ISSN 2349-9001 (Online)
Journal of
Microwave Engineering
& Technologies
(JoMET)
September–December 2016
www.stmjournals.com
STM JOURNALS
Scientific Technical Medical
STM Journals, a strong initiative by Consortium E-Learning Network Private Ltd. (established 2006), was
launched in the year 2010 under the support and guidance by our esteemed Editorial and Advisory Board
Membersfromrenownedinstitutes.
Objectives:
 Promotion of Scientific, Technical and Medical research.
 Publication of Original Research/Review, Short Articles and Case Studies through
Peer Review process.
 Publishing Special Issues on Conferences.
 Preparing online platform for print journals.
 Empowering the libraries with online and print Journals in Scientific, Technical
and Medical domains.
 Publishing and distribution of books on various subjects in the category of Nanotechnology,
Scientific and Technical Writing, and Environment, Health and Safety.
SalientFeatures:
 A bouquet of 100+ Journals that fall under Science, Technical and Medical domains.
 Employs Open Journals System (OJS)—a journal management and publishing system.
 The first and one of the fastest growing publication website in India as well as in abroad
for its quality and coverage.
 Rapid online submission and publication of papers, soon after their formal
acceptance/finalization.
 Facilitates linking with the other authors or professionals.
 Worldwide circulation and visibility.
Journal of Microwave Engineering & Technologies
ISSN: 2349-9001(online)
Focus and Scope Covers
 Microwave,Millimeter-Wave,andTerahertzTechnologies
 Microwave AntennasandDevices
 Microwavephotonics
 Infraredandlasertechnologies
 Bandgapmaterials
 Electromagneticfield
 MicrowaveCommunications
Journal of Microwave Engineering & Technologies is published (frequency: three times a year) in India by STM
Journals (division of Consortium e-Learning Network Private Ltd.)The views expressed in the articles do not necessarily
reflect of the Publisher. The publisher does not endorse the quality or value of the advertised/sponsored products
described therein. Please consult full prescribing information before issuing a prescription for any products mentioned in
thispublication.
No part of this publication may be reproduced, stored in retrieval system or transmitted in any from without written
permissionof thepublisher.
To cite any of the material contained in this Journal, in English or translation, please use the full English reference at the
beginningof eacharticle.Toreuseanyofthematerial,pleasecontactSTM Journals (info@stmjournals.com)
STM Journals
STM Journals (division of Consortium e-Learning Network Private Ltd. ) having its Marketing office located at Office
No. 4, First Floor, CSC pocket E Market, Mayur Vihar Phase II, New Delhi-110091, India is the Publisher of Journal.
Statements and opinions expressed in the Journal reflect the views of the author(s) and are not the opinion of STM
Journals unless so stated.
Subscription Information and Order:
 NationalSubscription:
Print- Rs 3750/-perJournal( includes3printissues), SingleIssue copypurchase:Rs 1500.
Online - Rs 3750/- per Journal inclusive Service Tax ( includes 3 online issues), Single Issue purchase: Rs 1500
inclusiveServiceTax
Print+Online-Rs 5000/-perJournalinclusiveServiceTax( includes3print&onlineissues).
 International Subscription:
 Online Only- $199, Print Only-$299 (includes 3 print issues)
 Online + Print-$399 (includes 3 print issues + online access of published back volumes )
To purchase print compilation of back issues please send your query at info@stmjournals.com
Subscription must be prepaid. Rates outside of India includes delivery. Prices subject to change without notice.
Mode of Payment: At par cheque, Demand draft, and RTGS (payment to be made in favor of
Consortium E-Learning Network. Pvt. ltd., payable at Delhi/New Delhi.
Online Access Policy
A). For Authors:
In order to provide maximum citation and wide publicity to the authors work, STM Journals also have Open Access
Policy, authors who would like to get their work open access can opt for Optional Open Access publication at
nominal cost as follows
India, SARC and African Countries: INR 2500 or 100 USD including single hard copy of Author's Journal.
Other Countries: USD 200 including single hard copy of Author's Journal.
B). For Subscribers:
 Online access will be activated within 72 hours of receipt of the payment (working days), subject to receipt of
correct information on user details/Static IP address of the subscriber.
 The access will be blocked:
 If the user requests for the same and furnishes valid reasons for blocking.
 Due to technical issue.
 Misuse of the access rights as per the access policy.
Advertising and Commercial Reprint Inquiries: STM Journals with wide circulation and visibility offer an excellent
media for showcasing/promotion of your products/services and the events-namely, Conferences, Symposia/Seminars
etc. These journals have very high potential to deliver the message across the targeted audience regularly with each
published issue. The advertisements on bulk subscriptions, gift subscriptions or reprint purchases for distribution etc. are
alsoverywelcome.
Lost Issue Claims: Please note the following when applying for lost or missing issues:
 Claims for print copies lost will be honored only after 45 days of the dispatch date and before publication of the
next issue as per the frequency.
 Tracking id for the speed post will be provided to all our subscribers and the claims for the missing Journals will
be entertained only with the proofs which will be verified at both the ends.
 Claims filed due to insufficient (or no notice) of change of address will not be honored.
 Change of Address of Dispatch should be intimated to STM Journals at least 2 months prior to the dispatch
schedule as per the frequency by mentioning subscriber id and the subscription id.
 Refund requests will not be entertained.
Legal Disputes
All the legal disputes are subjected to Delhi Jurisdiction only. If you have any questions, please contact the Publication
Management Team: info@stmjournals.com; Tel : +91 0120-4781211.
