SlideShare a Scribd company logo
1 of 32
Download to read offline
Is angling a stochastic process for life‐history 
  traits? An empirical assessment for marine 
                 coastal fisheries
Josep Alós1, Robert Arlinghaus2,3, Miquel Palmer1, Lucie Buttay1
               and Alexandre Alonso‐Fernández4
                            1IMEDEA (CSIC‐UIB), Spain
  2Leibniz‐Institute of Freshwater Ecology and Inland Fisheries , Berlin, Germany
3Inland Fisheries Management Laboratory, Humboldt‐University at Berlin, Germany
                                4IIM (CSIC), Spain
Overview

  1. Fishing is almost never random. Typically, gear is designed to 
     remove some kinds of individuals, usually individuals that are 
     larger and, indirectly, older (e.g. mesh size of nets)
  2. Fishing mortality is therefore size‐selective with respect both 
     to species and to phenotypic variation within species (Stokes 
     et al 1993; Jennings et al 1998)
Overview
  3. Similarly, in recreational fisheries, vulnerability to capture can 
     be size‐related, but also depends on a fish’s decision to attack 
     and (or) ingest baited hooks (e.g. Cooke et al 2007).
  4. In this context, individuals with lower cognitive abilities and 
     those with higher metabolism and growth capacity often take 
     more risks, rendering these fish more vulnerable to capture 
     (Reviewed in Uusi‐Heikkilä et al. 2008)
Overview

  5. If some part of the phenotypic variation within species is due 
     to genetic differences between individuals, then fishing might 
     causes evolutionary change
  6. Thus, behaviour‐driven vulnerability to fishing might 
     constitute an underappreciated mechanism for selection on 
     growth rate and (or) other life‐history traits (Uusi‐Heikkilä et 
     al. 2008)
Overview

  7. The potential for evolution of behavioural and physiological 
     traits and its consequences for life history, yet largely 
     overlooked research area within the emerging context of 
     Fisheries‐induced evolution of FIE (Uusi‐Heikkilä et al. 2008)
  8. Moreover, most of work are focused in freshwater 
     recreational fisheries and empirical evidences in marine wild 
     populations is still scarce
Objectives

   The main objective of this study is to provide an 
         empirical prove to know if angling is a 
        selection process rather than a random 
     process for life‐history  traits in marine coastal 
                          fisheries


                          With the main task:
   Estimating individual life‐history traits (reproduction investment, 
       infinite size, immature growth and maturation age/size) from 
           individuals randomly and angling sampled from a wild 
                                 population
The case study: marine coastal sedentary fish
       Case study: Painted comber, Serranus scriba (Serranidae)




     1. Simultaneous hermaphrodite (indeterminate spawners)
2. Maximum size (25 cm), short life‐span (maximum age 11 years), fast 
           growth and early age of maturation (~1st 2nd year)
                   3. Limited home range ( ~1 km2)
            4. Low interest for commercial fisheries, but…
One of the most important targeted species for the recreational fishery 
              from Balearic Islands (Morales‐Nin et al 2005)
Materials and methods

  Experimental site (EA):
  1. 1 experimental area at Palma Bay (wild population)
  2. Area of 1 km2 (~ mean of home range of S. scriba)
Materials and methods
  Sampling methods (Experiment):
  1. Random‐sample: based in beam trawl fishing (non‐selective 
     for life‐history traits a priori)
  2. Angling‐sample: based in experiment angling session using 
     conventional recreational gears (Static fishing with natural 
     baits) ↔ High vulnerable fish




                                   Vs.
Materials and methods
   Biological sampling:
   For each fish: Otolith extraction, total length (mm), age (years), 
     weight (g) and gonad extraction (batch fecundity and dry 
     weight)
                                                        120
                                                                   y = 8E-06x3.0843
                                                        100          R2 = 0.9915


