SlideShare a Scribd company logo
1 of 13
Download to read offline
University	
  of	
  South	
  Florida	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Investigation of Methods and Processes to Increase
Efficiency for Carbon Activation Processes
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Joshua	
  Dang	
  
ENC	
  3246	
  
Dr.	
  Dianne	
  Donnelly	
  
June	
  20,	
  2014	
  
  2	
  
Abstract:	
   	
   The	
   demand	
   for	
   activated	
   carbon	
   keeps	
   growing	
   while	
  
supply	
   will	
   dwindle.	
   	
   As	
   a	
   result	
   economic	
   feasibility	
   of	
   such	
   an	
  
important	
   material	
   will	
   become	
   nonexistent.	
   	
   Alternative	
   sources	
   of	
  
carbon	
   rich	
   raw	
   material	
   need	
   to	
   be	
   used,	
   along	
   with	
   innovative	
  
methods	
  of	
  activating	
  carbon,	
  which	
  currently	
  is	
  a	
  high	
  energy	
  and	
  high	
  
cost	
   endeavor.	
   As	
   a	
   result,	
   possible	
   improvements	
   could	
   be	
   made	
   to	
  
increase	
   the	
   overall	
   efficiency	
   of	
   the	
   activation	
   process,	
   increase	
  
effectiveness	
  of	
  activated	
  carbon	
  desired	
  characteristics,	
  and	
  decrease	
  
the	
   detrimental	
   impacts	
   to	
   the	
   environment.	
   	
   These	
   current	
  
improvements	
   when	
   applied	
   together	
   within	
   the	
   process	
   chain	
   will	
  
allow	
   for	
   greater	
   stability	
   of	
   raw	
   resources,	
   make	
   activated	
   carbon	
  
pound	
  for	
  pound	
  more	
  effective,	
  and	
  preserve	
  the	
  environment.	
  
	
  
	
  
	
  
INTRODUCTION	
  
The	
  material	
  known	
  as	
  activated	
  carbon	
  affects	
  countless	
  lives.	
  	
  The	
  application	
  of	
  
this	
  material	
  can	
  be	
  found	
  in	
  products	
  throughout	
  household	
  items,	
  including	
  soft	
  
drinks	
  and	
  shampoos	
  to	
  large-­‐scale	
  industries	
  including	
  removal	
  of	
  mercury	
  from	
  
natural	
  gas,	
  and	
  carbon	
  dioxide	
  from	
  fermentation	
  processes	
  [8].	
  	
  	
  The	
  reason	
  to	
  the	
  
wide	
  application	
  of	
  activated	
  carbon	
  is	
  due	
  to	
  molecular	
  carbons	
  special	
  structure	
  
characteristics,	
   which	
   has	
   a	
   great	
   capacity	
   and	
   affinity	
   for	
   impurities.	
   Activated	
  
carbon	
   is	
   not	
   found	
   naturally	
   with	
   these	
   characteristics	
   but	
   needs	
   to	
   be	
   created	
  
through	
  an	
  extended	
  process.	
  	
  It	
  is	
  said	
  that	
  any	
  carbon	
  rich	
  raw	
  material	
  can	
  be	
  
used	
   as	
   a	
   precursor	
   to	
   activated	
   carbon	
   [1];	
   however	
   current	
   raw	
   materials	
   are	
  
mainly	
  sourced	
  from	
  coal	
  and	
  wood	
  [9],	
  and	
  are	
  activated	
  through	
  physical	
  means,	
  
which	
   require	
   a	
   high-­‐energy	
   input.	
   	
   These	
   current	
   sources	
   and	
   methods	
   present	
  
several	
   issues	
   both	
   economically	
   and	
   environmentally.	
   	
   Activation	
   of	
   carbon	
   is	
   a	
  
high	
  energy	
  and	
  cost	
  endeavor;	
  however	
  as	
  research	
  continues	
  for	
  more	
  sustainable	
  
sources	
   such	
   as	
   agricultural	
   byproducts,	
   viable	
   processing	
   methods	
   such	
   as	
  
chemical	
  activation,	
  and	
  recycling	
  techniques	
  such	
  as	
  regeneration	
  of	
  used	
  activated	
  
carbon,	
   the	
   cost	
   will	
   decrease	
   as	
   well	
   as	
   an	
   increased	
   impact	
   to	
   preserve	
   the	
  
environment.	
   	
   An	
   investigation	
   of	
   the	
   activated	
   carbon	
   process	
   will	
   result	
   in	
  
measures	
   to	
   increase	
   the	
   overall	
   efficiency	
   of	
   the	
   activation	
   process,	
   increase	
  
effectiveness	
  of	
  activated	
  carbon	
  desired	
  characteristics,	
  and	
  decrease	
  detrimental	
  
impacts	
  to	
  the	
  environment.	
  
	
  
	
  
BACKGROUND	
  
History	
  
	
  
The	
  earliest	
  use	
  of	
  activated	
  carbon	
  has	
  been	
  lost	
  in	
  history	
  [10].	
  It	
  is	
  believed	
  that	
  
the	
  earliest	
  application	
  dates	
  back	
  to	
  3750	
  B.C.	
  where	
  activated	
  carbon	
  was	
  used	
  by	
  
ancient	
  Hindus	
  in	
  India	
  as	
  a	
  process	
  for	
  water	
  filtration	
  [11].	
  The	
  first	
  documented	
  
  3	
  
use	
  of	
  activated	
  carbon	
  was	
  found	
  on	
  Egyptian	
  papyrus	
  dating	
  back	
  to	
  1500	
  B.C.	
  as	
  a	
  
method	
  to	
  absorb	
  unpleasant	
  odors	
  [10].	
  	
  	
  
	
  
The	
  desirable	
  characteristic	
  of	
  activated	
  carbon	
  have	
  been	
  known	
  for	
  more	
  than	
  one	
  
and	
   a	
   half	
   millennia,	
   however	
   its	
   main	
   application	
   today	
   are	
   still	
   targeted	
   at	
  
fundamentally	
  similar	
  organic	
  impurities.	
  As	
  late	
  as	
  the	
  18th	
  century	
  sources	
  of	
  raw	
  
carbon	
   were	
   derived	
   from	
   blood	
   and	
   animals,	
   which	
   were	
   then	
   used	
   to	
   purify	
  
liquids	
  [11].	
  	
  Documented	
  uses	
  of	
  activated	
  carbon,	
  which	
  became	
  noted	
  in	
  medical	
  
journals,	
   were	
   a	
   treatment	
   for	
   ingested	
   poisons	
   [10].	
   	
   Early	
   uses	
   were	
   also	
   for	
  
medicinal	
  purposes,	
  and	
  most	
  widely	
  accepted	
  in	
  the	
  19th	
  century	
  were	
  uses	
  found	
  
in	
   the	
   treatment	
   of	
   poultices,	
   sloughing	
   ulcers,	
   and	
   gangrenous	
   sores	
   [10].	
   Some	
  
noticeable	
   improvement	
   pertains	
   to	
   the	
   manufacturing	
   process	
   the	
   produces	
   a	
  
different	
   shape	
   and	
   size	
   of	
   activated	
   carbon.	
   	
   These	
   different	
   shapes	
   allow	
   for	
  
longevity	
  of	
  the	
  carbon	
  purification	
  performance	
  as	
  well	
  as	
  improved	
  shipping	
  and	
  
handling	
  durability.	
  	
  At	
  the	
  beginning	
  of	
  the	
  twentieth	
  century	
  activated	
  carbon	
  was	
  
only	
   available	
   in	
   a	
   powder	
   form.	
   	
   During	
   the	
   First	
   World	
   War	
   granular	
   activated	
  
carbon	
   was	
   used	
   in	
   gas	
   mask	
   to	
   capture	
   deadly	
   organic	
   gases	
   [11],	
   this	
   granular	
  
processing	
  eventually	
  lead	
  to	
  the	
  widespread	
  manufacturing	
  of	
  granular	
  activated	
  
for	
  other	
  applications	
  such	
  as	
  water	
  treatment,	
  and	
  gas	
  purification.	
  	
  
	
  
The	
  wide	
  application	
  and	
  available	
  sources	
  of	
  activated	
  carbon	
  throughout	
  history	
  
and	
   until	
   this	
   day	
   is	
   a	
   testament	
   to	
   the	
   imperative	
   usefulness	
   of	
   this	
   material.	
  
Through	
  activated	
  carbons	
  intrinsic	
  physical	
  and	
  chemical	
  properties	
  the	
  usefulness	
  
has	
  been	
  experienced	
  and	
  applied	
  to	
  a	
  vast	
  array	
  of	
  situations.	
  	
  Very	
  prominent	
  to	
  
this	
  day	
  is	
  the	
  application	
  of	
  activated	
  carbon	
  to	
  purify	
  both	
  gaseous	
  and	
  aqueous	
  
phases	
  of	
  substances	
  to	
  prevent	
  environmental	
  harm.	
  
	
  
	
  
Current	
  Application	
  
	
  
Widespread	
   uses	
   of	
   activated	
   carbon	
   can	
   be	
   found	
   in	
   industrial,	
   pharmaceutical,	
  
water	
  treatment	
  processes.	
  	
  	
  Great	
  focus	
  is	
  put	
  on	
  the	
  protection	
  of	
  the	
  environment	
  
and	
  the	
  health	
  effects	
  from	
  emission	
  of	
  gases	
  and	
  waste	
  products	
  in	
  industrial	
  and	
  
manufacturing	
   processes.	
   	
   These	
   emissions	
   include	
   volatile	
   organic	
   compounds	
  
(VOCs)	
  and	
  are	
  known	
  to	
  cause	
  cancer	
  in	
  tested	
  animals	
  [12].	
  	
  Activated	
  carbon	
  is	
  
vital	
   in	
   the	
   many	
   processes	
   that	
   involve	
   VOC’s	
   to	
   stay	
   within	
   EPA	
   regulation	
   of	
  
emissions	
   for	
   health	
   concerns.	
   	
   Impurities	
   in	
   an	
   aqueous	
   phase	
   are	
   also	
   an	
  
important	
  consideration	
  in	
  many	
  products.	
  	
  These	
  organic	
  impurities	
  are	
  in	
  the	
  form	
  
of	
  chemical	
  solvents	
  used	
  in	
  production	
  processes	
  for	
  products	
  such	
  as	
  paints	
  and	
  
household	
  cleaners	
  [12].	
  	
  Activated	
  carbon	
  due	
  to	
  its	
  ability	
  to	
  conduct	
  electricity	
  
can	
   also	
   be	
   found	
   as	
   a	
   catalyst	
   in	
   many	
   vital	
   electronic	
   components	
   including	
  
batteries,	
  supercapacitors,	
  and	
  fuel	
  cells	
  [7].	
  	
  A	
  major	
  use	
  of	
  activated	
  carbon	
  is	
  in	
  
the	
  purification	
  of	
  water	
  for	
  human	
  consumption.	
  	
  When	
  using	
  this	
  absorbent	
  in	
  the	
  
water	
  purification	
  process	
  it	
  is	
  layer	
  after	
  sand	
  and	
  before	
  chlorination	
  [11].	
  	