Gargi Asha Jha
Manager (Publications)
PUBLICATION MANAGEMENT TEAM
Internal Members
External Members
Bimlesh Lochab
Assistant Professor
Department of Chemistry
School of Natural Sciences, Shiv Nadar University
Gautam Buddha Nagar, Uttar Pradesh, India
Dr. Rajiv Prakash
Professor and Coordinator
School of Materials Science and Technology
Indian Institute of Technology (BHU), Varanasi
Uttar Pradesh, India
Dr. Rakesh Kumar
Assistant Professor
Department of Applied Chemistry
BIT Mesra, Patna,
Bihar, India
Prof. S. Ramaprabhu
Alternative Energy and Nanotechnology Technology
Laboratory, Department of Physics
Indian Institute of Technology, Chennai
Tamil Nadu, India
Himani Pandey
Isha Chandra
Senior Associate Editors
Dr. Yog Raj Sood
Dean (Planning and Development)
Professor, Department of Electrical Engineering
National Institute of Technology, Hamirpur
Himachal Pradesh, India
Prof. Chris Cannings
Professor, School of Mathematics and Statistics
University of Sheffield,
Sheffield
United Kingdom
Dr. D. K. Vijaykumar
MS, MCh (Surgical Oncology), Professor and
Head Department of Surgical Oncology
Amrita Institute of Medical Sciences and Research Centre
Ponekkara, Cochin, Kerala, India
Dr. Durgadas Naik
Associate Professor (Microbiology)
Management and Science University,
University Drive, Seksyen13
Selangor, Malaysia
Prof. José María Luna Ariza
Department of Computer Sciences and
Numerical Analysis
Campus of Rabanales
University of Córdoba, Spain
Dr. Khaiser Nikam
Professor, Library and Information Science
Department of Library and Information Science
University of Mysore
Mysore, India
Quaisher J Hossain
Senior Editor
Group Managing Editor
Dr. Archana Mehrotra
Managing Director
CELNET, Delhi, India
Meenakshi Tripathi
Shivani Sharma
Chairman
Mr. Puneet Mehrotra
Director
Shambhavi Mishra
Associate Editors
Sugandha Mishra
Prof. Priyavrat Thareja
Director Principal
Rayat Institute of Engineering and
Information Technology
Punjab, India
Dr. Baldev Raj
Director, National Institute of Advanced Studies
Indian Institute of Science campus Bangalore
Karnataka, India
Former Director
Indira Gandhi Centre for Atomic Research,
Kalpakkam, Tamil Nadu, India
Dr. Pankaj Poddar
Senior Scientist
Physical and Materials Chemistry Division,
National Chemical Laboratory
Pune, Maharastra India
Prof. D. N. Rao
Professor and Head
Department of Biochemistry
All India Institute of Medical Sciences
New Delhi, India
Dr. Nandini Chatterjee Singh
Additional Professor
National Brain Research Centre
Manesar, Gurgaon
Haryana, India
Dr. Ashish Runthala
Lecturer, Biological Sciences Group
Birla Institute of Technology and Science
Pilani, Rajasthan,
India
Dr. Bankim Chandra Ray
Professor and Ex-Head of the Department
Department of Metallurgical and
Materials Engineering
National Institute of Technology, Rourkela
Odisha, India
Prof. Yuwaraj Marotrao Ghugal
Professor and Head
Department of Applied Mechanics
Government College of Engineering
Vidyanagar, Karad
Maharashtra, India
Dr. Hardev Singh Virk
Visiting Professor, Department of Physics
University of SGGS World University
Fatehgarh Sahib, Punjab,
India
Former Director Research
DAV Institute of Engineering and Technology
Jallandhar, India
Dr. Shrikant Balkisan Dhoot
Senior Research Scientist, Reliance
Industries Limited, Mumbai, India
Former Head (Research and Development)
Nurture Earth R&D Pvt Ltd., MIT Campus
Beed Bypass Road, Aurangabad
Maharashtra, India
STM JOURNALS
ADVISORY BOARD
Dr. Rakesh Kumar
Assistant Professor
Department of Applied Chemistry
Birla Institute of Technology
Patna, Bihar, India
Prof. Subash Chandra Mishra
Professor
Department of Metallurgical and
Materials Engineering
National Institute of Technology, Rourkela
Odisha, India
Dr. Shankargouda Patil
Assistant Professor
Department of Oral Pathology
KLE Society's Institute of Dental Sciences
Bangalore, Karnataka, India
Prof. Sundara Ramaprabhu
Professor
Department of Physics
Indian Institute of Technology Madras
Chennai, Tamil Nadu
India
Dr. Baskar Kaliyamoorthy
Associate Professor
Department of Civil Engineering
National Institute of Technology, Trichy
Tiruchirappalli, Tamil Nadu, India
STM JOURNALS
ADVISORY BOARD
Editorial Board
Bratin Ghosh, Associate Professor
Department of Electronics and Electrical
Communication Engineering, Indian
Institute of Technology, Kharagpur, India.
Ravibabu Mulaveesala
Assistant Professor, Department of
Electrical Engineering, Indian Institute of
Technology Ropar, India.
Sanjay Kumar Soni
Associate Professor, ECE department
Delhi Technological University, India.
Sanjeev Kumar Raghuwanshi
Assistant Professor, Department of
Electronics Engineering, Indian School of
Mines Dhanbad, India.
Rowdra Ghatak
Microwave and Antenna Research
Laboratory, Electronics and
Communication Department National
Institute of Technology Durgapur.
Rajib Kar
Assistant Professor, Department of
Electronics & Communication
Engineering, NIT Durgapur, West Bengal,
India.
Santanu Kumar Behera
Associate Professor, Department of
Electronics & Communication
Engineering National Institute of
Technology Rourlela, India.
Vinod Kumar Singh
Associate Professor, Electrical Engineering
S.R.G.I. Jhansi, India.
Chandrabhushana Rao Kota
Department of ECE, JNTUK-UCEV
Vizianagaram.
Dr. R. Shantha Selva Kumari
Professor & Head, Department of ECE,
Mepco Schlenk Engineering College,
Sivakasi.
It is my privilege to present the print version of the [Volume 3, Issue 3] of our Journal of Microwave
Engineering & Technologies (JoMET), 2016. The intension of JoMET Journal is to create an
atmospherethatstimulatesvision,researchandgrowth intheareaofMicrowaveEngineering.
Timely publication, honest communication, comprehensive editing and trust with authors and
readers have been the hallmark of our journals. STM Journals provide a platform for scholarly
research articles to be published in journals of international standards. STM journals strive to publish
qualitypaperinrecordtime,makingitaleaderinserviceandbusiness offerings.
The aim and scope of STM Journals is to provide an academic medium and an important reference
for the advancement and dissemination of research results that support high level learning, teaching
andresearchinalltheScientific,TechnicalandMedicaldomains.
Finally, I express my sincere gratitude to our Editorial/ Reviewer board, Authors and publication
team for their continued support and invaluable contributions and suggestions in the form of
authoring write ups/reviewing and providing constructive comments for the advancement of the
journals.With regards to their due continuous support and co-operation, we have been able to publish
qualityResearch/Reviewsfindingsfor our customersbase.
Ihopeyouwillenjoyreadingthisissue andwewelcomeyourfeedbackonanyaspectof theJournal.
Dr.ArchanaMehrotra
ManagingDirector
STM Journals
Director's Desk
STM JOURNALS
1. Performance Analysis of Single Band PIFA for 4G/LTE Mobile Communication Networks
Fariha Afrin, Kawshik Shikder, Rinku Basak 1
2. Triangular Slotted Microstrip Patch Antenna for Wireless Application
Manju Devi, Vinod Kumar Singh 8
3. A Compact Spiral Shape Microstrip Path Antenna
Anil Kumar Verma, Vinod Kumar Singh, Zakir Ali 13
4. Evaluation of SAR and Temperature Elevation in Human Head for Advanced
Wireless Services (AWS) Application
Faria Jaheen, M. Tanseer Ali 19
5. UWB Band Pass Filter Using Dielectric Resonator
Karunesh, Rajeev Singh 25
ContentsJournal of Microwave Engineering & Technologies
JoMET (2016) 1-7 © STM Journals 2016. All Rights Reserved Page 1
Journal of Microwave Engineering & Technologies
ISSN: 2349-9001(online)
Volume 3, Issue 3
www.stmjournals.com
Performance Analysis of Single Band PIFA for 4G/LTE
Mobile Communication Networks
Fariha Afrin*, Kawshik Shikder, Rinku Basak
Department of Electrical and Electronic Engineering, American International University-Bangladesh,
Dhaka, Bangladesh
Abstract
This paper presents a Planer Inverted F Antenna (PIFA) for Fourth Generation (4G) Long
Term Evaluation (LTE). The proposed antenna is designed on FR4 substrate and the
dimension is 22.5 mm x 18.5 mm x 2.8 mm. The Antenna covers the LTE 40 frequency band
application from 2.3–2.4 GHz (resonance at 2.35 GHz). Different performance parameters:
return loss, VSWR, radiation pattern, current distribution, gain and efficiency are analyzed.
The proposed antenna is suitable candidate for 4G LTE mobile phone application due to its
compact size and low profile.