                                                         80




                                           Weigth (g)
                                                         60


                                                         40


                                                         20

                                                                                      N=338
                                                          0
                                                              50    75 100 125 150 175 200
                                                                      Total length (mm)
Materials and methods
 Estimating life‐history traits (individual 
    growth and reproduction investment):


 1. Estimating life‐history traits is almost 
    never easy at individual level (we need 
    to track the individual over time)
 2. Ideally direct measures of the trait should be obtained 
    throughout their lifespan and only captivity and mark‐and‐
    recapture programs (e.g. Smith et al 1997 or Zhang et al 2009) 
    allow it
 3. However, the representativeness of captivity studies, and the 
    difficulties for mark‐and‐recapture programs (time scale and 
    effort, e.g. Palmer et al 2011) present different sources of bias
    (altering biological traits)
Materials and methods
        However, the back‐calculation of length‐at‐
          age using growth marks in the otoliths, 
          can offer reliable methods to obtain 
          information on individual level over its 
          life‐span (Pilling et al 2008_CJFAS)


                                                                                                                  200
                     300
                                 y = 57.7x - 20.872                                                               180
                     250            r 2 = 0.8369                                                                  160




                                                                                              Total length (mm)
                                                                                                                  140
 Total length (mm)




                     200
                                                                                                                  120
                     150
                                                                                                                  100
                     100                                                                                           80
                                                                                                                   60
                     50
                                                                                                                   40
                      0                                                                                            20
                           1.5           2            2.5          3          3.5   4   4.5                         0
                                                            Otolith radius (mm)                                         0   2     4    6      8   10
                                                                                                                                Age (years)
Materials and methods
      Estimating life‐history traits (Lester et al. 2004) fitting back‐
                  calculated data (4 main considerations)
   1. The life time growth pattern (individual growth trajectory) is biphasic
      characterized by a lineal growth in immature ages (all the energy is 
      invested in somatic growth)
   2. Adult somatic growth is represented by a Von Bertalanffy (VB) growth 
      equation (the characteristic asymptotic shape arising primarily from the 
      allocation of energy to reproduction




                                                                                      5
   3. Lester et al. 2004 model offered a 




                                                    Fish size in otolith scale (mm)
      biological interpretation of the VB 




                                                                                      4
      growth parameters (L∞, k and T0). 




                                                                                      3
   We can estimate the biological traits:  


                                                                                      2
     maximum immature growth (h), 

                                                                                      1
     reproduction investment (g), infinite size 
     (L∞) and size‐age of maturation (T) at                                           0
     individual level                                                                     0   5             10   15
                                                                                              Age (years)
Materials and methods

                          4) Problem: species with short life‐span
                                                                               Solution
    Number of fish (%)




                          40
                          30
                          20
                                                                               Fitting the longitudinal data in a 
                          10                                                      Bayesian context to include two 
                           0
                                1   2   3   4     5    6      7   8   9   10
                                                                                  kinds of a priori information:
                  290                           Age (years)
                                                                               The estimation of the parameters 
                  240                                                            depends on the:1) Populations 
                  190                                                            mean, 2) Previous data published 
                                                                                 and 3) Individual data
TL (mm)




                  140

                         90
                                                                               Bayesian credibility intervals of the 
                                                                                 posteriors distributions was used to 
                         40
                                                                                 assess with the differences among 
                         ‐10                                                     groups (Low and high “angling” 
                               0 3 6 9 12 15 18
                                  Age (years)                                    vulnerable fish)
Materials and methods

     Direct measures of reproduction investment: 
     1.Batch fecundity ~ “Quantity” 
     2.Mean dry weights of eggs ~ “Quality”

  Frequentist statistics: GLMM 
  In all cases data were non‐independent 
     and hierarchically structured in fishing 
     trips which were considered as 
     random factor
Results
   1. Sample size (fish size and age):
   Fish size (mm) and age (years) frequency distributions was not 
      different among group‐samples (GLMM, p = 0.490 and GLMM, 
      p = 0.695 respectively)
   1.0