  	
  The	
  
use	
  of	
  activated	
  carbon	
  not	
  only	
  decreases	
  bad	
  odors	
  and	
  taste	
  but	
  also	
  removes	
  
harmful	
   contaminants	
   found	
   in	
   the	
   water	
   sources,	
   such	
   as	
   synthetic	
   organic	
  
  4	
  
compounds	
   (SOC).	
   	
   These	
   current	
   applications	
   are	
   a	
   constant	
   issue,	
   as	
   nations	
  
economical	
   and	
   industrial	
   development	
   demands	
   more	
   activated	
   carbon	
   to	
  
continually	
  produce	
  quality	
  products.	
  
	
  
	
  
	
  
Molecular	
  Characteristics	
  
	
  
Activated	
  carbon	
  has	
  a	
  desired	
  physical	
  and	
  chemical	
  structure	
  due	
  to	
  the	
  porosity	
  
and	
   surface	
   area	
   different	
   to	
   non-­‐activated	
   carbon.	
   The	
   porosity	
   describes	
   the	
  
amount	
   of	
   microscopic	
   cavity	
   between	
   carbon	
   molecules	
   and	
   affects	
   the	
   total	
  
surface	
  area	
  per	
  unit	
  mass.	
  	
  Another	
  important	
  aspect	
  is	
  the	
  pore	
  size,	
  which	
  is	
  due	
  
to	
  the	
  process	
  of	
  activation	
  as	
  well	
  as	
  the	
  raw	
  source	
  for	
  carbon.	
  	
  Impurities	
  can	
  
range	
  from	
  one	
  one	
  thousand	
  of	
  a	
  micron	
  to	
  ten	
  thousand	
  microns.	
  	
  To	
  effectively	
  
capture	
  these	
  contaminants	
  a	
  correct	
  pore	
  size	
  must	
  be	
  used	
  to	
  allow	
  for	
  proper	
  
mechanical	
   fit,	
   which	
   is	
   then	
   preceded	
   my	
   chemical	
   interactions.	
   	
   Surface	
   area	
   is	
  
directly	
  related	
  to	
  the	
  capacity	
  to	
  hold	
  impurities.	
  	
  	
  To	
  achieve	
  a	
  high	
  surface	
  area	
  
the	
  pore	
  structure	
  must	
  be	
  extensive,	
  in	
  that	
  many	
  channels	
  are	
  present	
  [2].	
  	
  It	
  is	
  
evident	
   that	
   the	
   level	
   of	
   desired	
   molecular	
   characteristics	
   can	
   be	
   altered.	
   	
   This	
  
provides	
  a	
  variable	
  in	
  the	
  effort	
  to	
  increase	
  the	
  overall	
  efficiency	
  of	
  the	
  production	
  
of	
  activated	
  carbon.	
  
	
  
PROCCESSING	
  RAW	
  CARBON	
  
Current	
  and	
  Alternative	
  Sources	
  
	
  
Current	
  raw	
  carbon	
  sources	
  as	
  a	
  precursor	
  are	
  from	
  coal	
  and	
  wood.	
  	
  In	
  the	
  recent	
  
pass,	
  the	
  selected	
  source	
  must	
  meet	
  several	
  of	
  the	
  following	
  requirements.	
  	
  It	
  must	
  
have	
  the	
  potential	
  to	
  produce	
  high	
  quality	
  activated	
  carbon,	
  which	
  is	
  a	
  function	
  of	
  
the	
  porosity	
  and	
  resulting	
  surface	
  area.	
  	
  It	
  must	
  have	
  large	
  available	
  supplies;	
  this	
  
will	
  in	
  effect	
  lower	
  the	
  cost.	
  	
  And	
  finally	
  it	
  must	
  have	
  the	
  ability	
  to	
  be	
  stored	
  for	
  
extended	
  periods	
  of	
  time	
  [3].	
  	
  Both	
  coal	
  and	
  wood	
  have	
  passed	
  these	
  conditions	
  as	
  
leading	
   sources	
   for	
   the	
   production	
   of	
   activated	
   carbon,	
   however	
   an	
   important	
  
requirement	
   have	
   been	
   dismissed	
   in	
   past	
   decisions.	
   	
   This	
   important	
   neglected	
  
requirement	
   is	
   how	
   does	
   sourcing	
   of	
   this	
   material	
   effect	
   the	
   environment?	
   	
   With	
  
130,000	
   tons	
   per	
   year	
   of	
   wood	
   and	
   100,000	
   tons	
   per	
   year	
   of	
   raw	
   material	
   being	
  
harvested,	
  the	
  impact	
  to	
  the	
  environment	
  is	
  one	
  of	
  great	
  magnitude.	
  	
  
	
  
Wood	
  and	
  coal	
  are	
  currently	
  the	
  leading	
  source	
  for	
  the	
  production	
  of	
  carbon.	
  	
  
Coal	
  comes	
  from	
  surface	
  and	
  underground	
  mines,	
  with	
  the	
  majority	
  from	
  surface	
  
mines	
  at	
  sixty	
  percent	
  [13].	
  	
  Coal	
  is	
  considered	
  a	
  non-­‐renewable	
  source	
  due	
  to	
  the	
  
time	
  it	
  takes	
  to	
  create	
  it.	
  	
  Estimates	
  have	
  said	
  supplies	
  of	
  coal	
  will	
  last	
  only	
  until	
  
2035	
  [14].	
  This	
  estimates	
  does	
  not	
  take	
  into	
  account	
  the	
  coal	
  that	
  is	
  too	
  deep	
  and	
  
costly	
  to	
  mine.	
  	
  This	
  presents	
  an	
  issue	
  to	
  the	
  economics	
  of	
  using	
  coal	
  as	
  a	
  source.	
  	
  
Alternative	
  sources	
  must	
  be	
  researched	
  and	
  tested	
  to	
  keep	
  supplies	
  of	
  raw	
  carbon	
  
stable.	
   	
   Without	
   proper	
   preparation	
   a	
   sudden	
   decrease	
   in	
   supply	
   will	
   trigger	
  
  5	
  
staggering	
  price	
  hikes,	
  which	
  will	
  effect	
  how	
  companies	
  operate,	
  prices	
  of	
  products,	
  
and	
  could	
  even	
  shut	
  down	
  industrial	
  processes	
  and	
  slow	
  the	
  economy.	
  
	
  
Alternative	
   sources	
   need	
   to	
   meet	
   all	
   constraints	
   previously	
   set	
   as	
   well	
   as	
   an	
  
additional	
   constraint	
   of	
   sustainability.	
   	
   This	
   will	
   be	
   the	
   basis	
   to	
   analyzing	
   the	
  
potential	
  of	
  new	
  sources.	
  	
  	
  
	
  
A	
  study	
  on	
  the	
  use	
  of	
  corncobs	
  proves	
  the	
  economic	
  feasibility	
  and	
  sustainability	
  of	
  
this	
  agricultural	
  waste	
  byproduct	
  as	
  a	
  potential	
  source.	
  	
  In	
  a	
  published	
  article	
  from	
  
American	
  Chemical	
  Science	
  Journal	
  the	
  use	
  of	
  corncobs	
  have	
  two	
  main	
  advantages,	
  
the	
   first	
   is	
   the	
   wide	
   availability,	
   and	
   second	
   is	
   the	
   intrinsic	
   thermodynamics	
  
properties	
  of	
  corncobs	
  [15].	
  	
  There	
  is	
  a	
  vast	
  amount	
  of	
  corncobs	
  that	
  are	
  wasted	
  in	
  
the	
   production	
   of	
   food	
   and	
   ethanol.	
   	
   A	
   51%	
   portion	
   of	
   total	
   U.S.	
   grown	
   corn	
   is	
  
dedicated	
  to	
  the	
  production	
  of	
  food	
  and	
  ethanol;	
  within	
  these	
  productions	
  only	
  the	
  
kernels	
  are	
  used	
  [16].	
  	
  These	
  waste	
  products	
  can	
  be	
  recycled	
  and	
  processed	
  to	
  into	
  a	
  
high	
   value	
   material	
   of	
   activated	
   carbon.	
   	
   The	
   thermodynamic	
   characteristics	
   of	
  
corncobs	
  allows	
  for	
  “a	
  low	
  carbonization	
  temperature	
  compared	
  to	
  other	
  biomass	
  
residues”	
   [15].	
   	
   This	
   allows	
   for	
   a	
   lower	
   temperature	
   during	
   the	
   activation	
   stage	
  
where	
  all	
  the	
  undesired	
  components	
  existing	
  within	
  the	
  raw	
  material	
  are	
  vaporized.	
  	
  
Vaporization	
  of	
  any	
  material	
  takes	
  a	
  great	
  amount	
  of	
  energy;	
  this	
  is	
  due	
  to	
  how	
  heat	
  
is	
   distributed	
   within	
   a	
   substance.	
   	
   The	
   energy	
   input	
   is	
   converted	
   into	
   thermal	
  
energy,	
  which	
  then	
  flows	
  down	
  a	
  gradient	
  of	
  temperature	
  differences.	
  	
  Only	
  when	
  
the	
  gradient	
  is	
  at	
  equilibrium	
  at	
  the	
  boiling	
  point	
  of	
  the	
  substance	
  does	
  vaporization	
  
initiate.	
   Therefore,	
   corncobs	
   with	
   low	
   carbonization	
   temperature	
   will	
   allow	
   for	
   a	
  
lower	
  input	
  of	
  thermal	
  energy.	
  	
  This	
  material	
  has	
  potential	
  as	
  an	
  alternative	
  source.	
  
	
  
The	
  source	
  of	
  municipal	
  refuse	
  is	
  numerous	
  in	
  supply.	
  	
  	
  This	
  refers	
  to	
  solid	
  waste	
  
consisting	
   of	
   everyday	
   trash	
   and	
   garbage.	
   	
   The	
   process	
   to	
   which	
   the	
   raw	
   refuse	
  
originates	
   is	
   through	
   the	
   sorting	
   out	
   of	
   glass	
   and	
   metal	
   leaving	
   a	
   source	
   full	
   of	
  
carbonaceous	
  material	
  ready	
  to	
  be	
  activated	
  [5].	
  	
  The	
  desired	
  characteristic	
  from	
  
the	
  municipal	
  refuse	
  was	
  on	
  the	
  same	
  standard	
  as	
  those	
  that	
  are	
  from	
  coal	
  and	
  wood	
  
[5].	
  	
  Pass	
  considerations	
  for	
  using	
  refuse	
  have	
  been	
  disregarded	
  due	
  to	
  the	
  cheap	
  
and	
  highly	
  available	
  supplies	
  of	
  wood.	
  	
  The	
  economics	
  and	
  profit	
  margins	
  were	
  the	
  
key	
  driving	
  force	
  to	
  choosing	
  less	
  sustainable	
  sources.	
  However	
  as	
  supplies	
  of	
  coal	
  
and	
   the	
   ever-­‐increasing	
   cost	
   to	
   produce	
   lumber	
   these	
   readily	
   available	
   waste	
  
sources	
  will	
  become	
  comparatively	
  economical.	
  
	
  
	
  
Activation	
  Methods	
  
	
  
Without	
   an	
   improvement	
   to	
   chemical	
   and	
   physical	
   characteristics	
   of	
   the	
   carbon	
  
precursor,	
  the	
  effectiveness	
  of	
  carbon	
  as	
  an	
  absorbent	
  could	
  be	
  17	
  to	
  25	
  times	
  less	
  
absorbent.	
  	