Keywords: PIFA antenna, 4G, LTE, single band, mobile antenna
INTRODUCTION
Mobile communication systems are now a
vital cornerstone where the mobile devices are
an indispensable tool in the lives to the vast
majority of people in this world. With the
tremendous development in mobile
communication networks, the mobile industry
has experienced a noticeable growth. The
evolution of mobile communication systems
start from analog First Generation (1G) to
digital Second Generation (2G) Global System
for Mobile Communications (GSM). After
that, it reaches to Third Generation (3G)
Universal Mobile Telecommunications System
(UMTS) or Wideband Code Division Multiple
Access (WCDMA) with high date rate cellular
wireless communication, and further to packet
optimized 3.5G High Speed Packet Access
(HSPA) which has extended to almost
everywhere in the world. In the modern
mobile communication market, the up-to-date
generation in this evolution is Fourth
Generation (4G) Long Term Evolution (LTE)
systems, which have been deployed or are
soon to be deployed in many countries [1].
This 4G/LTE system of the mobile
communication network offers high quality
audio/video streaming over one end to another,
either stationary or mobile condition. 4G/LTE
technologies permit seamless mobility from
cell to cell [2]. By the end of 2015, the
worldwide LTE subscriber base is anticipated
to be around 1.37 billion [3]. With the rapid
advancement of mobile communication,
mobile devices have leaded to the increasing
demand of internal antennas. The Planar
Inverted F Antenna (PIFA) has appeared as
one of the most promising candidate in this
area in last three decades [4]. The PIFA has
been widely used due to some exclusive
characteristic, which makes it suitable for use
in portable wireless device especially on
mobile handsets. The advantages of PIFA
compared to other microstrip antennas are low
profile, small in size, easy to fabricate, low
manufacturing cost, simple structure and can
locate in structure such as at the back cover of
the mobile phone [5, 6]. PIFA exhibits a high
degree of sensitivity to both vertical and
horizontal polarization, thus making it ideally
suited to mobile applications. Low Specific
Absorption Rate (SAR) value of PIFA, which
is an important issues indicate that it has a
small backward radiation toward the user’s
head [7] and minimizing the electromagnetic
wave power absorption. Conventional PIFA
has some drawbacks like cannot support multi
frequencies simultaneously, narrow
bandwidth, and low antenna efficiency [8–11].
Typically, the PIFA consists of four main
elements, which is radiating patch located
above a ground plane, a short circuiting wall
or plate, ground plane, and a feeding technique
for the planar element. In order to reduce the
JoMET (2016) 8-12 © STM Journals 2016. All Rights Reserved Page 8
Journal of Microwave Engineering & Technologies
ISSN: 2349-9001(online)
Volume 3, Issue 3
www.stmjournals.com
Triangular Slotted Microstrip Patch Antenna for Wireless
Application
Manju Devi1
, Vinod Kumar Singh2,
*
1
Department of Electronics and Communication Engineering, Uttar Pradesh Technical University,
Lucknow, UP, India
2
Department of Electrical Engineering, S.R. Group of Institutions, Jhansi, Uttar Pradesh, India
Abstract
In this article, a dumbbell shape microstrip patch antenna has presented mainly used for
WLAN wireless applications. The simulated result shows that dual bandwidth of 49.07 and
9.47% are obtained covering the frequency range from 1.63 to 2.69 GHz and 3.42 to 3.76
GHz. The characteristics of the designed structure are investigated by using MoM based on
IE3d. In the end, an extensive analysis of the return loss, radiation pattern and gain of the
proposed antenna has been studied.
Keywords: Microstrip antenna, Broadband, Efficiency, Bandwidth
INTRODUCTION
The mobile phones free the human being from
the handset cords in many home, institutions
and offices. Now we can speak with each other
at any place with the help of cell phones
without disturbance. Wireless technology
provides more independence to us to access to
the internet without suffering from running
yards of unsightly and costly cable. The trend
of these applications and technology has
radically decreased the weight and size.
Therefore, there is requirement for antennas of
small sized light- weighted, low profile with
good directivity and radiation pattern in the
horizontal plane [1–5].
The substrate dielectric constant acts a role
similar to that of substrate thickness. A low
dielectric constant for the substrate will
increase the fringing field at the patch
periphery. This is resulted that the radiated
power of the antenna will be also increased.
An increase in the substrate thickness has
effects on the antenna characteristics as
decreasing the value of the dielectric constant.
A high substrate loss tangent increases the
dielectric loss of the antenna which results to
reduce the antenna efficiency.
Patch width has a minimum effect on the
resonant frequency and radiation pattern of the
antenna. However, it affects the input
resistance and bandwidth to a larger extent. A
bigger patch width increases the power
radiated and therefore provides a decreased
resonant resistance, increased bandwidth, and
increased radiation efficiency. A constraint
against a larger patch width is the creation of
grating lobes in antenna arrays [6–10].
ANTENNA DESIGN
The design of triangular shape is cut on the
patch antenna is shown in Figure 1. An
antenna has 37.82×46.09 mm ground plane
and 28.22×36.49 mm of rectangular patch
dimensions. The dielectric material of the
substrate (εr) selected for this design is glass
epoxy which has a dielectric constant of 4.4
and loss tangent equal to 0.001 with the
resonant frequency of 2.9 GHz.
Table 1: Design Specifications of the Antenna.
Parameters Value
εr 4.4
h 1.6 mm
Wg 46.8 mm
Lg 38.4 mm
L 28.8 mm
W 37.2 mm
JoMET (2016) 13-18 © STM Journals 2016. All Rights Reserved Page 13
Journal of Microwave Engineering & Technologies
ISSN: 2349-9001(online)
Volume 3, Issue 3
www.stmjournals.com
A Compact Spiral Shape Microstrip Path Antenna
Anil Kumar Verma1
, Vinod Kumar Singh2,
*, Zakir Ali3
1,2
Department of Electrical Engineering, S. R. Group of Institutions, Jhansi, Uttar Pradesh, India
3
Institute of Engineering & Technology, Bundelkhand University, Jhansi, Uttar Pradesh, India
Abstract
In this article, novel design is proposed to develop a microstrip patch antenna for 1.70–2.60
GHz frequency with bandwidth 41.8%. In this paper, the design of proposed antenna has the
dimensions 37.8×46.0 mm, dielectric constant 4.4 and substrate thickness of 1.6 mm. The
simulated result of proposed antenna such as bandwidth, return loss and smith chart is
presented. The proposed antenna is simulated with the help of IE3D simulator which is based
on method of moment. The presented antenna can be used for UMTS/WLAN/WiMAX
application.
Keywords: Microstrip Patch antenna, Wide band, Bandwidth, Efficiency
INTRODUCTION
During the past two decades wireless
technology has changed human lives. Wireless
technology provides communication with each
other at any time and in any place such as cell
phones. Wireless local area network (WLAN)
technology provides us access to the internet
without suffering from managing yards of
unsightly and expensive cable [1–5]. The trend
of these applications and technology has
dramatically decreased the weight and size.
Thus, there is thirst for antennas of small sized
light- weighted, low profile with good
directivity and radiation pattern in the
horizontal plane. Conventional microstrip
antennas in general have a conducting patch
printed on a grounded microwave substrate,
and have the attractive features of low profile,
light weight, easy fabrication, and
conformability to mounting hosts [6–14].
It is difficult for design of microstrip antenna
with suitable substrate, thickness and loss
tangent. If microstrip antenna has being
mechanical strong and there will be increase in
thickness then there will be also increase in
radiated power and improve impedance
bandwidth. But the disadvantage is that it will
increase the weight and dielectric loss.