                          Reproduction investment (g)
                                                                                2. PCA 
                         Maturation size
                                            Immature growth

                                                              Fish size
                                                                                • Independence of age and size
   PCA Axis 2 (70.5%)




                                                                                • Infinite size (L∞) and reproduc on 
                                                                   Age            investment (g) negatively correlated
                                                                                • High pre‐maturation somatic growth 
                                      Infinite size                               (h) associated with higher 
                                                                                  maturation size
   -1.0




                                                                   N=337
                        -0.6       PCA Axis 1 (46.5%)                     1.2
Results

    3. Maximum fish size (Lmax):
    The maximum size that the individual raise up to age ∞ (Lmax) 
      was different between vulnerability groups
            240
            220




                                        High growth ability in high 
                                           vulnerable individuals 
            200
     Lmax




                                              (angling sample)
            180
            160
            140




                  Low        High
Results

    4. Reproduction investment (g):
    Strong evidence for the hypothesis that the indirect measure of 
       individual reproduction investment (g) differs between groups
     Reproduction investement (g)
                                    0.9




                                                        Low reproduction 
                                                         investment in high 
                                    0.8




                                                       vulnerable individuals 
                                                          (angling sample)
                                    0.7
                                    0.6




                                          Low   High
Results

    5. Age of maturation (T) and immature growth rate (h):
    Posterior distributions reveals no differences between 
      vulnerability groups for the age of maturation (T)  and the 
      immature growth (h)




                                      50
          1.7




                                      45
          1.6
          1.5




                                      40
     T




                                  h
          1.4




                                      35
          1.3




                                      30
          1.2




                                      25
          1.1




                Low      High              Low         High
Results

    6. Summary: “averaged” individual trajectory per group
    Angling are doing an artificial selection against grow faster 
      individuals with high grow capacity and less investment to 
      reproduction

                                                    4
                                                                Fishing selection
                  Fish size in otolith scale (mm)
                                                    3
                                                    2
                                                    1




                                                                    Low
                                                                    High
                                                    0




                                                        0   5       10     15       20
                                                            Age (years)
Results
                           7. Direct measures of reproduction investment (batch fecundity 
                              and dry weight of eggs):
                                                                               Beam trawl
                                                                               Angling




                                                                                                0.020
                           10
                           9
 log ( batch fecundity )




                                                                                                0.015
                                                                              Egg Weight (mg)
                           8
                           7
                           6




                                                                                                0.010
                           5




                                                            Low
                           4




                                     P < 0.01               Conf.Int. 95%                               P < 0.05

                                                                                                0.005
                                                            High
                                                            Conf.Int. 95%
                           3




                                50      100     150     200             250                                 Low    High
                                          Fish Length(mm)
Results
   8. Relationship between Indirect measures and direct measures 
      of reproduction investment
   There was a significant relationship among batch fecundity and 
     dry weights of eggs and the reproduction investment obtained 
     from the otoliths




                                                                                          0.020
                               4.5
     log ( Batch Fecundity )
                               4.0




                                                                                          0.015
                                                                        Egg Weight (mg)
                               3.5




                                                                                          0.010
                               3.0




                                                                                          0.005
                               2.5




                                                       P < 0.01                                                P < 0.05
                                                                                          0.000
                               2.0




                                     0.6   0.7   0.8      0.9     1.0                             0.6   0.7   0.8   0.9   1.0
                                                 g                                                            g
Discussion: general

    Is angling a stochastic (random) process for life‐
         history traits in marine wild populations? 
   The answer is no
   Some individuals have             Vulnerable fish
   higher probability to be caught   Non‐vulnerable fish
Discussion: methods
   1. General results showed good performance of the Bayesian 
      framework to estimate individual life‐history traits Lmax , g, h
      and T (Credibility intervals are relatively small and unbiased 
      for all the parameters)
   2. Life‐history parameters were successfully estimated at 
      individual level
   3. Estimations were independent of fish size and age




