衡データのクラス分類不均衡データのクラス分類
不均衡データのクラス分類
Shintaro Fukushima
 
パターン認識 第10章 決定木
パターン認識 第10章 決定木 パターン認識 第10章 決定木
パターン認識 第10章 決定木
Miyoshi Yuya
 
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
Koichi Hamada
 
20180123 power shell
20180123 power shell20180123 power shell
20180123 power shell
Trainocate Japan, Ltd.
 

What's hot (20)

Pythonによる機械学習入門〜基礎からDeep Learningまで〜
Pythonによる機械学習入門〜基礎からDeep Learningまで〜Pythonによる機械学習入門〜基礎からDeep Learningまで〜
Pythonによる機械学習入門〜基礎からDeep Learningまで〜
 
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
Tokyo.R 41 サポートベクターマシンで眼鏡っ娘分類システム構築
 
Active Object
Active ObjectActive Object
Active Object
 
Jupyter NotebookとChainerで楽々Deep Learning
Jupyter NotebookとChainerで楽々Deep LearningJupyter NotebookとChainerで楽々Deep Learning
Jupyter NotebookとChainerで楽々Deep Learning
 
機械学習を用いた予測モデル構築・評価
機械学習を用いた予測モデル構築・評価機械学習を用いた予測モデル構築・評価
機械学習を用いた予測モデル構築・評価
 
論文紹介 Identifying Implementation Bugs in Machine Learning based Image Classifi...
論文紹介 Identifying Implementation Bugs in Machine Learning based Image Classifi...論文紹介 Identifying Implementation Bugs in Machine Learning based Image Classifi...
論文紹介 Identifying Implementation Bugs in Machine Learning based Image Classifi...
 
Chainer の Trainer 解説と NStepLSTM について
Chainer の Trainer 解説と NStepLSTM についてChainer の Trainer 解説と NStepLSTM について
Chainer の Trainer 解説と NStepLSTM について
 
最近のRのランダムフォレストパッケージ -ranger/Rborist-
最近のRのランダムフォレストパッケージ -ranger/Rborist-最近のRのランダムフォレストパッケージ -ranger/Rborist-
最近のRのランダムフォレストパッケージ -ranger/Rborist-
 
画像認識で物を見分ける
画像認識で物を見分ける画像認識で物を見分ける
画像認識で物を見分ける
 
「深層学習」勉強会LT資料 "Chainer使ってみた"
「深層学習」勉強会LT資料 "Chainer使ってみた"「深層学習」勉強会LT資料 "Chainer使ってみた"
「深層学習」勉強会LT資料 "Chainer使ってみた"
 
Why dont you_create_new_spark_jl
Why dont you_create_new_spark_jlWhy dont you_create_new_spark_jl
Why dont you_create_new_spark_jl
 
機械学習 / Deep Learning 大全 (2) Deep Learning 基礎編
機械学習 / Deep Learning 大全 (2) Deep Learning 基礎編機械学習 / Deep Learning 大全 (2) Deep Learning 基礎編
機械学習 / Deep Learning 大全 (2) Deep Learning 基礎編
 
統計解析言語Rにおける大規模データ管理のためのboost.interprocessの活用
統計解析言語Rにおける大規模データ管理のためのboost.interprocessの活用統計解析言語Rにおける大規模データ管理のためのboost.interprocessの活用
統計解析言語Rにおける大規模データ管理のためのboost.interprocessの活用
 
Rユーザのためのspark入門
Rユーザのためのspark入門Rユーザのためのspark入門
Rユーザのためのspark入門
 
Infer.netによるldaの実装
Infer.netによるldaの実装Infer.netによるldaの実装
Infer.netによるldaの実装
 
201209 Biopackathon 12th
201209 Biopackathon 12th201209 Biopackathon 12th
201209 Biopackathon 12th
 
不均衡データのクラス分類
不均衡データのクラス分類不均衡データのクラス分類
不均衡データのクラス分類
 
パターン認識 第10章 決定木
パターン認識 第10章 決定木 パターン認識 第10章 決定木
パターン認識 第10章 決定木
 
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
「はじめてでもわかる RandomForest 入門-集団学習による分類・予測 -」 -第7回データマイニング+WEB勉強会@東京
 
20180123 power shell
20180123 power shell20180123 power shell
20180123 power shell
 