  The	
  possible	
  range	
  is	
  due	
  to	
  the	
  source	
  of	
  raw	
  materials	
  used,	
  which	
  is	
  a	
  
factor	
  in	
  the	
  pore	
  structure	
  and	
  surface	
  area.	
  	
  Activation	
  is	
  also	
  crucial	
  in	
  creating	
  
certain	
  structure,	
  which	
  have	
  a	
  greater	
  affinity	
  for	
  targeted	
  impurities.	
  	
  Activation	
  is	
  
done	
   either	
   physically	
   or	
   chemically;	
   however,	
   both	
   techniques	
   have	
   been	
   used	
  
  6	
  
simultaneously	
  to	
  yield	
  even	
  higher	
  absorption	
  and	
  adsorption	
  capacities	
  [5]	
  at	
  the	
  
expense	
  of	
  higher	
  cost.	
  
	
  
	
  
Figure 1: Processes for chemical and physical activation [5].
	
  
	
  
In	
  figure	
  1	
  both	
  physical	
  and	
  chemical	
  process	
  are	
  outlined.	
  A	
  physical	
  activation	
  is	
  
also	
   referred	
   to	
   as	
   a	
   thermal	
   activation,	
   due	
   to	
   required	
   high	
   temperature	
  
conditions.	
   Physical	
   means	
   of	
   activation	
   generally	
   required	
   two	
   steps,	
   as	
   seen	
   in	
  
above	
  figure.	
  	
  The	
  first	
  step	
  is	
  carbonization.	
  	
  This	
  involves	
  pyrolysis	
  in	
  the	
  absence	
  
of	
  oxygen,	
  which	
  is	
  the	
  breakdown	
  of	
  the	
  raw	
  carbon	
  rich	
  organic	
  matter	
  [6].	
  	
  This	
  is	
  
done	
  with	
  a	
  high-­‐energy	
  input	
  to	
  raise	
  temperatures	
  to	
  a	
  level	
  in	
  which	
  a	
  precession	
  
of	
  vaporization	
  of	
  volatile	
  components	
  are	
  possible.	
  	
  To	
  achieve	
  a	
  condition	
  without	
  
the	
  presence	
  of	
  oxygen,	
  inert	
  gases	
  are	
  pumped	
  into	
  the	
  system.	
  	
  Inert	
  gases	
  are	
  
non-­‐reactive	
   agents;	
   this	
   prevents	
   side	
   reactions,	
   which	
   is	
   desired	
   for	
   the	
  
conservation	
  of	
  pure	
  carbon.	
  	
  	
  The	
  result	
  of	
  pyrolysis	
  is	
  a	
  reduction	
  of	
  raw	
  material,	
  
but	
  also	
  an	
  increase	
  in	
  the	
  quality	
  and	
  purity	
  of	
  carbon	
  atoms	
  [3].	
  	
  The	
  second	
  stage	
  
is	
   activation;	
   this	
   process	
   is	
   carried	
   out	
   with	
   oxygen	
   or	
   steam.	
   	
   The	
   purpose	
   of	
  
activation	
  is	
  to	
  increase	
  the	
  porosity	
  of	
  the	
  structure	
  as	
  well	
  as	
  increase	
  the	
  surface	
  
area.	
   	
   High-­‐energy	
   cost	
   due	
   to	
   high	
   temperature	
   processes	
   is	
   associated	
  
predominately	
  with	
  physical	
  means	
  of	
  activation.	
  	
  	
  
	
  
In	
  contrast	
  to	
  a	
  high	
  temperature	
  process,	
  chemical	
  means	
  of	
  activation	
  is	
  a	
  one	
  step	
  
process	
  and	
  allows	
  for	
  carbonization	
  at	
  a	
  significantly	
  lower	
  temperature,	
  as	
  a	
  result	
  
  7	
  
there	
  is	
  a	
  greater	
  porous	
  structure	
  [7].	
  	
  However,	
  chemical	
  precursors	
  are	
  needed,	
  
which	
  are	
  typically	
  an	
  acid,	
  or	
  strong	
  base	
  [4].	
  	
  Raw	
  materials	
  are	
  impregnated	
  with	
  
the	
   chemicals,	
   which	
   begins	
   the	
   process	
   of	
   removing	
   the	
   impurities	
   through	
  
dehydration	
   which	
   effects	
   pyrolytic	
   decomposition	
   of	
   impurities.	
   	
   Chemical	
  
activation	
   allow	
   for	
   less	
   thermal	
   energy	
   to	
   be	
   expended,	
   however	
   washing	
   to	
  
remove	
  the	
  impregnated	
  chemicthals	
  and	
  drying	
  are	
  required	
  [5].	
  	
  These	
  chemicals	
  
are	
  a	
  hazard	
  to	
  the	
  environment	
  if	
  not	
  recycled	
  and	
  reused.	
  	
  The	
  potential	
  to	
  recycle	
  
pyrolytic	
   chemical	
   present	
   an	
   advantage	
   over	
   physical	
   means	
   of	
   activation.	
   	
   The	
  
economics	
  associated	
  with	
  recycle	
  stream	
  within	
  industrial	
  application	
  saves	
  fresh	
  
material,	
  which	
  is	
  directly	
  associated	
  with	
  lower	
  cost	
  of	
  purchasing	
  these	
  chemicals.	
  	
  
For	
   every	
   unit	
   of	
   mass	
   activated	
   carbon	
   is	
   created	
   there	
   is	
   small	
   portion	
   of	
  
chemicals	
  that	
  are	
  required.	
  	
  The	
  ability	
  to	
  use	
  the	
  fraction	
  of	
  the	
  activated	
  carbon	
  
product	
  to	
  remove	
  the	
  impurities	
  of	
  the	
  chemical	
  for	
  reuse	
  of	
  the	
  chemical	
  presents	
  
a	
   possible	
   solution	
   to	
   lower	
   energy	
   consumption	
   within	
   the	
   activated	
   carbon	
  
process.	
  	
  Taking	
  into	
  account	
  the	
  large	
  surface	
  area	
  that	
  is	
  created	
  due	
  to	
  activation,	
  
only	
  a	
  small	
  portion	
  of	
  the	
  total	
  product	
  needs	
  to	
  be	
  used	
  in	
  the	
  recycling	
  process	
  of	
  
the	
  pyrolytic	
  chemicals;	
  Overall,	
  chemical	
  activation	
  if	
  a	
  more	
  viable	
  method	
  than	
  
physical	
  activation.	
  
	
  
ENERGY	
  &	
  ENVIROMENT	
  	
  
Energy	
  Consumption	
  
	
  
Energy	
  considerations	
  for	
  processing	
  will	
  be	
  discussed	
  starting	
  from	
  the	
  sourcing	
  of	
  
raw	
   materials.	
   	
   The	
   mining	
   of	
   coal	
   in	
   itself	
   is	
   a	
   high-­‐energy	
   process.	
   	
   The	
   large	
  
machinery	
   and	
   transportation	
   of	
   raw	
   carbon	
   accounts	
   for	
   most	
   of	
   the	
   energy	
  
expenses	
  in	
  the	
  extraction	
  of	
  coal.	
  	
  Its	
  estimated	
  that	
  15%	
  of	
  the	
  production	
  cost	
  is	
  
due	
  to	
  transportation	
  and	
  mining	
  of	
  coal	
  alone	
  [14].	
  	
  	
  
	
  
Energy	
  consumption	
  of	
  wood	
  as	
  precursors	
  also	
  account	
  for	
  a	
  significant	
  portion	
  of	
  
the	
   production.	
   	
   Shipping	
   of	
   wood	
   from	
   less	
   rural	
   area	
   and	
   overseas	
   present	
  
significant	
   fuel	
   usage.	
   Temporary	
   bridges	
   must	
   be	
   built	
   over	
   small	
   rivers	
   and	
  
streams	
   to	
   gain	
   access	
   to	
   depleting	
   supplies	
   of	
   hard	
   woods.	
   	
   This	
   takes	
   large	
  
equipment	
  to	
  get	
  to	
  these	
  areas.	
  	
  After	
  the	
  wood	
  is	
  harvested	
  it	
  has	
  to	
  be	
  dried,	
  this	
  
requires	
  a	
  kiln,	
  which	
  is	
  a	
  thermally	
  insulated	
  chamber	
  where	
  heat	
  can	
  be	
  added	
  to	
  
evaporate	
  water	
  [18].	
  	
  High-­‐energy	
  inputs	
  are	
  required	
  with	
  vaporization	
  processes.	
  
	
  
A	
  physical	
  activation	
  technique	
  requires	
  great	
  amount	
  of	
  expended	
  energy	
  to	
  raise	
  
temperature	
  to	
  pyrolyze	
  all	
  the	
  undesired	
  substances.	
  	
  The	
  needed	
  temperature	
  of	
  
physical	
   activation	
   is	
   on	
   a	
   scale	
   of	
   magnitude	
   twice	
   that	
   required	
   of	
   a	
   chemical	
  
activation.	
  High	
  temperatures	
  are	
  needed	
  in	
  the	
  two-­‐step	
  process	
  of	
  carbonization	
  
and	
   activation,	
   which	
   is	
   approximately	
   1000˚C	
   and	
   700˚	
   C	
   for	
   carbonization	
   and	
  
activation	
   processes,	
   respectively.	
   It’s	
   intuitively	
   known	
   and	
   explained	
   by	
   the	
   2nd	
  
law	
  of	
  thermodynamics	
  that	
  heat	
  flows	
  from	
  high	
  temperature	
  to	
  low	
  temperatures.	
  	
  
If	
  a	
  substance	
  at	
  a	
  lower	
  temperature	
  needs	
  to	
  be	
  at	
  a	
  state	
  of	
  higher	
  temperature,	
  
energy	
  from	
  the	
  surroundings	
  must	
  be	
  inputted	
  in	
  to	
  the	
  system.	
  	
  This	
  is	
  the	
  main	
  
  8	
  
reason	
   to	
   experienced	
   high	
   operational	
   cost	
   associated	
   with	
   a	
   physical	
   activation	
  
process.	
  	
  	
  
	
  
Chemical	
  activation	
  is	
  a	
  more	
  economical	
  and	
  energy	
  efficient	
  method	
  to	
  physical	
  
activation.	
  	
  This	
  method	
  also	
  requires	
  energy	
  inputs	
  to	
  raise	
  temperature	
  in	
  order	
  to	
  
start	
  reactions,	
  however	
  these	
  temperature	
  are	
  well	
  below	
  at	
  approximately	
  500	
  ˚C	
  
depending	
  on	
  certain	
  raw	
  materials.	
  	
  Another	
  advantage	
  of	
  a	
  chemical	
  means	
  is	
  the	
  
one	
  step	
  process,	
  which	
  lowers	
  cost	
  of	
  special	
  equipment	
  and	
  larger	
  facilities.	
  For	
  
every	
   action	
   there	
   is	
   a	
   reaction,	
   and	
   with	
   energy	
   consumption	
   there	
   is	
   a	
  
environmental	
  impact.	
  
	
  
Environmental	
  Effects	
  of	
  Activation	
  Methods	
  
	
  
Through	
   a	
   physical	
   means	
   of	
   activation	
   high	
   temperatures	
   are	
   required	
   for	
  
extended	
  periods	
  to	
  vaporize	
  impurities	
  within	
  the	
  raw	
  material.	
  	