                                                                        5
                                      Fish size in otolith scale (mm)
                                                                        4
                                                                        3
                                                                        2
                                                                        1
                                                                        0




                                                                            0   5             10   15
                                                                                Age (years)
Discussion: growth
   Our empirical approach demonstrated how angling exercises an 
     artificial selection against faster grow individuals 
   This result is well known (e.g. Biro and Post 2008_PNAS), but our 
     case‐study is one of the first studies in marine wild populations




                                                                       4
                                                                                   Fishing 




                                     Fish size in otolith scale (mm)
                                                                                       selection




                                                                       3
                                                                       2
                                                                       1               Low
                                                                                       High
                                                                       0



                                                                           0   5      10      15   20
    Biro & Post PNAS 2008                                                      Age (years)
Discussion: growth
   This fast grower individuals have higher grow ability with larger 
     maximum sizes
   In terms of fish size (length‐at‐age) “be smaller” should be the 
      optimal strategy to increase survival in an mortality‐
      environment dominated by angling
            240
            220
            200
     Lmax
            180
            160
            140




                  Low           High
Discussion: reproduction investment (indirect measures)

   Fish sampled by angling have lower values of reproduction 
      investment
   Angling exercises an artificial selection against the individuals that 
     invest less energy to reproduction (and invest more energy to 
     somatic growth)

   In this scenario, increase 
      investment of energy to 
      reproduction rather than 
      somatic growth should be 
      the “optimal life‐history 
      strategy” in exploited 
      populations
                                       Lester et al 2004 PRSLB 2008
Discussion: reproduction investment (direct measures)
   Direct measures of reproduction investment (Quantity ~ batch 
      fecundity and Quality ~ dry weigth of eggs) agreed with 
      indirect estimations (g)
   Direct and indirect measures are correlated <‐> good to get a 
      “averaged” measure of reproduction investment in indirect 
      spawners ( batch fecundity is too variable at individual level)




                 Shuter et al 2005 CJFAS
Discussion: age of maturation (T)
   It is expected that the age of maturation and fishing mortality are 
       negatively correlated, and exploited population tended to 
       mature earlier
   Thus fishing should drive selection against later maturation 
     individuals
   There were no differences (but a tendency) among the age of 
     maturation among the two kind of sampling




                                                                         1.7
                                                                         1.6
                                                                         1.5
   Two reasons explain that result:




                                                                     T
                                                                         1.4
                                                                         1.3
   1) Early maturation per se (short life 




                                                                         1.2
                                                                         1.1
      span) <‐> mature at 1+ years
                                                                               Low   High




   2) In early maturations species, 
      relationship among T and M is not so 
      clear                               Lester et al 2004 PRSLB 2008
Discussion: immature growth (h)
   Values of growth prior maturation h, (mm year‐1) were highly 
      variable and posterior distribution were highly overlapped
   Here, we can not sure if the negative results is consequence of 
     the method (early maturation of Serranus results in poor 
     information in early stages) or the true lack of differences




                                                                    4
         50




                                  Fish size in otolith scale (mm)
         45




                                                                    3
         40




                                                                    2
     h
         35
         30




                                                                    1

                                                                                   Low
         25




                                                                                   High
                                                                    0




              Low        High
                                                                        0   5     10      15   20
                                                                            Age (years)
Conclusions and implications
   Given the high heritability of this life‐history traits and the 
      intensity of size‐selective fish harvest of this species, 
      evolutionary responses in this sedentary fish population could 
      modify optimal strategies (driven evolutionary responses to 
      “be smaller”)


                     Fisheries‐induced evolution

                                 Phenotype

                      Physiology

    Genotype          Behavior           Vulnerability   Selection
                     Life‐history
Danke schön 
             &
Thank you for your attention