Viewers also liked

Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門
Shohei Hido
 
Jubatus Casual Talks #2 : 0.5.0の新機能(クラスタリング)の紹介
Jubatus Casual Talks #2 : 0.5.0の新機能(クラスタリング)の紹介Jubatus Casual Talks #2 : 0.5.0の新機能(クラスタリング)の紹介
Jubatus Casual Talks #2 : 0.5.0の新機能(クラスタリング)の紹介
瑛 村下
 
塹壕戦から揚陸艇強襲上陸まで (2012/03/17 pyfes)
塹壕戦から揚陸艇強襲上陸まで (2012/03/17 pyfes)塹壕戦から揚陸艇強襲上陸まで (2012/03/17 pyfes)
塹壕戦から揚陸艇強襲上陸まで (2012/03/17 pyfes)
natsu_bm
 
Python3と向かい合ってみる
Python3と向かい合ってみるPython3と向かい合ってみる
Python3と向かい合ってみる
Atsuo Ishimoto
 
Anomaly detection in deep learning (Updated) English
Anomaly detection in deep learning (Updated) EnglishAnomaly detection in deep learning (Updated) English
Anomaly detection in deep learning (Updated) English
Adam Gibson
 
Anomaly detection in deep learning
Anomaly detection in deep learningAnomaly detection in deep learning
Anomaly detection in deep learning
Adam Gibson
 
Deep Learning技術の今
Deep Learning技術の今Deep Learning技術の今
Deep Learning技術の今
Seiya Tokui
 
時系列分析による異常検知入門
時系列分析による異常検知入門時系列分析による異常検知入門
時系列分析による異常検知入門
Yohei Sato
 
まだCPUで消耗してるの?Jubatusによる近傍探索のGPUを利用した高速化
まだCPUで消耗してるの?Jubatusによる近傍探索のGPUを利用した高速化まだCPUで消耗してるの?Jubatusによる近傍探索のGPUを利用した高速化
まだCPUで消耗してるの?Jubatusによる近傍探索のGPUを利用した高速化
JubatusOfficial
 
機械学習を用いた異常検知入門
機械学習を用いた異常検知入門機械学習を用いた異常検知入門
機械学習を用いた異常検知入門
michiaki ito
 
小町のレス数が予測できるか試してみた
小町のレス数が予測できるか試してみた小町のレス数が予測できるか試してみた
小町のレス数が予測できるか試してみた
JubatusOfficial
 
新聞から今年の漢字を予測する
新聞から今年の漢字を予測する新聞から今年の漢字を予測する
新聞から今年の漢字を予測する
JubatusOfficial
 
かまってちゃん小町
かまってちゃん小町かまってちゃん小町
かまってちゃん小町
JubatusOfficial
 
単語コレクター(文章自動校正器)
単語コレクター(文章自動校正器)単語コレクター(文章自動校正器)
単語コレクター(文章自動校正器)
JubatusOfficial
 
Jubakitの解説
Jubakitの解説Jubakitの解説
Jubakitの解説
JubatusOfficial
 
Jubatus解説本の紹介
Jubatus解説本の紹介Jubatus解説本の紹介
Jubatus解説本の紹介
JubatusOfficial
 
Jubatus 1.0 の紹介
Jubatus 1.0 の紹介Jubatus 1.0 の紹介
Jubatus 1.0 の紹介
JubatusOfficial
 
Python 特徴抽出プラグイン
Python 特徴抽出プラグインPython 特徴抽出プラグイン
Python 特徴抽出プラグイン
JubatusOfficial
 
新機能紹介 1.0.6
新機能紹介 1.0.6新機能紹介 1.0.6
新機能紹介 1.0.6
JubatusOfficial
 
発言小町からのプロファイリング
発言小町からのプロファイリング発言小町からのプロファイリング
発言小町からのプロファイリング
JubatusOfficial
 

Viewers also liked (20)

Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門Jubatus Casual Talks #2 異常検知入門
Jubatus Casual Talks #2 異常検知入門
 
Jubatus Casual Talks #2 : 0.5.0の新機能(クラスタリング)の紹介
Jubatus Casual Talks #2 : 0.5.0の新機能(クラスタリング)の紹介Jubatus Casual Talks #2 : 0.5.0の新機能(クラスタリング)の紹介
Jubatus Casual Talks #2 : 0.5.0の新機能(クラスタリング)の紹介
 