  The	
  implication	
  of	
  
this	
   method	
   is	
   a	
   high-­‐energy	
   consumption,	
   and	
   therefore	
   high	
   environmental	
  
effects.	
  	
  The	
  method	
  to	
  heating	
  of	
  the	
  carbon	
  precursor	
  is	
  done	
  though	
  resistance	
  
heat	
  coil	
  or	
  through	
  the	
  burning	
  of	
  natural	
  gas	
  [5].	
  	
  Both	
  of	
  these	
  heating	
  techniques	
  
have	
  detrimental	
  impacts	
  on	
  the	
  environment.	
  	
  With	
  heat	
  coils,	
  electricity	
  is	
  used.	
  	
  
Electricity	
   is	
   produce	
   mainly	
   from	
   nonrenewable	
   resources,	
   with	
   39%	
   coal,	
   27%	
  
natural	
   gas,	
   and	
   19%	
   nuclear.	
   	
   These	
   sources	
   of	
   energy	
   pollute	
   the	
   environment	
  
with	
  the	
  harmful	
  emissions	
  such	
  as	
  nitrogen	
  oxide	
  (NOx),	
  which	
  is	
  known	
  to	
  cause	
  
cancer	
   in	
   animals,	
   destroy	
   natural	
   environments,	
   and	
   affect	
   the	
   health	
   of	
   the	
  
ecosystem	
  [17].	
  	
  	
  	
  
	
  
A	
   chemical	
   means	
   of	
   activation	
   requires	
   far	
   less	
   energy	
   than	
   with	
   thermal	
  
activation.	
  	
  With	
  300,000	
  tons	
  a	
  year	
  of	
  activated	
  carbon	
  produce	
  solely	
  for	
  water	
  
treatment	
  processes,	
  a	
  huge	
  impact	
  can	
  be	
  clearly	
  seen	
  in	
  small	
  energy	
  saving	
  [5].	
  	
  A	
  
potential	
  detrimental	
  effect	
  to	
  the	
  environment	
  can	
  be	
  seen	
  in	
  the	
  use	
  of	
  chemicals	
  
to	
  pyrolyze	
  raw	
  carbon.	
  	
  Possible	
  contamination	
  can	
  happen	
  due	
  to	
  waste	
  chemicals	
  
not	
  being	
  handled	
  properly,	
  however	
  with	
  EPA	
  regulations	
  it	
  would	
  be	
  rare.	
  This	
  
case	
   would	
   also	
   be	
   unlikely	
   because	
   it	
   is	
   uneconomically	
   to	
   waste	
   high	
   value	
  
solvents;	
  a	
  common	
  practice	
  would	
  be	
  to	
  recycle	
  and	
  reuse.	
  	
  Lower	
  energy	
  and	
  use	
  
of	
  recyclable	
  solvents,	
  chemical	
  activation	
  is	
  a	
  better	
  for	
  the	
  environment.	
  
	
  
DISSCUSSION	
  &	
  SUMMARY	
  
A	
  Cost	
  Effective	
  and	
  Sustainable	
  Model	
  
	
  
As	
  a	
  result	
  of	
  the	
  investigation	
  possible	
  improvements	
  could	
  be	
  made	
  to	
  increase	
  
the	
  overall	
  efficiency	
  of	
  the	
  activation	
  process.	
  	
  A	
  sustainable	
  model	
  dictates	
  the	
  use	
  
of	
  a	
  recycling	
  method.	
  	
  In	
  figure	
  2	
  below,	
  a	
  comparison	
  of	
  the	
  main	
  aspects	
  of	
  the	
  
process	
   is	
   depicted.	
   	
   It	
   all	
   starts	
   with	
   sustainable	
   sources	
   those	
   that	
   would	
   have	
  
otherwise	
   been	
   wasted	
   such	
   as	
   corncob	
   and	
   municipal	
   refuse	
   to	
   list	
   just	
   the	
   few	
  
possibilities.	
  	
  With	
  supplies	
  of	
  current	
  carbon	
  precursors	
  becoming	
  scarce,	
  this	
  will	
  
provide	
  the	
  shift	
  in	
  economical	
  feasibility	
  of	
  waste	
  sources.	
  	
  The	
  benefits	
  of	
  using	
  
  9	
  
waste	
   byproducts	
   will	
   positively	
   impact	
   emission	
   levels,	
   natural	
   habitat	
  
preservation,	
  and	
  save	
  natural	
  resources.	
  	
  The	
  energy	
  saved	
  from	
  initial	
  production	
  
cost	
  of	
  equipment,	
  labor,	
  and	
  transportation	
  will	
  then	
  be	
  decreased	
  due	
  to	
  recycle	
  of	
  
the	
  material	
  from	
  waste	
  byproducts.	
  	
  	
  	
  
	
  
Next	
  the	
  activation	
  of	
  carbon	
  will	
  be	
  processed	
  with	
  a	
  chemical	
  pyrolysis	
  method.	
  	
  
This	
   will	
   provide	
   significant	
   lower	
   thermal	
   energy	
   cost	
   than	
   current	
   physical	
  
methods	
  due	
  to	
  chemical	
  reactions	
  instead	
  of	
  vaporizations.	
  	
  The	
  ability	
  to	
  recycle	
  
chemical	
   activating	
   solvent	
   will	
   provide	
   yet	
   another	
   advantage	
   in	
   economically	
  
feasibility	
  and	
  sustainability.	
  	
  With	
  chemical	
  reactions	
  the	
  ability	
  to	
  control	
  precise	
  
characteristics	
  in	
  pore	
  structures	
  will	
  help	
  to	
  increase	
  the	
  effectiveness	
  of	
  activated	
  
carbon	
  for	
  specific	
  materials	
  and	
  situations.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure 2: A comparison of the process chain in the production of activated
carbon. On the left is the how the majority of activated carbon is currently
produced, and on the right is a more efficient process with sustainable
sources and efficient activation methods.
  10	
  
Conclusion	
  
The	
   gap	
   is	
   widening	
   and	
   the	
   rising	
   cost	
   of	
   current	
   sources	
   is	
   soaring.	
   	
   With	
  
resources	
  becoming	
  scarce	
  and	
  difficult	
  to	
  access	
  the	
  economics	
  of	
  the	
  production	
  
will	
  not	
  allow	
  current	
  prices	
  and	
  profits.	
  	
  Following	
  this	
  standard	
  sustainable	
  and	
  
efficient	
   model,	
   supply	
   shortages	
   and	
   environmental	
   harm	
   will	
   be	
   avoided.	
   	
   The	
  
ecosystem	
   as	
   a	
   whole	
   is	
   being	
   affected,	
   but	
   with	
   new	
   highly	
   efficient	
   activation	
  
techniques	
   and	
   sustainable	
   sources,	
   the	
   detrimental	
   effect	
   of	
   the	
   destruction	
   to	
  
forest,	
  and	
  natural	
  reserves	
  will	
  be	
  limited.	
  	
  With	
  the	
  described	
  cost	
  effective	
  and	
  
sustainable	
  model,	
  this	
  guideline	
  provides	
  a	
  path	
  to	
  increase	
  the	
  overall	
  efficiency	
  of	
  
the	
   activation	
   process,	
   increase	
   effectiveness	
   of	
   activated	
   carbon,	
   and	
   decrease	
  
detrimental	
  impacts	
  to	
  the	
  environment.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  11	
  
	
  
	
  
References:	
  
	
  
[1] J. T. Nwabanne and P. K. Igbokwe, STATISTICAL OPTIMIZATION OF
PRODUCTION OF ACTIVATED CARBON DERIVED FROM OIL
PALM EMPTY FRUIT BUNCH [Online], 04 ed., Nigeria: Nnamdi
Azikiwe University: Department of Chemical Engineering, 2013.
Available:
http://www.journalcra.com/sites/default/files/Download%202171.pdf
[2] Y. Chiang, P. Chiang, and C. Huang, Effects of pore structure and
temperature on VOC adsorption on activated carbon [Online],
Singapore: Nanyang Technological University, 2000. Available:
http://ntur.lib.ntu.edu.tw/bitstream/246246/96682/1/16.pdf
[3] Michael David Sufnarhki, Regeneration of Granular Activated Carbon
[Online], Texas: The University of Texas at Austin, 1999. Available:
http://www.dtic.mil/dtic/tr/fulltext/u2/a362534.pdf
[4] M. K. Stevenson, J. O. Leckie, Preparation and Evaluation of Activated
Carbon Produced from the Municipal Refuse, California: Standard
University Department of Civil Engineering, 1972. Available:
http://books.google.com/books?id=N9EDAAAAIAAJ&printsec=frontco
ver&dq=production+of+activated+carbon&hl=en&sa=X&ei=pziKU6-
iHsORqgar9oGQDQ&ved=0CEQQ6AEwAQ#v=onepage&q=productio
n%20of%20activated%20carbon&f=false
[5] A. H. Abdullah, A. Kassim, Z. Zainal, D. Kuang, F. Ahmad, and O. S.
Wooi, Preparation and Characterization of Activated Carbon from
Gelam Wood Bark (Melaleuca cajuputi), Malaysia: University of
Malaysia, 2000. Available:
http://www.researchgate.net/publication/237464297_Preparation_and_C
haracterization_of_Activated_Carbon_from_Gelam_Wood_Bark_(Melal
euca_cajuputi)/file/72e7e52d69b5bbc478.pdf.
[6] Burning of wood, Finland: VTT Technical Research Centre of Finland,
2000. Available:
http://virtual.vtt.fi/virtual/innofirewood/stateoftheart/database/burning/b
urning.html
  12	
  
[7] B. Viswanathan, P. Indra Neel and T. K. Varadarajan, Methods of
Activation and Specific Applications of Carbon Materials, Chennai:
NATIONAL CENTRE FOR CATALYSIS RESEARCH
DEPARTMENT OF CHEMISTRY INDIAN INSTITUTE OF
TECHNOLOGY, 2009. Available: http://nccr.iitm.ac.in/e%20book-
Carbon%20Materials%20final.pdf
[8] Gas Processing with Activated Carbon, Chemviron Carbon, 2014.
Available:
http://www.chemvironcarbon.com/en/applications/process/gas-
processing
[9] Raw Materials Used in the Production of Activated Carbon, Virginia
Polytechnic Institute and State University, 2014. Available:
http://www.webapps.cee.vt.edu/ewr/environmental/teach/gwprimer/grou
p23/acraw_materials.html
[10] THE HISTORY OF ACTIVATED CARBON, Cabot Norit Activated
Carbon, 2014. Available:
http://www.norit.com/carbon-academy/the-history-of-activated-carbon/
[11] Ferhan Cecen, Water and Wastewater Treatment: Historical Perspective of
Activated Carbon Adsorption and its Integration with Biological
Processes, Wiley, 2011. Available:
http://www.wiley-vch.de/books/sample/3527324712_c01.pdf
[12] Volatile Organic Compounds (VOCs), United States Environmental
Protection Agency. Available: http://www.epa.gov/iaq/voc.html
[13] Environmental impacts of coal power: fuel supply, Massachusetts: Union
of Concerned Scientists. Available:
http://www.ucsusa.org/clean_energy/coalvswind/c02a.html
[14] ZANE SELVANS, WARNING: FAULTY REPORTING ON US COAL
SUPPLIES, Colorado: Clean Energy Action, 2013. Available:
http://cleanenergyaction.org/2013/10/30/warning-faulty-reporting-on-us-
coal-supplies/
  13	
  