Therefore, dielectric constant of less than 2.5
is preferred unless a smaller patch size is
desired. An increase in the substrate thickness
has similar effects on the antenna
characteristics as decreasing the value of the
dielectric constant. A high substrate loss
tangent increases the dielectric loss of the
antenna and reduces the antenna efficiency
[13–20]. Microstrip Patch width has a minor
effect on the resonant frequency and radiation
pattern of the antenna. However, it affects the
input resistance and bandwidth to a larger
extent. A bigger patch width increases the
power radiated and thus provides a decreased
resonant resistance, increased bandwidth, and
increased radiation efficiency [21–25].
Table 1: Design Specifications of the Antenna.
Parameters Value
fr 2.5 GHz
εr 4.4
h 1.6 mm
Wg 46.0 mm
Lg 37.8 mm
L 28.2 mm
W 36.4 mm
Microstrip Antenna Design
The configuration of proposed Microstrip
Patch Antenna is shown in Figure 1. An
antenna has 37.8×46.0 mm ground plane and
28.2×36.4 mm of rectangular patch
dimensions. The dielectric material of the
substrate (εr) selected for this design is glass
epoxy which has dielectric constant of 4.4.
JoMET (2016) 19-24 © STM Journals 2016. All Rights Reserved Page 19
Journal of Microwave Engineering & Technologies
ISSN: 2349-9001(online)
Volume 3, Issue 3
www.stmjournals.com
Evaluation of SAR and Temperature Elevation in Human
Head for Advanced Wireless Services (AWS) Application
Faria Jaheen*, M. Tanseer Ali
Department of Electrical and Electronics Engineering, American International University Bangladesh,
Dhaka, Bangladesh
Abstract
In this paper, the specific absorption rate (SAR) and the temperature rise in the SAM phantom
human head model as a consequence of the exposure to radiation of planar inverted F (PIFA)
mobile handset antenna has been estimated at Advanced Wireless Services (AWS) band
downlink frequency range. Biological hazards on human head owing to electromagnetic wave
(EMW) exposure in advanced wireless services has been analyzed by computing the
temperature rise in head's tissue. A miniaturized planar inverted F antenna having dimension
of 15.9×10×4 𝑚𝑚3
is located aside human head using COMSOL Multiphysics 5.0 to
establish a pragmatic analysis. Even a source data created from magnetic-resonance image
(MRI) of a human head is imported for estimating the variation of tissue type inside head. In
this model, Radio Frequency (RF) Module and Heat Transfer Module have been elected for
accurate analysis of the physical element, i.e., planar inverted F antenna and the biological
element, i.e., human head correspondingly.
Keywords: Specific Absorption Rate (SAR), SAM phantom, PIFA, EMW exposure, MRI
INTRODUCTION
A small electric portable crate which is lording
over communication technology from
nineteenth century is mobile communication
device. Modern life is implausible barring it
and each petty segment of life is ineffably
subservient to it. The golden age of
communication technology, i.e., invention of
wireless mobile communication has started
after the invention of 'Radio' by Guglielmo
Marconi. As Radio Frequency (RF)
electromagnetic radiation is merely a
preferable via of communication so every
biological and nonbiological entity is exposed
to this radiation. Indeed, electromagnetic
radiation is enclosing us at every feasible
frequency [1].
For instance, WI-LAN technology ranging 2–4
GHz is used on the internet, at home and
office networks regularly [1]. Additionally,
very long distance (ranging from 10–20 Km)
connectivity, long distance connectivity and
short distance connectivity are established via
WiMAX, WI-FI and Bluetooth technology,
respectively [2]. Since the installment of base
station along with mobile station is
aggrandizing rapidly to meet the huge demand
for communication so the exposure of
nonionizing electromagnetic radiation (EMR)
from wireless equipment on biological entity
particularly on human body has been an affair
of angst. Therefore, recently defined several
safety standards should be maintained to
thwart adverse effects of nonionizing radiation
(NIR) in human beings [3–5]. The parameter
which indicates the amount of power absorbed
per unit mass of human biological tissue
exposed to electromagnetic radiation is called
Specific Absorption Rate (SAR). SAR
calculation to observe EM exposures from
google glass, cell phones and notebooks have
been examined by researchers [6–13].
In this study, a SAM phantom human head
model is imported in the COMSOL
Multiphysics software. Then a planar inverted
F antenna (PIFA) used in mobile handset is
designed at the left side of the head model. In
the simulation RF module is used to design the
planar inverted F antenna and heat transfer
module is used to investigate human head
heating owing to the exposure of
electromagnetic wave from the PIFA. Over
JoMET (2016) 25-29 © STM Journals 2016. All Rights Reserved Page 25
Journal of Microwave Engineering & Technologies
ISSN: 2349-9001(online)
Volume 3, Issue 3
www.stmjournals.com
UWB Band Pass Filter Using Dielectric Resonator
Karunesh*, Rajeev Singh
Department of Electronics and Communication Engineering, University of Allahabad, Allahabad,
Uttar Pradesh, India
Abstract
A novel ultra-wideband (UWB) bandpass filter is proposed and implemented using a
dielectric resonator, with aim of transmitting the signals in the whole UWB passband of 3.1–
10.6 GHz. Ultra-wideband (UWB) is a promising innovation for some remote applications
because of its expansive transfer speed, great proportion of transmission information and low
power cost. The filter is compact in size with a great simplicity in assembly and integration.
The developed UWB band pass filter using dielectric-resonator is potentially applicable for
applications in future wireless communication systems. Four dielectric resonators having
similar parameters (permittivity and diameter) are selected for ultra-wide bandwidth of the
filter. The proposed approach provides control of all the major parameters such as center
frequencies, intercavity couplings, and input/output couplings of filter independently in the
designated bands. The coupling effect as well as minimization of the insertion loss in the
passband increases in this new approach. Theoretical results and measurements look like very
close to each other. There is good agreement between experimental simulated result and
measured values. In order to analyze the return loss and insertion loss of the filter, the new
approach contributes more advantages and is feasible at the desired application band.
Keywords: Bandpass filter, dielectric resonator, ultra-wideband, Q-factor, micro-stripline
INTRODUCTION
Lots of research has been done and proposed
using various configurations for minimizing
the filter size and for improvement of filter
response as well as performance. Hairpin
resonator, ring resonator, step impedance
resonator and short circuited stub are used for
configuring some filters. Various wireless
services had grown very fast during 1960 and
the demand of multiband microwave
communication systems is increasing day by
day. The capability of adapting multiple
wireless communication platforms have
greatly increased. The great potential of
ULTRA-WIDEBAND (UWB) technology has
introduced for the development of various
modem transmission systems, for instance,
through-wall imaging, vehicular radar, indoor
and hand-held UWB systems, etc. [1].
In February 2002, the unlicensed use of UWB
devices for variety of applications has been
authorized by US Federal communication
commission (FCC) [1–3]. The UWB
bandwidth must strictly contain the frequency
from 3.1 to 10.6 GHz to fulfill the FCC
requirement for the indoor and handheld UWB
systems. Many researchers have shown their
interest to arise the development of UWB band
pass filters [4–6] for meeting the requirements
on emission level [1] and covering the whole
UWB bandpass filter at centre frequency
6.85 GHz with the fractional bandwidth of
109.5%. Various passband filters are found
very useful to establish narrow passband filter,
systematically using traditional filter theory.