塹壕戦から揚陸艇強襲上陸まで (2012/03/17 pyfes)
塹壕戦から揚陸艇強襲上陸まで (2012/03/17 pyfes)塹壕戦から揚陸艇強襲上陸まで (2012/03/17 pyfes)
塹壕戦から揚陸艇強襲上陸まで (2012/03/17 pyfes)
 
Python3と向かい合ってみる
Python3と向かい合ってみるPython3と向かい合ってみる
Python3と向かい合ってみる
 
Anomaly detection in deep learning (Updated) English
Anomaly detection in deep learning (Updated) EnglishAnomaly detection in deep learning (Updated) English
Anomaly detection in deep learning (Updated) English
 
Anomaly detection in deep learning
Anomaly detection in deep learningAnomaly detection in deep learning
Anomaly detection in deep learning
 
Deep Learning技術の今
Deep Learning技術の今Deep Learning技術の今
Deep Learning技術の今
 
時系列分析による異常検知入門
時系列分析による異常検知入門時系列分析による異常検知入門
時系列分析による異常検知入門
 
まだCPUで消耗してるの?Jubatusによる近傍探索のGPUを利用した高速化
まだCPUで消耗してるの?Jubatusによる近傍探索のGPUを利用した高速化まだCPUで消耗してるの?Jubatusによる近傍探索のGPUを利用した高速化
まだCPUで消耗してるの?Jubatusによる近傍探索のGPUを利用した高速化
 
機械学習を用いた異常検知入門
機械学習を用いた異常検知入門機械学習を用いた異常検知入門
機械学習を用いた異常検知入門
 
小町のレス数が予測できるか試してみた
小町のレス数が予測できるか試してみた小町のレス数が予測できるか試してみた
小町のレス数が予測できるか試してみた
 
新聞から今年の漢字を予測する
新聞から今年の漢字を予測する新聞から今年の漢字を予測する
新聞から今年の漢字を予測する
 
かまってちゃん小町
かまってちゃん小町かまってちゃん小町
かまってちゃん小町
 
単語コレクター(文章自動校正器)
単語コレクター(文章自動校正器)単語コレクター(文章自動校正器)
単語コレクター(文章自動校正器)
 
Jubakitの解説
Jubakitの解説Jubakitの解説
Jubakitの解説
 
Jubatus解説本の紹介
Jubatus解説本の紹介Jubatus解説本の紹介
Jubatus解説本の紹介
 
Jubatus 1.0 の紹介
Jubatus 1.0 の紹介Jubatus 1.0 の紹介
Jubatus 1.0 の紹介
 
Python 特徴抽出プラグイン
Python 特徴抽出プラグインPython 特徴抽出プラグイン
Python 特徴抽出プラグイン
 
新機能紹介 1.0.6
新機能紹介 1.0.6新機能紹介 1.0.6
新機能紹介 1.0.6
 
発言小町からのプロファイリング
発言小町からのプロファイリング発言小町からのプロファイリング
発言小町からのプロファイリング
 

Similar to 前回のCasual Talkでいただいたご要望に対する進捗状況

C# から java へのプログラム移植で体験したtddの効果は?
C# から java へのプログラム移植で体験したtddの効果は?C# から java へのプログラム移植で体験したtddの効果は?
C# から java へのプログラム移植で体験したtddの効果は?
Shinichi Hirauchi
 
20120421中国gtug
20120421中国gtug20120421中国gtug
20120421中国gtug
Yusuke Sato
 
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
de:code 2017
 
Test-Driven Development for [Embedded] C by James Grenning at Agile Japan 2013
Test-Driven Development for [Embedded] C by James Grenning at Agile Japan 2013Test-Driven Development for [Embedded] C by James Grenning at Agile Japan 2013
Test-Driven Development for [Embedded] C by James Grenning at Agile Japan 2013
Yohei Onishi
 
Chainerの使い方と自然言語処理への応用
Chainerの使い方と自然言語処理への応用Chainerの使い方と自然言語処理への応用
Chainerの使い方と自然言語処理への応用
Seiya Tokui
 
20120405 setsunaセミナー
20120405 setsunaセミナー20120405 setsunaセミナー
20120405 setsunaセミナー
Takahiro Iwase
 
xUnit Test Patterns - Chapter11
xUnit Test Patterns - Chapter11xUnit Test Patterns - Chapter11
xUnit Test Patterns - Chapter11
Takuto Wada
 