[15] J. M. Ketcha, D. J. D. Dina1, H. M. Ngomo1 and N. J. Ndi, Preparation
and Characterization of Activated Carbons Obtained from Maize Cobs
by Zinc Chloride Activation, Douala Cameroon: American Chemical
Science Journal, 2012. Available:
http://www.sciencedomain.org/download.php?f=1353500396-
Ketcha%20et%20al_242012ACSJ1806.pdf&aid=689.
[16] Gary W. Brester, Corn, Montana: Agricultural Marketing and Resource
Center, 2012. Available:
http://www.agmrc.org/commodities__products/grains
__oilseeds/corn_grain/
[17] Natural Gas, Environmental Protection Agency: Agricultural Marketing
and Resource Center, 2013. Available:
http://www.epa.gov/cleanenergy/energy-and-you/affect/natural-gas.html
[18] Phil Mitchell, LUMBER PROCESSING EFFICIENCY, YIELD AND
VALUE, North Carolina: North Carolina State University. Available:
http://www.ces.ncsu.edu/nreos/wood/RMOG/Yield.htm
	
  

More Related Content

What's hot

Algae based CO2 capture
Algae based CO2 captureAlgae based CO2 capture
Algae based CO2 captureNimalan007
 
IRJET- Literature Review of Removal of Heavy Metals using Coconut Shell b...
IRJET-  	  Literature Review of Removal of Heavy Metals using Coconut Shell b...IRJET-  	  Literature Review of Removal of Heavy Metals using Coconut Shell b...
IRJET- Literature Review of Removal of Heavy Metals using Coconut Shell b...IRJET Journal
 
IRJET- Biogas Production from Municipal Solid Waste:- A Review
IRJET- Biogas Production from Municipal Solid Waste:- A ReviewIRJET- Biogas Production from Municipal Solid Waste:- A Review
IRJET- Biogas Production from Municipal Solid Waste:- A ReviewIRJET Journal
 
1Bio-Hydrogen From Waste
1Bio-Hydrogen From Waste1Bio-Hydrogen From Waste
1Bio-Hydrogen From WasteChayut Vaikasi
 
pretreatment methods for manufacture of biogas from agricutural wastes
pretreatment methods for manufacture of biogas from agricutural wastespretreatment methods for manufacture of biogas from agricutural wastes
pretreatment methods for manufacture of biogas from agricutural wastesSudipta Ghosh
 
Physical & Chemical Treatment of Industrial Waste-water.
Physical & Chemical Treatment of Industrial Waste-water.Physical & Chemical Treatment of Industrial Waste-water.
Physical & Chemical Treatment of Industrial Waste-water.SOUTHEAST UNIVERSITY
 
biohydrogen & hydrogenase presentation
biohydrogen & hydrogenase presentationbiohydrogen & hydrogenase presentation
biohydrogen & hydrogenase presentationHolden Ranz
 
Biohydrogen production
Biohydrogen production Biohydrogen production
Biohydrogen production MeghanaUnni
 
Algae wastewater treatment for biofuel production
  Algae wastewater treatment for biofuel production  Algae wastewater treatment for biofuel production
Algae wastewater treatment for biofuel productionylimeoen
 
Ahvazi 2011 JAgrFoodChem.PDF
Ahvazi 2011 JAgrFoodChem.PDFAhvazi 2011 JAgrFoodChem.PDF
Ahvazi 2011 JAgrFoodChem.PDFJalal Hawari
 
algae as biofuel
algae as biofuelalgae as biofuel
algae as biofuelVinay C
 
Biomethanation of organic waste, Anaerobic degradation,Degradation of organic...
Biomethanation of organic waste, Anaerobic degradation,Degradation of organic...Biomethanation of organic waste, Anaerobic degradation,Degradation of organic...
Biomethanation of organic waste, Anaerobic degradation,Degradation of organic...salinsasi
 
Bioenergy resources in india 22
Bioenergy resources in india 22Bioenergy resources in india 22
Bioenergy resources in india 22Anam Wani
 
Biofuels Issues, Trends and Challenges
Biofuels Issues, Trends and ChallengesBiofuels Issues, Trends and Challenges
Biofuels Issues, Trends and ChallengesGerard B. Hawkins
 
Biofuel as a bioresource
Biofuel as a bioresourceBiofuel as a bioresource
Biofuel as a bioresourceMeghanaUnni
 

What's hot (19)

Biohydrogen production
Biohydrogen productionBiohydrogen production
Biohydrogen production
 
Algae based CO2 capture
Algae based CO2 captureAlgae based CO2 capture
Algae based CO2 capture
 
IRJET- Literature Review of Removal of Heavy Metals using Coconut Shell b...
IRJET-  	  Literature Review of Removal of Heavy Metals using Coconut Shell b...IRJET-  	  Literature Review of Removal of Heavy Metals using Coconut Shell b...
IRJET- Literature Review of Removal of Heavy Metals using Coconut Shell b...
 
IRJET- Biogas Production from Municipal Solid Waste:- A Review
IRJET- Biogas Production from Municipal Solid Waste:- A ReviewIRJET- Biogas Production from Municipal Solid Waste:- A Review
IRJET- Biogas Production from Municipal Solid Waste:- A Review
 
H0425066
H0425066H0425066
H0425066
 
1Bio-Hydrogen From Waste
1Bio-Hydrogen From Waste1Bio-Hydrogen From Waste
1Bio-Hydrogen From Waste
 
pretreatment methods for manufacture of biogas from agricutural wastes
pretreatment methods for manufacture of biogas from agricutural wastespretreatment methods for manufacture of biogas from agricutural wastes
pretreatment methods for manufacture of biogas from agricutural wastes
 
Physical & Chemical Treatment of Industrial Waste-water.
Physical & Chemical Treatment of Industrial Waste-water.Physical & Chemical Treatment of Industrial Waste-water.
Physical & Chemical Treatment of Industrial Waste-water.
 
biohydrogen & hydrogenase presentation
biohydrogen & hydrogenase presentationbiohydrogen & hydrogenase presentation
biohydrogen & hydrogenase presentation
 
Biohydrogen production
Biohydrogen production Biohydrogen production
Biohydrogen production
 
Algae wastewater treatment for biofuel production
  Algae wastewater treatment for biofuel production  Algae wastewater treatment for biofuel production
Algae wastewater treatment for biofuel production
 
Ahvazi 2011 JAgrFoodChem.PDF
Ahvazi 2011 JAgrFoodChem.PDFAhvazi 2011 JAgrFoodChem.PDF
Ahvazi 2011 JAgrFoodChem.PDF
 
algae as biofuel
algae as biofuelalgae as biofuel
algae as biofuel
 
Biomethanation of organic waste, Anaerobic degradation,Degradation of organic...
Biomethanation of organic waste, Anaerobic degradation,Degradation of organic...Biomethanation of organic waste, Anaerobic degradation,Degradation of organic...
Biomethanation of organic waste, Anaerobic degradation,Degradation of organic...
 
Bioenergy resources in india 22
Bioenergy resources in india 22Bioenergy resources in india 22
Bioenergy resources in india 22
 
Biofuels Issues, Trends and Challenges
Biofuels Issues, Trends and ChallengesBiofuels Issues, Trends and Challenges
Biofuels Issues, Trends and Challenges
 
Biofuel as a bioresource
Biofuel as a bioresourceBiofuel as a bioresource
Biofuel as a bioresource
 
Final.ppt em (1)
Final.ppt em (1)Final.ppt em (1)
Final.ppt em (1)
 
Life Cycle Analysis of Algal Biofuel
Life Cycle Analysis of Algal BiofuelLife Cycle Analysis of Algal Biofuel
Life Cycle Analysis of Algal Biofuel
 

Similar to Joshua Dang _ Project #3 FINAL

Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitropheno...
Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitropheno...Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitropheno...
Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitropheno...Nelson Giovanny Rincon S
 
Preparation of activated carbon from pyrolytic conversion of musa paradisiaca
Preparation of activated carbon from pyrolytic conversion of musa paradisiacaPreparation of activated carbon from pyrolytic conversion of musa paradisiaca
Preparation of activated carbon from pyrolytic conversion of musa paradisiacaBRNSSPublicationHubI
 
Granular Activated Crbon From Activated Sludge
Granular  Activated Crbon From Activated SludgeGranular  Activated Crbon From Activated Sludge
Granular Activated Crbon From Activated SludgePT Carbon Indonesia
 
Hydrochar for-industrial-wastewater-treatment-an-overview-on-its-advantages-a...
Hydrochar for-industrial-wastewater-treatment-an-overview-on-its-advantages-a...Hydrochar for-industrial-wastewater-treatment-an-overview-on-its-advantages-a...
Hydrochar for-industrial-wastewater-treatment-an-overview-on-its-advantages-a...Ahmed Hasham
 
Hydrothermal liquefaction of_foodwaste_mqp_final
Hydrothermal liquefaction of_foodwaste_mqp_finalHydrothermal liquefaction of_foodwaste_mqp_final
Hydrothermal liquefaction of_foodwaste_mqp_finalMuhammad Usman
 
Research proposal
Research proposalResearch proposal
Research proposalDeepModi21
 
Cationic and anionic dye adsorption by agricultural solid wastes: A comprehen...
Cationic and anionic dye adsorption by agricultural solid wastes: A comprehen...Cationic and anionic dye adsorption by agricultural solid wastes: A comprehen...
Cationic and anionic dye adsorption by agricultural solid wastes: A comprehen...IOSR Journals
 
4. bello 2017. applications of fluidized bed reactor in wastewater treatment
4. bello 2017. applications of fluidized bed reactor in wastewater treatment4. bello 2017. applications of fluidized bed reactor in wastewater treatment
4. bello 2017. applications of fluidized bed reactor in wastewater treatmentBritani Keith
 
A review on optimization production and upgrading
A review on optimization production and upgradingA review on optimization production and upgrading
A review on optimization production and upgradingMarco Del Valle Montero
 
Removal of Pb II from Aqueous Solutions using Activated Carbon Prepared from ...
Removal of Pb II from Aqueous Solutions using Activated Carbon Prepared from ...Removal of Pb II from Aqueous Solutions using Activated Carbon Prepared from ...
Removal of Pb II from Aqueous Solutions using Activated Carbon Prepared from ...ijtsrd
 
REMOVAL OF DISSOLVED SOLIDS IN WASTE WATER USING ACTIVATED CARBON FROM COCONU...
REMOVAL OF DISSOLVED SOLIDS IN WASTE WATER USING ACTIVATED CARBON FROM COCONU...REMOVAL OF DISSOLVED SOLIDS IN WASTE WATER USING ACTIVATED CARBON FROM COCONU...
REMOVAL OF DISSOLVED SOLIDS IN WASTE WATER USING ACTIVATED CARBON FROM COCONU...Journal For Research
 
Experimental Studies on Bioregeneration of Activated Carbon Contaminated With...
Experimental Studies on Bioregeneration of Activated Carbon Contaminated With...Experimental Studies on Bioregeneration of Activated Carbon Contaminated With...
Experimental Studies on Bioregeneration of Activated Carbon Contaminated With...IOSR Journals
 
Microalgae Environmental Application
Microalgae  Environmental  Application Microalgae  Environmental  Application
Microalgae Environmental Application NandhiniC24
 
Operational parameters affecting the removal and recycling of direct blue ind...
Operational parameters affecting the removal and recycling of direct blue ind...Operational parameters affecting the removal and recycling of direct blue ind...
Operational parameters affecting the removal and recycling of direct blue ind...IJEAB
 
Biogas Synthesis as Means of Solid Waste Management in Kampala, Uganda
Biogas Synthesis as Means of Solid Waste Management in Kampala, UgandaBiogas Synthesis as Means of Solid Waste Management in Kampala, Uganda
Biogas Synthesis as Means of Solid Waste Management in Kampala, UgandaScientific Review SR
 
Innovations in wastewater treatment
Innovations in wastewater treatmentInnovations in wastewater treatment
Innovations in wastewater treatmentLinde Gas Benelux
 

Similar to Joshua Dang _ Project #3 FINAL (20)

Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitropheno...
Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitropheno...Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitropheno...
Thermodynamic Study of Adsorption of Phenol, 4-Chlorophenol, and 4-Nitropheno...
 