Various techniques such as multiple mode
resonator (MMR) [4, 5], multilayer coupled
structure [6, 7], defected ground structure
(DGS) [8], defected microstrip structure
(DMS) [7] and cascaded low-pass/high-pass
filters [9] have been presented to design UWB
bandpass filters to meet the ideal
characteristics of UWB filter.
Bandpass filter is a frequency selective
network which is able to pass the signal of
specific bandwidth with certain centre
frequency and reject signals in another
frequency region. So, a bandpass filter can be
used at transmitter and receiver side to reject
unwanted signals. Ring resonators are
ISSN 2349-9001 (Online)
Journal of
Microwave Engineering
& Technologies
(JoMET)
September–December 2016
www.stmjournals.com
STM JOURNALS
Scientific Technical Medical

Journal of Microwave Engineering & Technologies vol 3 issue 3

  • 1.
    ISSN 2349-9001 (Online) Journalof Microwave Engineering & Technologies (JoMET) September–December 2016 www.stmjournals.com STM JOURNALS Scientific Technical Medical
  • 2.
    STM Journals, astrong initiative by Consortium E-Learning Network Private Ltd. (established 2006), was launched in the year 2010 under the support and guidance by our esteemed Editorial and Advisory Board Membersfromrenownedinstitutes. Objectives:  Promotion of Scientific, Technical and Medical research.  Publication of Original Research/Review, Short Articles and Case Studies through Peer Review process.  Publishing Special Issues on Conferences.  Preparing online platform for print journals.  Empowering the libraries with online and print Journals in Scientific, Technical and Medical domains.  Publishing and distribution of books on various subjects in the category of Nanotechnology, Scientific and Technical Writing, and Environment, Health and Safety. SalientFeatures:  A bouquet of 100+ Journals that fall under Science, Technical and Medical domains.  Employs Open Journals System (OJS)—a journal management and publishing system.  The first and one of the fastest growing publication website in India as well as in abroad for its quality and coverage.  Rapid online submission and publication of papers, soon after their formal acceptance/finalization.  Facilitates linking with the other authors or professionals.  Worldwide circulation and visibility. Journal of Microwave Engineering & Technologies ISSN: 2349-9001(online) Focus and Scope Covers  Microwave,Millimeter-Wave,andTerahertzTechnologies  Microwave AntennasandDevices  Microwavephotonics  Infraredandlasertechnologies  Bandgapmaterials  Electromagneticfield  MicrowaveCommunications Journal of Microwave Engineering & Technologies is published (frequency: three times a year) in India by STM Journals (division of Consortium e-Learning Network Private Ltd.)The views expressed in the articles do not necessarily reflect of the Publisher. The publisher does not endorse the quality or value of the advertised/sponsored products described therein. Please consult full prescribing information before issuing a prescription for any products mentioned in thispublication. No part of this publication may be reproduced, stored in retrieval system or transmitted in any from without written permissionof thepublisher. To cite any of the material contained in this Journal, in English or translation, please use the full English reference at the beginningof eacharticle.Toreuseanyofthematerial,pleasecontactSTM Journals (info@stmjournals.com) STM Journals
  • 3.
    STM Journals (divisionof Consortium e-Learning Network Private Ltd. ) having its Marketing office located at Office No. 4, First Floor, CSC pocket E Market, Mayur Vihar Phase II, New Delhi-110091, India is the Publisher of Journal. Statements and opinions expressed in the Journal reflect the views of the author(s) and are not the opinion of STM Journals unless so stated. Subscription Information and Order:  NationalSubscription: Print- Rs 3750/-perJournal( includes3printissues), SingleIssue copypurchase:Rs 1500. Online - Rs 3750/- per Journal inclusive Service Tax ( includes 3 online issues), Single Issue purchase: Rs 1500 inclusiveServiceTax Print+Online-Rs 5000/-perJournalinclusiveServiceTax( includes3print&onlineissues).  International Subscription:  Online Only- $199, Print Only-$299 (includes 3 print issues)  Online + Print-$399 (includes 3 print issues + online access of published back volumes ) To purchase print compilation of back issues please send your query at info@stmjournals.com Subscription must be prepaid. Rates outside of India includes delivery. Prices subject to change without notice. Mode of Payment: At par cheque, Demand draft, and RTGS (payment to be made in favor of Consortium E-Learning Network. Pvt. ltd., payable at Delhi/New Delhi. Online Access Policy A). For Authors: In order to provide maximum citation and wide publicity to the authors work, STM Journals also have Open Access Policy, authors who would like to get their work open access can opt for Optional Open Access publication at nominal cost as follows India, SARC and African Countries: INR 2500 or 100 USD including single hard copy of Author's Journal. Other Countries: USD 200 including single hard copy of Author's Journal. B). For Subscribers:  Online access will be activated within 72 hours of receipt of the payment (working days), subject to receipt of correct information on user details/Static IP address of the subscriber.  The access will be blocked:  If the user requests for the same and furnishes valid reasons for blocking.  Due to technical issue.  Misuse of the access rights as per the access policy. Advertising and Commercial Reprint Inquiries: STM Journals with wide circulation and visibility offer an excellent media for showcasing/promotion of your products/services and the events-namely, Conferences, Symposia/Seminars etc. These journals have very high potential to deliver the message across the targeted audience regularly with each published issue. The advertisements on bulk subscriptions, gift subscriptions or reprint purchases for distribution etc. are alsoverywelcome. Lost Issue Claims: Please note the following when applying for lost or missing issues:  Claims for print copies lost will be honored only after 45 days of the dispatch date and before publication of the next issue as per the frequency.  Tracking id for the speed post will be provided to all our subscribers and the claims for the missing Journals will be entertained only with the proofs which will be verified at both the ends.  Claims filed due to insufficient (or no notice) of change of address will not be honored.  Change of Address of Dispatch should be intimated to STM Journals at least 2 months prior to the dispatch schedule as per the frequency by mentioning subscriber id and the subscription id.  Refund requests will not be entertained. Legal Disputes All the legal disputes are subjected to Delhi Jurisdiction only. If you have any questions, please contact the Publication Management Team: info@stmjournals.com; Tel : +91 0120-4781211.
  • 4.
    Gargi Asha Jha Manager(Publications) PUBLICATION MANAGEMENT TEAM Internal Members External Members Bimlesh Lochab Assistant Professor Department of Chemistry School of Natural Sciences, Shiv Nadar University Gautam Buddha Nagar, Uttar Pradesh, India Dr. Rajiv Prakash Professor and Coordinator School of Materials Science and Technology Indian Institute of Technology (BHU), Varanasi Uttar Pradesh, India Dr. Rakesh Kumar Assistant Professor Department of Applied Chemistry BIT Mesra, Patna, Bihar, India Prof. S. Ramaprabhu Alternative Energy and Nanotechnology Technology Laboratory, Department of Physics Indian Institute of Technology, Chennai Tamil Nadu, India Himani Pandey Isha Chandra Senior Associate Editors Dr. Yog Raj Sood Dean (Planning and Development) Professor, Department of Electrical Engineering National Institute of Technology, Hamirpur Himachal Pradesh, India Prof. Chris Cannings Professor, School of Mathematics and Statistics University of Sheffield, Sheffield United Kingdom Dr. D. K. Vijaykumar MS, MCh (Surgical Oncology), Professor and Head Department of Surgical Oncology Amrita Institute of Medical Sciences and Research Centre Ponekkara, Cochin, Kerala, India Dr. Durgadas Naik Associate Professor (Microbiology) Management and Science University, University Drive, Seksyen13 Selangor, Malaysia Prof. José María Luna Ariza Department of Computer Sciences and Numerical Analysis Campus of Rabanales University of Córdoba, Spain Dr. Khaiser Nikam Professor, Library and Information Science Department of Library and Information Science University of Mysore Mysore, India Quaisher J Hossain Senior Editor Group Managing Editor Dr. Archana Mehrotra Managing Director CELNET, Delhi, India Meenakshi Tripathi Shivani Sharma Chairman Mr. Puneet Mehrotra Director Shambhavi Mishra Associate Editors Sugandha Mishra
  • 5.