第1回 Jubatusハンズオン
第1回 Jubatusハンズオン第1回 Jubatusハンズオン
第1回 Jubatusハンズオン
JubatusOfficial
 
Hadoop上の多種多様な処理でPigの活きる道 (Hadoop Conferecne Japan 2013 Winter)
Hadoop上の多種多様な処理でPigの活きる道 (Hadoop Conferecne Japan 2013 Winter)Hadoop上の多種多様な処理でPigの活きる道 (Hadoop Conferecne Japan 2013 Winter)
Hadoop上の多種多様な処理でPigの活きる道 (Hadoop Conferecne Japan 2013 Winter)
NTT DATA OSS Professional Services
 
これからのコンピューティングの変化とJava-JJUG CCC 2015 Fall
これからのコンピューティングの変化とJava-JJUG CCC 2015 Fallこれからのコンピューティングの変化とJava-JJUG CCC 2015 Fall
これからのコンピューティングの変化とJava-JJUG CCC 2015 Fall
なおき きしだ
 
テストコードの定型化
テストコードの定型化テストコードの定型化
テストコードの定型化
Shinichi Hirauchi
 
あんなテスト、こんなテスト(this and that about testing)
あんなテスト、こんなテスト(this and that about testing)あんなテスト、こんなテスト(this and that about testing)
あんなテスト、こんなテスト(this and that about testing)
Takuya Tsuchida
 
Deep learning実装の基礎と実践
Deep learning実装の基礎と実践Deep learning実装の基礎と実践
Deep learning実装の基礎と実践
Seiya Tokui
 
RL4J で始める深層強化学習
RL4J で始める深層強化学習RL4J で始める深層強化学習
RL4J で始める深層強化学習
Yuki Tagami
 
Jubatusにおける機械学習のテスト@MLCT
Jubatusにおける機械学習のテスト@MLCTJubatusにおける機械学習のテスト@MLCT
Jubatusにおける機械学習のテスト@MLCT
Yuya Unno
 
jjugccc2018 app review postmortem
jjugccc2018 app review postmortemjjugccc2018 app review postmortem
jjugccc2018 app review postmortem
tamtam180
 
はじめてのJPA
はじめてのJPAはじめてのJPA
はじめてのJPA
kawaba
 
Groovy Bootcamp 2015 by JGGUG
Groovy Bootcamp 2015 by JGGUGGroovy Bootcamp 2015 by JGGUG
Groovy Bootcamp 2015 by JGGUG
Uehara Junji
 
CMSI計算科学技術特論A (2015) 第3回 OpenMPの基礎
CMSI計算科学技術特論A (2015) 第3回 OpenMPの基礎CMSI計算科学技術特論A (2015) 第3回 OpenMPの基礎
CMSI計算科学技術特論A (2015) 第3回 OpenMPの基礎
Computational Materials Science Initiative
 

Similar to 前回のCasual Talkでいただいたご要望に対する進捗状況 (20)

C# から java へのプログラム移植で体験したtddの効果は?
C# から java へのプログラム移植で体験したtddの効果は?C# から java へのプログラム移植で体験したtddの効果は?
C# から java へのプログラム移植で体験したtddの効果は?
 
20120421中国gtug
20120421中国gtug20120421中国gtug
20120421中国gtug
 
Ruby test double
Ruby test doubleRuby test double
Ruby test double
 
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
[AI08] 深層学習フレームワーク Chainer × Microsoft で広がる応用
 
Test-Driven Development for [Embedded] C by James Grenning at Agile Japan 2013
Test-Driven Development for [Embedded] C by James Grenning at Agile Japan 2013Test-Driven Development for [Embedded] C by James Grenning at Agile Japan 2013
Test-Driven Development for [Embedded] C by James Grenning at Agile Japan 2013
 
Chainerの使い方と自然言語処理への応用
Chainerの使い方と自然言語処理への応用Chainerの使い方と自然言語処理への応用
Chainerの使い方と自然言語処理への応用
 
20120405 setsunaセミナー
20120405 setsunaセミナー20120405 setsunaセミナー
20120405 setsunaセミナー
 
xUnit Test Patterns - Chapter11
xUnit Test Patterns - Chapter11xUnit Test Patterns - Chapter11
xUnit Test Patterns - Chapter11
 