More Related Content

More from ecologiaazul

Movements and diving behaviour of mako shark in North Atlantic
Movements and diving behaviour of mako shark in North AtlanticMovements and diving behaviour of mako shark in North Atlantic
Movements and diving behaviour of mako shark in North Atlanticecologiaazul
 
Interactions and space-use overlap between satellite-tracked blue sharks and ...
Interactions and space-use overlap between satellite-tracked blue sharks and ...Interactions and space-use overlap between satellite-tracked blue sharks and ...
Interactions and space-use overlap between satellite-tracked blue sharks and ...ecologiaazul
 
System calculation of volumes by image analysis on sharks
System calculation of volumes by image analysis on sharksSystem calculation of volumes by image analysis on sharks
System calculation of volumes by image analysis on sharksecologiaazul
 
Reproductive traits and growth of Labrus bergylta in Galician waters
Reproductive traits and growth of Labrus bergylta in Galician watersReproductive traits and growth of Labrus bergylta in Galician waters
Reproductive traits and growth of Labrus bergylta in Galician watersecologiaazul
 
PhD Thesis Alexandre Alonso-Fernández
PhD Thesis Alexandre Alonso-FernándezPhD Thesis Alexandre Alonso-Fernández
PhD Thesis Alexandre Alonso-Fernándezecologiaazul
 
La pesca de los tiburones pelágicos y su gestión: el caso del marrajo azul (I...
La pesca de los tiburones pelágicos y su gestión: el caso del marrajo azul (I...La pesca de los tiburones pelágicos y su gestión: el caso del marrajo azul (I...
La pesca de los tiburones pelágicos y su gestión: el caso del marrajo azul (I...ecologiaazul
 

More from ecologiaazul (6)

Movements and diving behaviour of mako shark in North Atlantic
Movements and diving behaviour of mako shark in North AtlanticMovements and diving behaviour of mako shark in North Atlantic
Movements and diving behaviour of mako shark in North Atlantic
 
Interactions and space-use overlap between satellite-tracked blue sharks and ...
Interactions and space-use overlap between satellite-tracked blue sharks and ...Interactions and space-use overlap between satellite-tracked blue sharks and ...
Interactions and space-use overlap between satellite-tracked blue sharks and ...
 
System calculation of volumes by image analysis on sharks
System calculation of volumes by image analysis on sharksSystem calculation of volumes by image analysis on sharks
System calculation of volumes by image analysis on sharks
 
Reproductive traits and growth of Labrus bergylta in Galician waters
Reproductive traits and growth of Labrus bergylta in Galician watersReproductive traits and growth of Labrus bergylta in Galician waters
Reproductive traits and growth of Labrus bergylta in Galician waters
 
PhD Thesis Alexandre Alonso-Fernández
PhD Thesis Alexandre Alonso-FernándezPhD Thesis Alexandre Alonso-Fernández
PhD Thesis Alexandre Alonso-Fernández
 
La pesca de los tiburones pelágicos y su gestión: el caso del marrajo azul (I...
La pesca de los tiburones pelágicos y su gestión: el caso del marrajo azul (I...La pesca de los tiburones pelágicos y su gestión: el caso del marrajo azul (I...
La pesca de los tiburones pelágicos y su gestión: el caso del marrajo azul (I...
 

Recently uploaded

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhikauryashika82
 

Recently uploaded (20)

Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 

Is angling a stochastic process for life-history traits? An empirical assessment for marine coastal fisheries