    Prof. Priyavrat Thareja DirectorPrincipal Rayat Institute of Engineering and Information Technology Punjab, India Dr. Baldev Raj Director, National Institute of Advanced Studies Indian Institute of Science campus Bangalore Karnataka, India Former Director Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India Dr. Pankaj Poddar Senior Scientist Physical and Materials Chemistry Division, National Chemical Laboratory Pune, Maharastra India Prof. D. N. Rao Professor and Head Department of Biochemistry All India Institute of Medical Sciences New Delhi, India Dr. Nandini Chatterjee Singh Additional Professor National Brain Research Centre Manesar, Gurgaon Haryana, India Dr. Ashish Runthala Lecturer, Biological Sciences Group Birla Institute of Technology and Science Pilani, Rajasthan, India Dr. Bankim Chandra Ray Professor and Ex-Head of the Department Department of Metallurgical and Materials Engineering National Institute of Technology, Rourkela Odisha, India Prof. Yuwaraj Marotrao Ghugal Professor and Head Department of Applied Mechanics Government College of Engineering Vidyanagar, Karad Maharashtra, India Dr. Hardev Singh Virk Visiting Professor, Department of Physics University of SGGS World University Fatehgarh Sahib, Punjab, India Former Director Research DAV Institute of Engineering and Technology Jallandhar, India Dr. Shrikant Balkisan Dhoot Senior Research Scientist, Reliance Industries Limited, Mumbai, India Former Head (Research and Development) Nurture Earth R&D Pvt Ltd., MIT Campus Beed Bypass Road, Aurangabad Maharashtra, India STM JOURNALS ADVISORY BOARD
  • 6.
    Dr. Rakesh Kumar AssistantProfessor Department of Applied Chemistry Birla Institute of Technology Patna, Bihar, India Prof. Subash Chandra Mishra Professor Department of Metallurgical and Materials Engineering National Institute of Technology, Rourkela Odisha, India Dr. Shankargouda Patil Assistant Professor Department of Oral Pathology KLE Society's Institute of Dental Sciences Bangalore, Karnataka, India Prof. Sundara Ramaprabhu Professor Department of Physics Indian Institute of Technology Madras Chennai, Tamil Nadu India Dr. Baskar Kaliyamoorthy Associate Professor Department of Civil Engineering National Institute of Technology, Trichy Tiruchirappalli, Tamil Nadu, India STM JOURNALS ADVISORY BOARD
  • 7.
    Editorial Board Bratin Ghosh,Associate Professor Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, India. Ravibabu Mulaveesala Assistant Professor, Department of Electrical Engineering, Indian Institute of Technology Ropar, India. Sanjay Kumar Soni Associate Professor, ECE department Delhi Technological University, India. Sanjeev Kumar Raghuwanshi Assistant Professor, Department of Electronics Engineering, Indian School of Mines Dhanbad, India. Rowdra Ghatak Microwave and Antenna Research Laboratory, Electronics and Communication Department National Institute of Technology Durgapur. Rajib Kar Assistant Professor, Department of Electronics & Communication Engineering, NIT Durgapur, West Bengal, India. Santanu Kumar Behera Associate Professor, Department of Electronics & Communication Engineering National Institute of Technology Rourlela, India. Vinod Kumar Singh Associate Professor, Electrical Engineering S.R.G.I. Jhansi, India. Chandrabhushana Rao Kota Department of ECE, JNTUK-UCEV Vizianagaram. Dr. R. Shantha Selva Kumari Professor & Head, Department of ECE, Mepco Schlenk Engineering College, Sivakasi.
  • 8.
    It is myprivilege to present the print version of the [Volume 3, Issue 3] of our Journal of Microwave Engineering & Technologies (JoMET), 2016. The intension of JoMET Journal is to create an atmospherethatstimulatesvision,researchandgrowth intheareaofMicrowaveEngineering. Timely publication, honest communication, comprehensive editing and trust with authors and readers have been the hallmark of our journals. STM Journals provide a platform for scholarly research articles to be published in journals of international standards. STM journals strive to publish qualitypaperinrecordtime,makingitaleaderinserviceandbusiness offerings. The aim and scope of STM Journals is to provide an academic medium and an important reference for the advancement and dissemination of research results that support high level learning, teaching andresearchinalltheScientific,TechnicalandMedicaldomains. Finally, I express my sincere gratitude to our Editorial/ Reviewer board, Authors and publication team for their continued support and invaluable contributions and suggestions in the form of authoring write ups/reviewing and providing constructive comments for the advancement of the journals.With regards to their due continuous support and co-operation, we have been able to publish qualityResearch/Reviewsfindingsfor our customersbase. Ihopeyouwillenjoyreadingthisissue andwewelcomeyourfeedbackonanyaspectof theJournal. Dr.ArchanaMehrotra ManagingDirector STM Journals Director's Desk STM JOURNALS
  • 9.
    1. Performance Analysisof Single Band PIFA for 4G/LTE Mobile Communication Networks Fariha Afrin, Kawshik Shikder, Rinku Basak 1 2. Triangular Slotted Microstrip Patch Antenna for Wireless Application Manju Devi, Vinod Kumar Singh 8 3. A Compact Spiral Shape Microstrip Path Antenna Anil Kumar Verma, Vinod Kumar Singh, Zakir Ali 13 4. Evaluation of SAR and Temperature Elevation in Human Head for Advanced Wireless Services (AWS) Application Faria Jaheen, M. Tanseer Ali 19 5. UWB Band Pass Filter Using Dielectric Resonator Karunesh, Rajeev Singh 25 ContentsJournal of Microwave Engineering & Technologies
  • 10.
