Azure Machine
Learning
Workbench
A ZU R E M A C H I N E L E A R N I N G S E R V I C E S
VM (CPU/GPU)
Spark
Container Services
SQL Server
ML Server
ON-PREMISES
EDGE
Azure IoT Edge
学習とデプロイの選択肢
AZURE
学習履歴 &
モデル管理
サービス
Local machine
Data ScienceVM
(CPU / GPU)
Spark on HDInsight
Azure Batch AI
(Coming Soon)
ML Server
学習用の環境を自由に選べます
Workbench DOCKER
学習履歴管理サービス
28.
学習履歴管理サービス
# Import AzureML Logger library
from azureml.logging import get_azureml_logger
# Create a new instance of the logger
run_logger = get_azureml_logger()
# log a value
run_logger.log("key", value)
➢ Data store
-File system - Azure Blob
- SQL Database
➢ File Types
- Delimited Files (CSV, TSV, TXT)
- Fixed Width - Plain Text
- Excel - Json
- Parquet
➢ Sampling Strategy
- Top N - Random N
- Full file - Random %
Ingest and sample
Promote & download# setup environment
az ml env setup
-l <location>
-n <environment name>
# set environment
az ml env set
-g <resource-group>
-n <environment name>
# Create modelmanagement account
az ml account modelmanagement create
--name <modelmanagement name>
--resource-group <resource-group>
--location <region>
# deploy model
az ml service create realtime
-m <path to .link file>
-f <scoring script>
-r <runtime (spark-py|python)>
–n <webservice name>