  • 1. Is angling a stochastic process for life‐history  traits? An empirical assessment for marine  coastal fisheries Josep Alós1, Robert Arlinghaus2,3, Miquel Palmer1, Lucie Buttay1 and Alexandre Alonso‐Fernández4 1IMEDEA (CSIC‐UIB), Spain 2Leibniz‐Institute of Freshwater Ecology and Inland Fisheries , Berlin, Germany 3Inland Fisheries Management Laboratory, Humboldt‐University at Berlin, Germany 4IIM (CSIC), Spain
  • 2. Overview 1. Fishing is almost never random. Typically, gear is designed to  remove some kinds of individuals, usually individuals that are  larger and, indirectly, older (e.g. mesh size of nets) 2. Fishing mortality is therefore size‐selective with respect both  to species and to phenotypic variation within species (Stokes  et al 1993; Jennings et al 1998)
  • 3. Overview 3. Similarly, in recreational fisheries, vulnerability to capture can  be size‐related, but also depends on a fish’s decision to attack  and (or) ingest baited hooks (e.g. Cooke et al 2007). 4. In this context, individuals with lower cognitive abilities and  those with higher metabolism and growth capacity often take  more risks, rendering these fish more vulnerable to capture  (Reviewed in Uusi‐Heikkilä et al. 2008)
  • 4. Overview 5. If some part of the phenotypic variation within species is due  to genetic differences between individuals, then fishing might  causes evolutionary change 6. Thus, behaviour‐driven vulnerability to fishing might  constitute an underappreciated mechanism for selection on  growth rate and (or) other life‐history traits (Uusi‐Heikkilä et  al. 2008)
  • 5. Overview 7. The potential for evolution of behavioural and physiological  traits and its consequences for life history, yet largely  overlooked research area within the emerging context of  Fisheries‐induced evolution of FIE (Uusi‐Heikkilä et al. 2008) 8. Moreover, most of work are focused in freshwater  recreational fisheries and empirical evidences in marine wild  populations is still scarce
  • 6. Objectives The main objective of this study is to provide an  empirical prove to know if angling is a  selection process rather than a random  process for life‐history  traits in marine coastal  fisheries With the main task: Estimating individual life‐history traits (reproduction investment,  infinite size, immature growth and maturation age/size) from  individuals randomly and angling sampled from a wild  population
  • 7. The case study: marine coastal sedentary fish Case study: Painted comber, Serranus scriba (Serranidae) 1. Simultaneous hermaphrodite (indeterminate spawners) 2. Maximum size (25 cm), short life‐span (maximum age 11 years), fast  growth and early age of maturation (~1st 2nd year) 3. Limited home range ( ~1 km2) 4. Low interest for commercial fisheries, but… One of the most important targeted species for the recreational fishery  from Balearic Islands (Morales‐Nin et al 2005)
  • 8. Materials and methods Experimental site (EA): 1. 1 experimental area at Palma Bay (wild population) 2. Area of 1 km2 (~ mean of home range of S. scriba)
  • 9. Materials and methods Sampling methods (Experiment): 1. Random‐sample: based in beam trawl fishing (non‐selective  for life‐history traits a priori) 2. Angling‐sample: based in experiment angling session using  conventional recreational gears (Static fishing with natural  baits) ↔ High vulnerable fish Vs.
  • 10. Materials and methods Biological sampling: For each fish: Otolith extraction, total length (mm), age (years),  weight (g) and gonad extraction (batch fecundity and dry  weight) 120 y = 8E-06x3.0843 100 R2 = 0.9915 80 Weigth (g) 60 40 20 N=338 0 50 75 100 125 150 175 200 Total length (mm)
  • 11. Materials and methods Estimating life‐history traits (individual  growth and reproduction investment): 1. Estimating life‐history traits is almost  never easy at individual level (we need  to track the individual over time) 2. Ideally direct measures of the trait should be obtained  throughout their lifespan and only captivity and mark‐and‐ recapture programs (e.g. Smith et al 1997 or Zhang et al 2009)  allow it 3. However, the representativeness of captivity studies, and the  difficulties for mark‐and‐recapture programs (time scale and  effort, e.g. Palmer et al 2011) present different sources of bias (altering biological traits)