    JoMET (2016) 1-7© STM Journals 2016. All Rights Reserved Page 1 Journal of Microwave Engineering & Technologies ISSN: 2349-9001(online) Volume 3, Issue 3 www.stmjournals.com Performance Analysis of Single Band PIFA for 4G/LTE Mobile Communication Networks Fariha Afrin*, Kawshik Shikder, Rinku Basak Department of Electrical and Electronic Engineering, American International University-Bangladesh, Dhaka, Bangladesh Abstract This paper presents a Planer Inverted F Antenna (PIFA) for Fourth Generation (4G) Long Term Evaluation (LTE). The proposed antenna is designed on FR4 substrate and the dimension is 22.5 mm x 18.5 mm x 2.8 mm. The Antenna covers the LTE 40 frequency band application from 2.3–2.4 GHz (resonance at 2.35 GHz). Different performance parameters: return loss, VSWR, radiation pattern, current distribution, gain and efficiency are analyzed. The proposed antenna is suitable candidate for 4G LTE mobile phone application due to its compact size and low profile. Keywords: PIFA antenna, 4G, LTE, single band, mobile antenna INTRODUCTION Mobile communication systems are now a vital cornerstone where the mobile devices are an indispensable tool in the lives to the vast majority of people in this world. With the tremendous development in mobile communication networks, the mobile industry has experienced a noticeable growth. The evolution of mobile communication systems start from analog First Generation (1G) to digital Second Generation (2G) Global System for Mobile Communications (GSM). After that, it reaches to Third Generation (3G) Universal Mobile Telecommunications System (UMTS) or Wideband Code Division Multiple Access (WCDMA) with high date rate cellular wireless communication, and further to packet optimized 3.5G High Speed Packet Access (HSPA) which has extended to almost everywhere in the world. In the modern mobile communication market, the up-to-date generation in this evolution is Fourth Generation (4G) Long Term Evolution (LTE) systems, which have been deployed or are soon to be deployed in many countries [1]. This 4G/LTE system of the mobile communication network offers high quality audio/video streaming over one end to another, either stationary or mobile condition. 4G/LTE technologies permit seamless mobility from cell to cell [2]. By the end of 2015, the worldwide LTE subscriber base is anticipated to be around 1.37 billion [3]. With the rapid advancement of mobile communication, mobile devices have leaded to the increasing demand of internal antennas. The Planar Inverted F Antenna (PIFA) has appeared as one of the most promising candidate in this area in last three decades [4]. The PIFA has been widely used due to some exclusive characteristic, which makes it suitable for use in portable wireless device especially on mobile handsets. The advantages of PIFA compared to other microstrip antennas are low profile, small in size, easy to fabricate, low manufacturing cost, simple structure and can locate in structure such as at the back cover of the mobile phone [5, 6]. PIFA exhibits a high degree of sensitivity to both vertical and horizontal polarization, thus making it ideally suited to mobile applications. Low Specific Absorption Rate (SAR) value of PIFA, which is an important issues indicate that it has a small backward radiation toward the user’s head [7] and minimizing the electromagnetic wave power absorption. Conventional PIFA has some drawbacks like cannot support multi frequencies simultaneously, narrow bandwidth, and low antenna efficiency [8–11]. Typically, the PIFA consists of four main elements, which is radiating patch located above a ground plane, a short circuiting wall or plate, ground plane, and a feeding technique for the planar element. In order to reduce the
  • 11.
    JoMET (2016) 8-12© STM Journals 2016. All Rights Reserved Page 8 Journal of Microwave Engineering & Technologies ISSN: 2349-9001(online) Volume 3, Issue 3 www.stmjournals.com Triangular Slotted Microstrip Patch Antenna for Wireless Application Manju Devi1 , Vinod Kumar Singh2, * 1 Department of Electronics and Communication Engineering, Uttar Pradesh Technical University, Lucknow, UP, India 2 Department of Electrical Engineering, S.R. Group of Institutions, Jhansi, Uttar Pradesh, India Abstract In this article, a dumbbell shape microstrip patch antenna has presented mainly used for WLAN wireless applications. The simulated result shows that dual bandwidth of 49.07 and 9.47% are obtained covering the frequency range from 1.63 to 2.69 GHz and 3.42 to 3.76 GHz. The characteristics of the designed structure are investigated by using MoM based on IE3d. In the end, an extensive analysis of the return loss, radiation pattern and gain of the proposed antenna has been studied. Keywords: Microstrip antenna, Broadband, Efficiency, Bandwidth INTRODUCTION The mobile phones free the human being from the handset cords in many home, institutions and offices. Now we can speak with each other at any place with the help of cell phones without disturbance. Wireless technology provides more independence to us to access to the internet without suffering from running yards of unsightly and costly cable. The trend of these applications and technology has radically decreased the weight and size. Therefore, there is requirement for antennas of small sized light- weighted, low profile with good directivity and radiation pattern in the horizontal plane [1–5]. The substrate dielectric constant acts a role similar to that of substrate thickness. A low dielectric constant for the substrate will increase the fringing field at the patch periphery. This is resulted that the radiated power of the antenna will be also increased. An increase in the substrate thickness has effects on the antenna characteristics as decreasing the value of the dielectric constant. A high substrate loss tangent increases the dielectric loss of the antenna which results to reduce the antenna efficiency. Patch width has a minimum effect on the resonant frequency and radiation pattern of the antenna. However, it affects the input resistance and bandwidth to a larger extent. A bigger patch width increases the power radiated and therefore provides a decreased resonant resistance, increased bandwidth, and increased radiation efficiency. A constraint against a larger patch width is the creation of grating lobes in antenna arrays [6–10]. ANTENNA DESIGN The design of triangular shape is cut on the patch antenna is shown in Figure 1. An antenna has 37.82×46.09 mm ground plane and 28.22×36.49 mm of rectangular patch dimensions. The dielectric material of the substrate (εr) selected for this design is glass epoxy which has a dielectric constant of 4.4 and loss tangent equal to 0.001 with the resonant frequency of 2.9 GHz. Table 1: Design Specifications of the Antenna. Parameters Value εr 4.4 h 1.6 mm Wg 46.8 mm Lg 38.4 mm L 28.8 mm W 37.2 mm
  • 12.
    JoMET (2016) 13-18© STM Journals 2016. All Rights Reserved Page 13 Journal of Microwave Engineering & Technologies ISSN: 2349-9001(online) Volume 3, Issue 3 www.stmjournals.com A Compact Spiral Shape Microstrip Path Antenna Anil Kumar Verma1 , Vinod Kumar Singh2, *, Zakir Ali3 1,2 Department of Electrical Engineering, S. R. Group of Institutions, Jhansi, Uttar Pradesh, India 3 Institute of Engineering & Technology, Bundelkhand University, Jhansi, Uttar Pradesh, India Abstract In this article, novel design is proposed to develop a microstrip patch antenna for 1.70–2.60 GHz frequency with bandwidth 41.8%. In this paper, the design of proposed antenna has the dimensions 37.8×46.0 mm, dielectric constant 4.4 and substrate thickness of 1.6 mm. The simulated result of proposed antenna such as bandwidth, return loss and smith chart is presented. The proposed antenna is simulated with the help of IE3D simulator which is based on method of moment. The presented antenna can be used for UMTS/WLAN/WiMAX application. Keywords: Microstrip Patch antenna, Wide band, Bandwidth, Efficiency INTRODUCTION During the past two decades wireless technology has changed human lives. Wireless technology provides communication with each other at any time and in any place such as cell phones. Wireless local area network (WLAN) technology provides us access to the internet without suffering from managing yards of unsightly and expensive cable [1–5]. The trend of these applications and technology has dramatically decreased the weight and size. Thus, there is thirst for antennas of small sized light- weighted, low profile with good directivity and radiation pattern in the horizontal plane. Conventional microstrip antennas in general have a conducting patch printed on a grounded microwave substrate, and have the attractive features of low profile, light weight, easy fabrication, and conformability to mounting hosts [6–14]. It is difficult for design of microstrip antenna with suitable substrate, thickness and loss tangent. If microstrip antenna has being mechanical strong and there will be increase in thickness then there will be also increase in radiated power and improve impedance bandwidth. But the disadvantage is that it will increase the weight and dielectric loss. Therefore, dielectric constant of less than 2.5 is preferred unless a smaller patch size is desired. An increase in the substrate thickness has similar effects on the antenna characteristics as decreasing the value of the dielectric constant. A high substrate loss tangent increases the dielectric loss of the antenna and reduces the antenna efficiency [13–20]. Microstrip Patch width has a minor effect on the resonant frequency and radiation pattern of the antenna. However, it affects the input resistance and bandwidth to a larger extent. A bigger patch width increases the power radiated and thus provides a decreased resonant resistance, increased bandwidth, and increased radiation efficiency [21–25]. Table 1: Design Specifications of the Antenna. Parameters Value fr 2.5 GHz εr 4.4 h 1.6 mm Wg 46.0 mm Lg 37.8 mm L 28.2 mm W 36.4 mm Microstrip Antenna Design The configuration of proposed Microstrip Patch Antenna is shown in Figure 1. An antenna has 37.8×46.0 mm ground plane and 28.2×36.4 mm of rectangular patch dimensions. The dielectric material of the substrate (εr) selected for this design is glass epoxy which has dielectric constant of 4.4.