MAKENDRAN C
MAKENDRAN CMAKENDRAN C
MAKENDRAN C
 
Preparation of activated carbon from pyrolytic conversion of musa paradisiaca
Preparation of activated carbon from pyrolytic conversion of musa paradisiacaPreparation of activated carbon from pyrolytic conversion of musa paradisiaca
Preparation of activated carbon from pyrolytic conversion of musa paradisiaca
 
Granular Activated Crbon From Activated Sludge
Granular  Activated Crbon From Activated SludgeGranular  Activated Crbon From Activated Sludge
Granular Activated Crbon From Activated Sludge
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Hydrochar for-industrial-wastewater-treatment-an-overview-on-its-advantages-a...
Hydrochar for-industrial-wastewater-treatment-an-overview-on-its-advantages-a...Hydrochar for-industrial-wastewater-treatment-an-overview-on-its-advantages-a...
Hydrochar for-industrial-wastewater-treatment-an-overview-on-its-advantages-a...
 
Hydrothermal liquefaction of_foodwaste_mqp_final
Hydrothermal liquefaction of_foodwaste_mqp_finalHydrothermal liquefaction of_foodwaste_mqp_final
Hydrothermal liquefaction of_foodwaste_mqp_final
 
Research proposal
Research proposalResearch proposal
Research proposal
 
Cationic and anionic dye adsorption by agricultural solid wastes: A comprehen...
Cationic and anionic dye adsorption by agricultural solid wastes: A comprehen...Cationic and anionic dye adsorption by agricultural solid wastes: A comprehen...
Cationic and anionic dye adsorption by agricultural solid wastes: A comprehen...
 
4. bello 2017. applications of fluidized bed reactor in wastewater treatment
4. bello 2017. applications of fluidized bed reactor in wastewater treatment4. bello 2017. applications of fluidized bed reactor in wastewater treatment
4. bello 2017. applications of fluidized bed reactor in wastewater treatment
 
Kv2418301838
Kv2418301838Kv2418301838
Kv2418301838
 
A review on optimization production and upgrading
A review on optimization production and upgradingA review on optimization production and upgrading
A review on optimization production and upgrading
 
Removal of Pb II from Aqueous Solutions using Activated Carbon Prepared from ...
Removal of Pb II from Aqueous Solutions using Activated Carbon Prepared from ...Removal of Pb II from Aqueous Solutions using Activated Carbon Prepared from ...
Removal of Pb II from Aqueous Solutions using Activated Carbon Prepared from ...
 
REMOVAL OF DISSOLVED SOLIDS IN WASTE WATER USING ACTIVATED CARBON FROM COCONU...
REMOVAL OF DISSOLVED SOLIDS IN WASTE WATER USING ACTIVATED CARBON FROM COCONU...REMOVAL OF DISSOLVED SOLIDS IN WASTE WATER USING ACTIVATED CARBON FROM COCONU...
REMOVAL OF DISSOLVED SOLIDS IN WASTE WATER USING ACTIVATED CARBON FROM COCONU...
 
Experimental Studies on Bioregeneration of Activated Carbon Contaminated With...
Experimental Studies on Bioregeneration of Activated Carbon Contaminated With...Experimental Studies on Bioregeneration of Activated Carbon Contaminated With...
Experimental Studies on Bioregeneration of Activated Carbon Contaminated With...
 
Microalgae Environmental Application
Microalgae  Environmental  Application Microalgae  Environmental  Application
Microalgae Environmental Application
 
Operational parameters affecting the removal and recycling of direct blue ind...
Operational parameters affecting the removal and recycling of direct blue ind...Operational parameters affecting the removal and recycling of direct blue ind...
Operational parameters affecting the removal and recycling of direct blue ind...
 
Biogas Synthesis as Means of Solid Waste Management in Kampala, Uganda
Biogas Synthesis as Means of Solid Waste Management in Kampala, UgandaBiogas Synthesis as Means of Solid Waste Management in Kampala, Uganda
Biogas Synthesis as Means of Solid Waste Management in Kampala, Uganda
 
Innovations in wastewater treatment
Innovations in wastewater treatmentInnovations in wastewater treatment
Innovations in wastewater treatment
 