  • 12. Materials and methods However, the back‐calculation of length‐at‐ age using growth marks in the otoliths,  can offer reliable methods to obtain  information on individual level over its  life‐span (Pilling et al 2008_CJFAS) 200 300 y = 57.7x - 20.872 180 250 r 2 = 0.8369 160 Total length (mm) 140 Total length (mm) 200 120 150 100 100 80 60 50 40 0 20 1.5 2 2.5 3 3.5 4 4.5 0 Otolith radius (mm) 0 2 4 6 8 10 Age (years)
  • 13. Materials and methods Estimating life‐history traits (Lester et al. 2004) fitting back‐ calculated data (4 main considerations) 1. The life time growth pattern (individual growth trajectory) is biphasic characterized by a lineal growth in immature ages (all the energy is  invested in somatic growth) 2. Adult somatic growth is represented by a Von Bertalanffy (VB) growth  equation (the characteristic asymptotic shape arising primarily from the  allocation of energy to reproduction 5 3. Lester et al. 2004 model offered a  Fish size in otolith scale (mm) biological interpretation of the VB  4 growth parameters (L∞, k and T0).  3 We can estimate the biological traits:   2 maximum immature growth (h),  1 reproduction investment (g), infinite size  (L∞) and size‐age of maturation (T) at  0 individual level 0 5 10 15 Age (years)
  • 14. Materials and methods 4) Problem: species with short life‐span Solution Number of fish (%) 40 30 20 Fitting the longitudinal data in a  10 Bayesian context to include two  0 1 2 3 4 5 6 7 8 9 10 kinds of a priori information: 290 Age (years) The estimation of the parameters  240 depends on the:1) Populations  190 mean, 2) Previous data published  and 3) Individual data TL (mm) 140 90 Bayesian credibility intervals of the  posteriors distributions was used to  40 assess with the differences among  ‐10 groups (Low and high “angling”  0 3 6 9 12 15 18 Age (years) vulnerable fish)
  • 15. Materials and methods Direct measures of reproduction investment:  1.Batch fecundity ~ “Quantity”  2.Mean dry weights of eggs ~ “Quality” Frequentist statistics: GLMM  In all cases data were non‐independent  and hierarchically structured in fishing  trips which were considered as  random factor
  • 16. Results 1. Sample size (fish size and age): Fish size (mm) and age (years) frequency distributions was not  different among group‐samples (GLMM, p = 0.490 and GLMM,  p = 0.695 respectively) 1.0 Reproduction investment (g) 2. PCA  Maturation size Immature growth Fish size • Independence of age and size PCA Axis 2 (70.5%) • Infinite size (L∞) and reproduc on  Age investment (g) negatively correlated • High pre‐maturation somatic growth  Infinite size (h) associated with higher  maturation size -1.0 N=337 -0.6 PCA Axis 1 (46.5%) 1.2
  • 17. Results 3. Maximum fish size (Lmax): The maximum size that the individual raise up to age ∞ (Lmax)  was different between vulnerability groups 240 220 High growth ability in high  vulnerable individuals  200 Lmax (angling sample) 180 160 140 Low High
  • 18. Results 4. Reproduction investment (g): Strong evidence for the hypothesis that the indirect measure of  individual reproduction investment (g) differs between groups Reproduction investement (g) 0.9 Low reproduction  investment in high  0.8 vulnerable individuals  (angling sample) 0.7 0.6 Low High
  • 19. Results 5. Age of maturation (T) and immature growth rate (h): Posterior distributions reveals no differences between  vulnerability groups for the age of maturation (T)  and the  immature growth (h) 50 1.7 45 1.6 1.5 40 T h 1.4 35 1.3 30 1.2 25 1.1 Low High Low High
  • 20. Results 6. Summary: “averaged” individual trajectory per group Angling are doing an artificial selection against grow faster  individuals with high grow capacity and less investment to  reproduction 4 Fishing selection Fish size in otolith scale (mm) 3 2 1 Low High 0 0 5 10 15 20 Age (years)