  • 13.
    JoMET (2016) 19-24© STM Journals 2016. All Rights Reserved Page 19 Journal of Microwave Engineering & Technologies ISSN: 2349-9001(online) Volume 3, Issue 3 www.stmjournals.com Evaluation of SAR and Temperature Elevation in Human Head for Advanced Wireless Services (AWS) Application Faria Jaheen*, M. Tanseer Ali Department of Electrical and Electronics Engineering, American International University Bangladesh, Dhaka, Bangladesh Abstract In this paper, the specific absorption rate (SAR) and the temperature rise in the SAM phantom human head model as a consequence of the exposure to radiation of planar inverted F (PIFA) mobile handset antenna has been estimated at Advanced Wireless Services (AWS) band downlink frequency range. Biological hazards on human head owing to electromagnetic wave (EMW) exposure in advanced wireless services has been analyzed by computing the temperature rise in head's tissue. A miniaturized planar inverted F antenna having dimension of 15.9×10×4 𝑚𝑚3 is located aside human head using COMSOL Multiphysics 5.0 to establish a pragmatic analysis. Even a source data created from magnetic-resonance image (MRI) of a human head is imported for estimating the variation of tissue type inside head. In this model, Radio Frequency (RF) Module and Heat Transfer Module have been elected for accurate analysis of the physical element, i.e., planar inverted F antenna and the biological element, i.e., human head correspondingly. Keywords: Specific Absorption Rate (SAR), SAM phantom, PIFA, EMW exposure, MRI INTRODUCTION A small electric portable crate which is lording over communication technology from nineteenth century is mobile communication device. Modern life is implausible barring it and each petty segment of life is ineffably subservient to it. The golden age of communication technology, i.e., invention of wireless mobile communication has started after the invention of 'Radio' by Guglielmo Marconi. As Radio Frequency (RF) electromagnetic radiation is merely a preferable via of communication so every biological and nonbiological entity is exposed to this radiation. Indeed, electromagnetic radiation is enclosing us at every feasible frequency [1]. For instance, WI-LAN technology ranging 2–4 GHz is used on the internet, at home and office networks regularly [1]. Additionally, very long distance (ranging from 10–20 Km) connectivity, long distance connectivity and short distance connectivity are established via WiMAX, WI-FI and Bluetooth technology, respectively [2]. Since the installment of base station along with mobile station is aggrandizing rapidly to meet the huge demand for communication so the exposure of nonionizing electromagnetic radiation (EMR) from wireless equipment on biological entity particularly on human body has been an affair of angst. Therefore, recently defined several safety standards should be maintained to thwart adverse effects of nonionizing radiation (NIR) in human beings [3–5]. The parameter which indicates the amount of power absorbed per unit mass of human biological tissue exposed to electromagnetic radiation is called Specific Absorption Rate (SAR). SAR calculation to observe EM exposures from google glass, cell phones and notebooks have been examined by researchers [6–13]. In this study, a SAM phantom human head model is imported in the COMSOL Multiphysics software. Then a planar inverted F antenna (PIFA) used in mobile handset is designed at the left side of the head model. In the simulation RF module is used to design the planar inverted F antenna and heat transfer module is used to investigate human head heating owing to the exposure of electromagnetic wave from the PIFA. Over
  • 14.
    JoMET (2016) 25-29© STM Journals 2016. All Rights Reserved Page 25 Journal of Microwave Engineering & Technologies ISSN: 2349-9001(online) Volume 3, Issue 3 www.stmjournals.com UWB Band Pass Filter Using Dielectric Resonator Karunesh*, Rajeev Singh Department of Electronics and Communication Engineering, University of Allahabad, Allahabad, Uttar Pradesh, India Abstract A novel ultra-wideband (UWB) bandpass filter is proposed and implemented using a dielectric resonator, with aim of transmitting the signals in the whole UWB passband of 3.1– 10.6 GHz. Ultra-wideband (UWB) is a promising innovation for some remote applications because of its expansive transfer speed, great proportion of transmission information and low power cost. The filter is compact in size with a great simplicity in assembly and integration. The developed UWB band pass filter using dielectric-resonator is potentially applicable for applications in future wireless communication systems. Four dielectric resonators having similar parameters (permittivity and diameter) are selected for ultra-wide bandwidth of the filter. The proposed approach provides control of all the major parameters such as center frequencies, intercavity couplings, and input/output couplings of filter independently in the designated bands. The coupling effect as well as minimization of the insertion loss in the passband increases in this new approach. Theoretical results and measurements look like very close to each other. There is good agreement between experimental simulated result and measured values. In order to analyze the return loss and insertion loss of the filter, the new approach contributes more advantages and is feasible at the desired application band. Keywords: Bandpass filter, dielectric resonator, ultra-wideband, Q-factor, micro-stripline INTRODUCTION Lots of research has been done and proposed using various configurations for minimizing the filter size and for improvement of filter response as well as performance. Hairpin resonator, ring resonator, step impedance resonator and short circuited stub are used for configuring some filters. Various wireless services had grown very fast during 1960 and the demand of multiband microwave communication systems is increasing day by day. The capability of adapting multiple wireless communication platforms have greatly increased. The great potential of ULTRA-WIDEBAND (UWB) technology has introduced for the development of various modem transmission systems, for instance, through-wall imaging, vehicular radar, indoor and hand-held UWB systems, etc. [1]. In February 2002, the unlicensed use of UWB devices for variety of applications has been authorized by US Federal communication commission (FCC) [1–3]. The UWB bandwidth must strictly contain the frequency from 3.1 to 10.6 GHz to fulfill the FCC requirement for the indoor and handheld UWB systems. Many researchers have shown their interest to arise the development of UWB band pass filters [4–6] for meeting the requirements on emission level [1] and covering the whole UWB bandpass filter at centre frequency 6.85 GHz with the fractional bandwidth of 109.5%. Various passband filters are found very useful to establish narrow passband filter, systematically using traditional filter theory. Various techniques such as multiple mode resonator (MMR) [4, 5], multilayer coupled structure [6, 7], defected ground structure (DGS) [8], defected microstrip structure (DMS) [7] and cascaded low-pass/high-pass filters [9] have been presented to design UWB bandpass filters to meet the ideal characteristics of UWB filter. Bandpass filter is a frequency selective network which is able to pass the signal of specific bandwidth with certain centre frequency and reject signals in another frequency region. So, a bandpass filter can be used at transmitter and receiver side to reject unwanted signals. Ring resonators are
  • 15.
    ISSN 2349-9001 (Online) Journalof Microwave Engineering & Technologies (JoMET) September–December 2016 www.stmjournals.com STM JOURNALS Scientific Technical Medical