Ex34922926
Ex34922926Ex34922926
Ex34922926
 

Joshua Dang _ Project #3 FINAL

  • 1. University  of  South  Florida                       Investigation of Methods and Processes to Increase Efficiency for Carbon Activation Processes                                 Joshua  Dang   ENC  3246   Dr.  Dianne  Donnelly   June  20,  2014  
  • 2.   2   Abstract:     The   demand   for   activated   carbon   keeps   growing   while   supply   will   dwindle.     As   a   result   economic   feasibility   of   such   an   important   material   will   become   nonexistent.     Alternative   sources   of   carbon   rich   raw   material   need   to   be   used,   along   with   innovative   methods  of  activating  carbon,  which  currently  is  a  high  energy  and  high   cost   endeavor.   As   a   result,   possible   improvements   could   be   made   to   increase   the   overall   efficiency   of   the   activation   process,   increase   effectiveness  of  activated  carbon  desired  characteristics,  and  decrease   the   detrimental   impacts   to   the   environment.     These   current   improvements   when   applied   together   within   the   process   chain   will   allow   for   greater   stability   of   raw   resources,   make   activated   carbon   pound  for  pound  more  effective,  and  preserve  the  environment.         INTRODUCTION   The  material  known  as  activated  carbon  affects  countless  lives.    The  application  of   this  material  can  be  found  in  products  throughout  household  items,  including  soft   drinks  and  shampoos  to  large-­‐scale  industries  including  removal  of  mercury  from   natural  gas,  and  carbon  dioxide  from  fermentation  processes  [8].      The  reason  to  the   wide  application  of  activated  carbon  is  due  to  molecular  carbons  special  structure   characteristics,   which   has   a   great   capacity   and   affinity   for   impurities.   Activated   carbon   is   not   found   naturally   with   these   characteristics   but   needs   to   be   created   through  an  extended  process.    It  is  said  that  any  carbon  rich  raw  material  can  be   used   as   a   precursor   to   activated   carbon   [1];   however   current   raw   materials   are   mainly  sourced  from  coal  and  wood  [9],  and  are  activated  through  physical  means,   which   require   a   high-­‐energy   input.     These   current   sources   and   methods   present   several   issues   both   economically   and   environmentally.     Activation   of   carbon   is   a   high  energy  and  cost  endeavor;  however  as  research  continues  for  more  sustainable   sources   such   as   agricultural   byproducts,   viable   processing   methods   such   as   chemical  activation,  and  recycling  techniques  such  as  regeneration  of  used  activated   carbon,   the   cost   will   decrease   as   well   as   an   increased   impact   to   preserve   the   environment.     An   investigation   of   the   activated   carbon   process   will   result   in   measures   to   increase   the   overall   efficiency   of   the   activation   process,   increase   effectiveness  of  activated  carbon  desired  characteristics,  and  decrease  detrimental   impacts  to  the  environment.       BACKGROUND   History     The  earliest  use  of  activated  carbon  has  been  lost  in  history  [10].  It  is  believed  that   the  earliest  application  dates  back  to  3750  B.C.  where  activated  carbon  was  used  by   ancient  Hindus  in  India  as  a  process  for  water  filtration  [11].  The  first  documented  
  • 3.   3   use  of  activated  carbon  was  found  on  Egyptian  papyrus  dating  back  to  1500  B.C.  as  a   method  to  absorb  unpleasant  odors  [10].         The  desirable  characteristic  of  activated  carbon  have  been  known  for  more  than  one   and   a   half   millennia,   however   its   main   application   today   are   still   targeted   at   fundamentally  similar  organic  impurities.  As  late  as  the  18th  century  sources  of  raw   carbon   were   derived   from   blood   and   animals,   which   were   then   used   to   purify   liquids  [11].    Documented  uses  of  activated  carbon,  which  became  noted  in  medical   journals,   were   a   treatment   for   ingested   poisons   [10].     Early   uses   were   also   for   medicinal  purposes,  and  most  widely  accepted  in  the  19th  century  were  uses  found   in   the   treatment   of   poultices,   sloughing   ulcers,   and   gangrenous   sores   [10].   Some   noticeable   improvement   pertains   to   the   manufacturing   process   the   produces   a   different   shape   and   size   of   activated   carbon.     These   different   shapes   allow   for   longevity  of  the  carbon  purification  performance  as  well  as  improved  shipping  and   handling  durability.    At  the  beginning  of  the  twentieth  century  activated  carbon  was   only   available   in   a   powder   form.     During   the   First   World   War   granular   activated   carbon   was   used   in   gas   mask   to   capture   deadly   organic   gases   [11],   this   granular   processing  eventually  lead  to  the  widespread  manufacturing  of  granular  activated   for  other  applications  such  as  water  treatment,  and  gas  purification.       The  wide  application  and  available  sources  of  activated  carbon  throughout  history   and   until   this   day   is   a   testament   to   the   imperative   usefulness   of   this   material.   Through  activated  carbons  intrinsic  physical  and  chemical  properties  the  usefulness   has  been  experienced  and  applied  to  a  vast  array  of  situations.    Very  prominent  to   this  day  is  the  application  of  activated  carbon  to  purify  both  gaseous  and  aqueous   phases  of  substances  to  prevent  environmental  harm.       Current  Application     Widespread   uses   of   activated   carbon   can   be   found   in   industrial,   pharmaceutical,   water  treatment  processes.      Great  focus  is  put  on  the  protection  of  the  environment   and  the  health  effects  from  emission  of  gases  and  waste  products  in  industrial  and   manufacturing   processes.     These   emissions   include   volatile   organic   compounds   (VOCs)  and  are  known  to  cause  cancer  in  tested  animals  [12].    Activated  carbon  is   vital   in   the   many   processes   that   involve   VOC’s   to   stay   within   EPA   regulation   of   emissions   for   health   concerns.     Impurities   in   an   aqueous   phase   are   also   an   important  consideration  in  many  products.    These  organic  impurities  are  in  the  form   of  chemical  solvents  used  in  production  processes  for  products  such  as  paints  and   household  cleaners  [12].    Activated  carbon  due  to  its  ability  to  conduct  electricity   can   also   be   found   as   a   catalyst   in   many   vital   electronic   components   including   batteries,  supercapacitors,  and  fuel  cells  [7].    A  major  use  of  activated  carbon  is  in   the  purification  of  water  for  human  consumption.    When  using  this  absorbent  in  the   water  purification  process  it  is  layer  after  sand  and  before  chlorination  [11].      The   use  of  activated  carbon  not  only  decreases  bad  odors  and  taste  but  also  removes   harmful   contaminants   found   in   the   water   sources,   such   as   synthetic   organic  
  • 4.   4   compounds   (SOC).     These   current   applications   are   a   constant   issue,   as   nations   economical   and   industrial   development   demands   more   activated   carbon   to   continually  produce  quality  products.         Molecular  Characteristics     Activated  carbon  has  a  desired  physical  and  chemical  structure  due  to  the  porosity   and   surface   area   different   to   non-­‐activated   carbon.   The   porosity   describes   the   amount   of   microscopic   cavity   between   carbon   molecules   and   affects   the   total   surface  area  per  unit  mass.    Another  important  aspect  is  the  pore  size,  which  is  due   to  the  process  of  activation  as  well  as  the  raw  source  for  carbon.    Impurities  can   range  from  one  one  thousand  of  a  micron  to  ten  thousand  microns.    To  effectively   capture  these  contaminants  a  correct  pore  size  must  be  used  to  allow  for  proper   mechanical   fit,   which   is   then   preceded   my   chemical   interactions.     Surface   area   is   directly  related  to  the  capacity  to  hold  impurities.      To  achieve  a  high  surface  area   the  pore  structure  must  be  extensive,  in  that  many  channels  are  present  [2].    It  is   evident   that   the   level   of   desired   molecular   characteristics   can   be   altered.     This   provides  a  variable  in  the  effort  to  increase  the  overall  efficiency  of  the  production   of  activated  carbon.     PROCCESSING  RAW  CARBON   Current  and  Alternative  Sources     Current  raw  carbon  sources  as  a  precursor  are  from  coal  and  wood.    In  the  recent   pass,  the  selected  source  must  meet  several  of  the  following  requirements.    It  must   have  the  potential  to  produce  high  quality  activated  carbon,  which  is  a  function  of   the  porosity  and  resulting  surface  area.    It  must  have  large  available  supplies;  this   will  in  effect  lower  the  cost.    And  finally  it  must  have  the  ability  to  be  stored  for   extended  periods  of  time  [3].    Both  coal  and  wood  have  passed  these  conditions  as   leading   sources   for   the   production   of   activated   carbon,   however   an   important   requirement   have   been   dismissed   in   past   decisions.     This   important   neglected   requirement   is   how   does   sourcing   of   this   material   effect   the   environment?     With   130,000   tons   per   year   of   wood   and   100,000   tons   per   year   of   raw   material   being   harvested,  the  impact  to  the  environment  is  one  of  great  magnitude.       Wood  and  coal  are  currently  the  leading  source  for  the  production  of  carbon.     Coal  comes  from  surface  and  underground  mines,  with  the  majority  from  surface   mines  at  sixty  percent  [13].    Coal  is  considered  a  non-­‐renewable  source  due  to  the   time  it  takes  to  create  it.    Estimates  have  said  supplies  of  coal  will  last  only  until   2035  [14].  This  estimates  does  not  take  into  account  the  coal  that  is  too  deep  and   costly  to  mine.    This  presents  an  issue  to  the  economics  of  using  coal  as  a  source.     Alternative  sources  must  be  researched  and  tested  to  keep  supplies  of  raw  carbon   stable.     Without   proper   preparation   a   sudden   decrease   in   supply   will   trigger  
  • 5.   5   staggering  price  hikes,  which  will  effect  how  companies  operate,  prices  of  products,   and  could  even  shut  down  industrial  processes  and  slow  the  economy.     Alternative   sources   need   to   meet   all   constraints   previously   set   as   well   as   an   additional   constraint   of   sustainability.     This   will   be   the   basis   to   analyzing   the   potential  of  new  sources.         A  study  on  the  use  of  corncobs  proves  the  economic  feasibility  and  sustainability  of   this  agricultural  waste  byproduct  as  a  potential  source.    In  a  published  article  from   American  Chemical  Science  Journal  the  use  of  corncobs  have  two  main  advantages,   the   first   is   the   wide   availability,   and   second   is   the   intrinsic   thermodynamics   properties  of  corncobs  [15].    There  is  a  vast  amount  of  corncobs  that  are  wasted  in   the   production   of   food   and   ethanol.     A   51%   portion   of   total   U.S.   grown   corn   is   dedicated  to  the  production  of  food  and  ethanol;  within  these  productions  only  the   kernels  are  used  [16].    These  waste  products  can  be  recycled  and  processed  to  into  a   high   value   material   of   activated   carbon.     The   thermodynamic   characteristics   of   corncobs  allows  for  “a  low  carbonization  temperature  compared  to  other  biomass   residues”   [15].     This   allows   for   a   lower   temperature   during   the   activation   stage   where  all  the  undesired  components  existing  within  the  raw  material  are  vaporized.     Vaporization  of  any  material  takes  a  great  amount  of  energy;  this  is  due  to  how  heat   is   distributed   within   a   substance.     The   energy   input   is   converted   into   thermal   energy,  which  then  flows  down  a  gradient  of  temperature  differences.    Only  when   the  gradient  is  at  equilibrium  at  the  boiling  point  of  the  substance  does  vaporization   initiate.   Therefore,   corncobs   with   low   carbonization   temperature   will   allow   for   a   lower  input  of  thermal  energy.    This  material  has  potential  as  an  alternative  source.     The  source  of  municipal  refuse  is  numerous  in  supply.      This  refers  to  solid  waste   consisting   of   everyday   trash   and   garbage.     The   process   to   which   the   raw   refuse   originates   is   through   the   sorting   out   of   glass   and   metal   leaving   a   source   full   of   carbonaceous  material  ready  to  be  activated  [5].    The  desired  characteristic  from   the  municipal  refuse  was  on  the  same  standard  as  those  that  are  from  coal  and  wood   [5].    Pass  considerations  for  using  refuse  have  been  disregarded  due  to  the  cheap   and  highly  available  supplies  of  wood.    The  economics  and  profit  margins  were  the   key  driving  force  to  choosing  less  sustainable  sources.  However  as  supplies  of  coal   and   the   ever-­‐increasing   cost   to   produce   lumber   these   readily   available   waste   sources  will  become  comparatively  economical.       Activation  Methods     Without   an   improvement   to   chemical   and   physical   characteristics   of   the   carbon   precursor,  the  effectiveness  of  carbon  as  an  absorbent  could  be  17  to  25  times  less   absorbent.    The  possible  range  is  due  to  the  source  of  raw  materials  used,  which  is  a   factor  in  the  pore  structure  and  surface  area.    Activation  is  also  crucial  in  creating   certain  structure,  which  have  a  greater  affinity  for  targeted  impurities.    Activation  is   done   either   physically   or   chemically;   however,   both   techniques   have   been   used  