第1回 Jubatusハンズオン
第1回 Jubatusハンズオン第1回 Jubatusハンズオン
第1回 Jubatusハンズオン
 
Hadoop上の多種多様な処理でPigの活きる道 (Hadoop Conferecne Japan 2013 Winter)
Hadoop上の多種多様な処理でPigの活きる道 (Hadoop Conferecne Japan 2013 Winter)Hadoop上の多種多様な処理でPigの活きる道 (Hadoop Conferecne Japan 2013 Winter)
Hadoop上の多種多様な処理でPigの活きる道 (Hadoop Conferecne Japan 2013 Winter)
 
これからのコンピューティングの変化とJava-JJUG CCC 2015 Fall
これからのコンピューティングの変化とJava-JJUG CCC 2015 Fallこれからのコンピューティングの変化とJava-JJUG CCC 2015 Fall
これからのコンピューティングの変化とJava-JJUG CCC 2015 Fall
 
テストコードの定型化
テストコードの定型化テストコードの定型化
テストコードの定型化
 
あんなテスト、こんなテスト(this and that about testing)
あんなテスト、こんなテスト(this and that about testing)あんなテスト、こんなテスト(this and that about testing)
あんなテスト、こんなテスト(this and that about testing)
 
Deep learning実装の基礎と実践
Deep learning実装の基礎と実践Deep learning実装の基礎と実践
Deep learning実装の基礎と実践
 
RL4J で始める深層強化学習
RL4J で始める深層強化学習RL4J で始める深層強化学習
RL4J で始める深層強化学習
 
Jubatusにおける機械学習のテスト@MLCT
Jubatusにおける機械学習のテスト@MLCTJubatusにおける機械学習のテスト@MLCT
Jubatusにおける機械学習のテスト@MLCT
 
jjugccc2018 app review postmortem
jjugccc2018 app review postmortemjjugccc2018 app review postmortem
jjugccc2018 app review postmortem
 
はじめてのJPA
はじめてのJPAはじめてのJPA
はじめてのJPA
 
Groovy Bootcamp 2015 by JGGUG
Groovy Bootcamp 2015 by JGGUGGroovy Bootcamp 2015 by JGGUG
Groovy Bootcamp 2015 by JGGUG
 
CMSI計算科学技術特論A (2015) 第3回 OpenMPの基礎
CMSI計算科学技術特論A (2015) 第3回 OpenMPの基礎CMSI計算科学技術特論A (2015) 第3回 OpenMPの基礎
CMSI計算科学技術特論A (2015) 第3回 OpenMPの基礎
 

More from JubatusOfficial

地域の魅力を伝えるツアーガイドAI
地域の魅力を伝えるツアーガイドAI地域の魅力を伝えるツアーガイドAI
地域の魅力を伝えるツアーガイドAI
JubatusOfficial
 
JUBARHYME
JUBARHYMEJUBARHYME
JUBARHYME
JubatusOfficial
 
小町の溜息
小町の溜息小町の溜息
小町の溜息
JubatusOfficial
 
銀座のママ
銀座のママ銀座のママ
銀座のママ
JubatusOfficial
 
コンテンツマーケティングでレコメンドエンジンが必要になる背景とその活用
コンテンツマーケティングでレコメンドエンジンが必要になる背景とその活用コンテンツマーケティングでレコメンドエンジンが必要になる背景とその活用
コンテンツマーケティングでレコメンドエンジンが必要になる背景とその活用
JubatusOfficial
 
jubarecommenderの紹介
jubarecommenderの紹介jubarecommenderの紹介
jubarecommenderの紹介
JubatusOfficial
 
JubaQLご紹介
JubaQLご紹介JubaQLご紹介
JubaQLご紹介
JubatusOfficial
 
Jubaanomalyについて
JubaanomalyについてJubaanomalyについて
Jubaanomalyについて
JubatusOfficial
 
jubabanditの紹介
jubabanditの紹介jubabanditの紹介
jubabanditの紹介
JubatusOfficial
 
Jubakitの紹介
Jubakitの紹介Jubakitの紹介
Jubakitの紹介
JubatusOfficial
 
データ圧縮アルゴリズムを用いたマルウェア感染通信ログの判定
データ圧縮アルゴリズムを用いたマルウェア感染通信ログの判定データ圧縮アルゴリズムを用いたマルウェア感染通信ログの判定
データ圧縮アルゴリズムを用いたマルウェア感染通信ログの判定
JubatusOfficial
 