  • 6.   6   simultaneously  to  yield  even  higher  absorption  and  adsorption  capacities  [5]  at  the   expense  of  higher  cost.       Figure 1: Processes for chemical and physical activation [5].     In  figure  1  both  physical  and  chemical  process  are  outlined.  A  physical  activation  is   also   referred   to   as   a   thermal   activation,   due   to   required   high   temperature   conditions.   Physical   means   of   activation   generally   required   two   steps,   as   seen   in   above  figure.    The  first  step  is  carbonization.    This  involves  pyrolysis  in  the  absence   of  oxygen,  which  is  the  breakdown  of  the  raw  carbon  rich  organic  matter  [6].    This  is   done  with  a  high-­‐energy  input  to  raise  temperatures  to  a  level  in  which  a  precession   of  vaporization  of  volatile  components  are  possible.    To  achieve  a  condition  without   the  presence  of  oxygen,  inert  gases  are  pumped  into  the  system.    Inert  gases  are   non-­‐reactive   agents;   this   prevents   side   reactions,   which   is   desired   for   the   conservation  of  pure  carbon.      The  result  of  pyrolysis  is  a  reduction  of  raw  material,   but  also  an  increase  in  the  quality  and  purity  of  carbon  atoms  [3].    The  second  stage   is   activation;   this   process   is   carried   out   with   oxygen   or   steam.     The   purpose   of   activation  is  to  increase  the  porosity  of  the  structure  as  well  as  increase  the  surface   area.     High-­‐energy   cost   due   to   high   temperature   processes   is   associated   predominately  with  physical  means  of  activation.         In  contrast  to  a  high  temperature  process,  chemical  means  of  activation  is  a  one  step   process  and  allows  for  carbonization  at  a  significantly  lower  temperature,  as  a  result  
  • 7.   7   there  is  a  greater  porous  structure  [7].    However,  chemical  precursors  are  needed,   which  are  typically  an  acid,  or  strong  base  [4].    Raw  materials  are  impregnated  with   the   chemicals,   which   begins   the   process   of   removing   the   impurities   through   dehydration   which   effects   pyrolytic   decomposition   of   impurities.     Chemical   activation   allow   for   less   thermal   energy   to   be   expended,   however   washing   to   remove  the  impregnated  chemicthals  and  drying  are  required  [5].    These  chemicals   are  a  hazard  to  the  environment  if  not  recycled  and  reused.    The  potential  to  recycle   pyrolytic   chemical   present   an   advantage   over   physical   means   of   activation.     The   economics  associated  with  recycle  stream  within  industrial  application  saves  fresh   material,  which  is  directly  associated  with  lower  cost  of  purchasing  these  chemicals.     For   every   unit   of   mass   activated   carbon   is   created   there   is   small   portion   of   chemicals  that  are  required.    The  ability  to  use  the  fraction  of  the  activated  carbon   product  to  remove  the  impurities  of  the  chemical  for  reuse  of  the  chemical  presents   a   possible   solution   to   lower   energy   consumption   within   the   activated   carbon   process.    Taking  into  account  the  large  surface  area  that  is  created  due  to  activation,   only  a  small  portion  of  the  total  product  needs  to  be  used  in  the  recycling  process  of   the  pyrolytic  chemicals;  Overall,  chemical  activation  if  a  more  viable  method  than   physical  activation.     ENERGY  &  ENVIROMENT     Energy  Consumption     Energy  considerations  for  processing  will  be  discussed  starting  from  the  sourcing  of   raw   materials.     The   mining   of   coal   in   itself   is   a   high-­‐energy   process.     The   large   machinery   and   transportation   of   raw   carbon   accounts   for   most   of   the   energy   expenses  in  the  extraction  of  coal.    Its  estimated  that  15%  of  the  production  cost  is   due  to  transportation  and  mining  of  coal  alone  [14].         Energy  consumption  of  wood  as  precursors  also  account  for  a  significant  portion  of   the   production.     Shipping   of   wood   from   less   rural   area   and   overseas   present   significant   fuel   usage.   Temporary   bridges   must   be   built   over   small   rivers   and   streams   to   gain   access   to   depleting   supplies   of   hard   woods.     This   takes   large   equipment  to  get  to  these  areas.    After  the  wood  is  harvested  it  has  to  be  dried,  this   requires  a  kiln,  which  is  a  thermally  insulated  chamber  where  heat  can  be  added  to   evaporate  water  [18].    High-­‐energy  inputs  are  required  with  vaporization  processes.     A  physical  activation  technique  requires  great  amount  of  expended  energy  to  raise   temperature  to  pyrolyze  all  the  undesired  substances.    The  needed  temperature  of   physical   activation   is   on   a   scale   of   magnitude   twice   that   required   of   a   chemical   activation.  High  temperatures  are  needed  in  the  two-­‐step  process  of  carbonization   and   activation,   which   is   approximately   1000˚C   and   700˚   C   for   carbonization   and   activation   processes,   respectively.   It’s   intuitively   known   and   explained   by   the   2nd   law  of  thermodynamics  that  heat  flows  from  high  temperature  to  low  temperatures.     If  a  substance  at  a  lower  temperature  needs  to  be  at  a  state  of  higher  temperature,   energy  from  the  surroundings  must  be  inputted  in  to  the  system.    This  is  the  main  
  • 8.   8   reason   to   experienced   high   operational   cost   associated   with   a   physical   activation   process.         Chemical  activation  is  a  more  economical  and  energy  efficient  method  to  physical   activation.    This  method  also  requires  energy  inputs  to  raise  temperature  in  order  to   start  reactions,  however  these  temperature  are  well  below  at  approximately  500  ˚C   depending  on  certain  raw  materials.    Another  advantage  of  a  chemical  means  is  the   one  step  process,  which  lowers  cost  of  special  equipment  and  larger  facilities.  For   every   action   there   is   a   reaction,   and   with   energy   consumption   there   is   a   environmental  impact.     Environmental  Effects  of  Activation  Methods     Through   a   physical   means   of   activation   high   temperatures   are   required   for   extended  periods  to  vaporize  impurities  within  the  raw  material.    The  implication  of   this   method   is   a   high-­‐energy   consumption,   and   therefore   high   environmental   effects.    The  method  to  heating  of  the  carbon  precursor  is  done  though  resistance   heat  coil  or  through  the  burning  of  natural  gas  [5].    Both  of  these  heating  techniques   have  detrimental  impacts  on  the  environment.    With  heat  coils,  electricity  is  used.     Electricity   is   produce   mainly   from   nonrenewable   resources,   with   39%   coal,   27%   natural   gas,   and   19%   nuclear.     These   sources   of   energy   pollute   the   environment   with  the  harmful  emissions  such  as  nitrogen  oxide  (NOx),  which  is  known  to  cause   cancer   in   animals,   destroy   natural   environments,   and   affect   the   health   of   the   ecosystem  [17].           A   chemical   means   of   activation   requires   far   less   energy   than   with   thermal   activation.    With  300,000  tons  a  year  of  activated  carbon  produce  solely  for  water   treatment  processes,  a  huge  impact  can  be  clearly  seen  in  small  energy  saving  [5].    A   potential  detrimental  effect  to  the  environment  can  be  seen  in  the  use  of  chemicals   to  pyrolyze  raw  carbon.    Possible  contamination  can  happen  due  to  waste  chemicals   not  being  handled  properly,  however  with  EPA  regulations  it  would  be  rare.  This   case   would   also   be   unlikely   because   it   is   uneconomically   to   waste   high   value   solvents;  a  common  practice  would  be  to  recycle  and  reuse.    Lower  energy  and  use   of  recyclable  solvents,  chemical  activation  is  a  better  for  the  environment.     DISSCUSSION  &  SUMMARY   A  Cost  Effective  and  Sustainable  Model     As  a  result  of  the  investigation  possible  improvements  could  be  made  to  increase   the  overall  efficiency  of  the  activation  process.    A  sustainable  model  dictates  the  use   of  a  recycling  method.    In  figure  2  below,  a  comparison  of  the  main  aspects  of  the   process   is   depicted.     It   all   starts   with   sustainable   sources   those   that   would   have   otherwise   been   wasted   such   as   corncob   and   municipal   refuse   to   list   just   the   few   possibilities.    With  supplies  of  current  carbon  precursors  becoming  scarce,  this  will   provide  the  shift  in  economical  feasibility  of  waste  sources.    The  benefits  of  using  
  • 9.   9   waste   byproducts   will   positively   impact   emission   levels,   natural   habitat   preservation,  and  save  natural  resources.    The  energy  saved  from  initial  production   cost  of  equipment,  labor,  and  transportation  will  then  be  decreased  due  to  recycle  of   the  material  from  waste  byproducts.           Next  the  activation  of  carbon  will  be  processed  with  a  chemical  pyrolysis  method.     This   will   provide   significant   lower   thermal   energy   cost   than   current   physical   methods  due  to  chemical  reactions  instead  of  vaporizations.    The  ability  to  recycle   chemical   activating   solvent   will   provide   yet   another   advantage   in   economically   feasibility  and  sustainability.    With  chemical  reactions  the  ability  to  control  precise   characteristics  in  pore  structures  will  help  to  increase  the  effectiveness  of  activated   carbon  for  specific  materials  and  situations.                                                           Figure 2: A comparison of the process chain in the production of activated carbon. On the left is the how the majority of activated carbon is currently produced, and on the right is a more efficient process with sustainable sources and efficient activation methods.
  • 10.   10   Conclusion   The   gap   is   widening   and   the   rising   cost   of   current   sources   is   soaring.     With   resources  becoming  scarce  and  difficult  to  access  the  economics  of  the  production   will  not  allow  current  prices  and  profits.    Following  this  standard  sustainable  and   efficient   model,   supply   shortages   and   environmental   harm   will   be   avoided.     The   ecosystem   as   a   whole   is   being   affected,   but   with   new   highly   efficient   activation   techniques   and   sustainable   sources,   the   detrimental   effect   of   the   destruction   to   forest,  and  natural  reserves  will  be  limited.    With  the  described  cost  effective  and   sustainable  model,  this  guideline  provides  a  path  to  increase  the  overall  efficiency  of   the   activation   process,   increase   effectiveness   of   activated   carbon,   and   decrease   detrimental  impacts  to  the  environment.                                                                  
  • 11.   11       References:     [1] J. T. Nwabanne and P. K. Igbokwe, STATISTICAL OPTIMIZATION OF PRODUCTION OF ACTIVATED CARBON DERIVED FROM OIL PALM EMPTY FRUIT BUNCH [Online], 04 ed., Nigeria: Nnamdi Azikiwe University: Department of Chemical Engineering, 2013. Available: http://www.journalcra.com/sites/default/files/Download%202171.pdf [2] Y. Chiang, P. Chiang, and C. Huang, Effects of pore structure and temperature on VOC adsorption on activated carbon [Online], Singapore: Nanyang Technological University, 2000. Available: http://ntur.lib.ntu.edu.tw/bitstream/246246/96682/1/16.pdf [3] Michael David Sufnarhki, Regeneration of Granular Activated Carbon [Online], Texas: The University of Texas at Austin, 1999. Available: http://www.dtic.mil/dtic/tr/fulltext/u2/a362534.pdf [4] M. K. Stevenson, J. O. Leckie, Preparation and Evaluation of Activated Carbon Produced from the Municipal Refuse, California: Standard University Department of Civil Engineering, 1972. Available: http://books.google.com/books?id=N9EDAAAAIAAJ&printsec=frontco ver&dq=production+of+activated+carbon&hl=en&sa=X&ei=pziKU6- iHsORqgar9oGQDQ&ved=0CEQQ6AEwAQ#v=onepage&q=productio n%20of%20activated%20carbon&f=false [5] A. H. Abdullah, A. Kassim, Z. Zainal, D. Kuang, F. Ahmad, and O. S. Wooi, Preparation and Characterization of Activated Carbon from Gelam Wood Bark (Melaleuca cajuputi), Malaysia: University of Malaysia, 2000. Available: http://www.researchgate.net/publication/237464297_Preparation_and_C haracterization_of_Activated_Carbon_from_Gelam_Wood_Bark_(Melal euca_cajuputi)/file/72e7e52d69b5bbc478.pdf. [6] Burning of wood, Finland: VTT Technical Research Centre of Finland, 2000. Available: http://virtual.vtt.fi/virtual/innofirewood/stateoftheart/database/burning/b urning.html
  • 12.   12   [7] B. Viswanathan, P. Indra Neel and T. K. Varadarajan, Methods of Activation and Specific Applications of Carbon Materials, Chennai: NATIONAL CENTRE FOR CATALYSIS RESEARCH DEPARTMENT OF CHEMISTRY INDIAN INSTITUTE OF TECHNOLOGY, 2009. Available: http://nccr.iitm.ac.in/e%20book- Carbon%20Materials%20final.pdf [8] Gas Processing with Activated Carbon, Chemviron Carbon, 2014. Available: http://www.chemvironcarbon.com/en/applications/process/gas- processing [9] Raw Materials Used in the Production of Activated Carbon, Virginia Polytechnic Institute and State University, 2014. Available: http://www.webapps.cee.vt.edu/ewr/environmental/teach/gwprimer/grou p23/acraw_materials.html [10] THE HISTORY OF ACTIVATED CARBON, Cabot Norit Activated Carbon, 2014. Available: http://www.norit.com/carbon-academy/the-history-of-activated-carbon/ [11] Ferhan Cecen, Water and Wastewater Treatment: Historical Perspective of Activated Carbon Adsorption and its Integration with Biological Processes, Wiley, 2011. Available: http://www.wiley-vch.de/books/sample/3527324712_c01.pdf [12] Volatile Organic Compounds (VOCs), United States Environmental Protection Agency. Available: http://www.epa.gov/iaq/voc.html [13] Environmental impacts of coal power: fuel supply, Massachusetts: Union of Concerned Scientists. Available: http://www.ucsusa.org/clean_energy/coalvswind/c02a.html [14] ZANE SELVANS, WARNING: FAULTY REPORTING ON US COAL SUPPLIES, Colorado: Clean Energy Action, 2013. Available: http://cleanenergyaction.org/2013/10/30/warning-faulty-reporting-on-us- coal-supplies/
  • 13.   13   [15] J. M. Ketcha, D. J. D. Dina1, H. M. Ngomo1 and N. J. Ndi, Preparation and Characterization of Activated Carbons Obtained from Maize Cobs by Zinc Chloride Activation, Douala Cameroon: American Chemical Science Journal, 2012. Available: http://www.sciencedomain.org/download.php?f=1353500396- Ketcha%20et%20al_242012ACSJ1806.pdf&aid=689. [16] Gary W. Brester, Corn, Montana: Agricultural Marketing and Resource Center, 2012. Available: http://www.agmrc.org/commodities__products/grains __oilseeds/corn_grain/ [17] Natural Gas, Environmental Protection Agency: Agricultural Marketing and Resource Center, 2013. Available: http://www.epa.gov/cleanenergy/energy-and-you/affect/natural-gas.html [18] Phil Mitchell, LUMBER PROCESSING EFFICIENCY, YIELD AND VALUE, North Carolina: North Carolina State University. Available: http://www.ces.ncsu.edu/nreos/wood/RMOG/Yield.htm