Jubatus 新機能ハイライト
Jubatus 新機能ハイライトJubatus 新機能ハイライト
Jubatus 新機能ハイライト
JubatusOfficial
 
Jubatusハンズオン 機械学習はじめてみた
Jubatusハンズオン 機械学習はじめてみたJubatusハンズオン 機械学習はじめてみた
Jubatusハンズオン 機械学習はじめてみた
JubatusOfficial
 
"アレ"からJubatusを使う
"アレ"からJubatusを使う"アレ"からJubatusを使う
"アレ"からJubatusを使う
JubatusOfficial
 
もくもく成果 IMAMASU
もくもく成果 IMAMASUもくもく成果 IMAMASU
もくもく成果 IMAMASU
JubatusOfficial
 
Jubatusでuserとbrandのレコメンドを試してみた話
Jubatusでuserとbrandのレコメンドを試してみた話Jubatusでuserとbrandのレコメンドを試してみた話
Jubatusでuserとbrandのレコメンドを試してみた話
JubatusOfficial
 
相撲
相撲相撲
興味ありそうなもの検索
興味ありそうなもの検索興味ありそうなもの検索
興味ありそうなもの検索
JubatusOfficial
 
チーム:大杉さんの壮大な夢
チーム:大杉さんの壮大な夢チーム:大杉さんの壮大な夢
チーム:大杉さんの壮大な夢
JubatusOfficial
 

More from JubatusOfficial (19)

地域の魅力を伝えるツアーガイドAI
地域の魅力を伝えるツアーガイドAI地域の魅力を伝えるツアーガイドAI
地域の魅力を伝えるツアーガイドAI
 
JUBARHYME
JUBARHYMEJUBARHYME
JUBARHYME
 
小町の溜息
小町の溜息小町の溜息
小町の溜息
 
銀座のママ
銀座のママ銀座のママ
銀座のママ
 
コンテンツマーケティングでレコメンドエンジンが必要になる背景とその活用
コンテンツマーケティングでレコメンドエンジンが必要になる背景とその活用コンテンツマーケティングでレコメンドエンジンが必要になる背景とその活用
コンテンツマーケティングでレコメンドエンジンが必要になる背景とその活用
 
jubarecommenderの紹介
jubarecommenderの紹介jubarecommenderの紹介
jubarecommenderの紹介
 
JubaQLご紹介
JubaQLご紹介JubaQLご紹介
JubaQLご紹介
 
Jubaanomalyについて
JubaanomalyについてJubaanomalyについて
Jubaanomalyについて
 
jubabanditの紹介
jubabanditの紹介jubabanditの紹介
jubabanditの紹介
 
Jubakitの紹介
Jubakitの紹介Jubakitの紹介
Jubakitの紹介
 
データ圧縮アルゴリズムを用いたマルウェア感染通信ログの判定
データ圧縮アルゴリズムを用いたマルウェア感染通信ログの判定データ圧縮アルゴリズムを用いたマルウェア感染通信ログの判定
データ圧縮アルゴリズムを用いたマルウェア感染通信ログの判定
 
Jubatus 新機能ハイライト
Jubatus 新機能ハイライトJubatus 新機能ハイライト
Jubatus 新機能ハイライト
 
Jubatusハンズオン 機械学習はじめてみた
Jubatusハンズオン 機械学習はじめてみたJubatusハンズオン 機械学習はじめてみた
Jubatusハンズオン 機械学習はじめてみた
 
"アレ"からJubatusを使う
"アレ"からJubatusを使う"アレ"からJubatusを使う
"アレ"からJubatusを使う
 
もくもく成果 IMAMASU
もくもく成果 IMAMASUもくもく成果 IMAMASU
もくもく成果 IMAMASU
 
Jubatusでuserとbrandのレコメンドを試してみた話
Jubatusでuserとbrandのレコメンドを試してみた話Jubatusでuserとbrandのレコメンドを試してみた話
Jubatusでuserとbrandのレコメンドを試してみた話
 
相撲
相撲相撲
相撲
 
興味ありそうなもの検索
興味ありそうなもの検索興味ありそうなもの検索
興味ありそうなもの検索
 
チーム:大杉さんの壮大な夢
チーム:大杉さんの壮大な夢チーム:大杉さんの壮大な夢
チーム:大杉さんの壮大な夢
 

前回のCasual Talkでいただいたご要望に対する進捗状況