  • 21. Results 7. Direct measures of reproduction investment (batch fecundity  and dry weight of eggs): Beam trawl Angling 0.020 10 9 log ( batch fecundity ) 0.015 Egg Weight (mg) 8 7 6 0.010 5 Low 4 P < 0.01 Conf.Int. 95% P < 0.05 0.005 High Conf.Int. 95% 3 50 100 150 200 250 Low High Fish Length(mm)
  • 22. Results 8. Relationship between Indirect measures and direct measures  of reproduction investment There was a significant relationship among batch fecundity and  dry weights of eggs and the reproduction investment obtained  from the otoliths 0.020 4.5 log ( Batch Fecundity ) 4.0 0.015 Egg Weight (mg) 3.5 0.010 3.0 0.005 2.5 P < 0.01 P < 0.05 0.000 2.0 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.9 1.0 g g
  • 23. Discussion: general Is angling a stochastic (random) process for life‐ history traits in marine wild populations?  The answer is no Some individuals have  Vulnerable fish higher probability to be caught Non‐vulnerable fish
  • 24. Discussion: methods 1. General results showed good performance of the Bayesian  framework to estimate individual life‐history traits Lmax , g, h and T (Credibility intervals are relatively small and unbiased  for all the parameters) 2. Life‐history parameters were successfully estimated at  individual level 3. Estimations were independent of fish size and age 5 Fish size in otolith scale (mm) 4 3 2 1 0 0 5 10 15 Age (years)
  • 25. Discussion: growth Our empirical approach demonstrated how angling exercises an  artificial selection against faster grow individuals  This result is well known (e.g. Biro and Post 2008_PNAS), but our  case‐study is one of the first studies in marine wild populations 4 Fishing  Fish size in otolith scale (mm) selection 3 2 1 Low High 0 0 5 10 15 20 Biro & Post PNAS 2008 Age (years)
  • 26. Discussion: growth This fast grower individuals have higher grow ability with larger  maximum sizes In terms of fish size (length‐at‐age) “be smaller” should be the  optimal strategy to increase survival in an mortality‐ environment dominated by angling 240 220 200 Lmax 180 160 140 Low High
  • 27. Discussion: reproduction investment (indirect measures) Fish sampled by angling have lower values of reproduction  investment Angling exercises an artificial selection against the individuals that  invest less energy to reproduction (and invest more energy to  somatic growth) In this scenario, increase  investment of energy to  reproduction rather than  somatic growth should be  the “optimal life‐history  strategy” in exploited  populations Lester et al 2004 PRSLB 2008
  • 28. Discussion: reproduction investment (direct measures) Direct measures of reproduction investment (Quantity ~ batch  fecundity and Quality ~ dry weigth of eggs) agreed with  indirect estimations (g) Direct and indirect measures are correlated <‐> good to get a  “averaged” measure of reproduction investment in indirect  spawners ( batch fecundity is too variable at individual level) Shuter et al 2005 CJFAS
  • 29. Discussion: age of maturation (T) It is expected that the age of maturation and fishing mortality are  negatively correlated, and exploited population tended to  mature earlier Thus fishing should drive selection against later maturation  individuals There were no differences (but a tendency) among the age of  maturation among the two kind of sampling 1.7 1.6 1.5 Two reasons explain that result: T 1.4 1.3 1) Early maturation per se (short life  1.2 1.1 span) <‐> mature at 1+ years Low High 2) In early maturations species,  relationship among T and M is not so  clear Lester et al 2004 PRSLB 2008
  • 30. Discussion: immature growth (h) Values of growth prior maturation h, (mm year‐1) were highly  variable and posterior distribution were highly overlapped Here, we can not sure if the negative results is consequence of  the method (early maturation of Serranus results in poor  information in early stages) or the true lack of differences 4 50 Fish size in otolith scale (mm) 45 3 40 2 h 35 30 1 Low 25 High 0 Low High 0 5 10 15 20 Age (years)
  • 31. Conclusions and implications Given the high heritability of this life‐history traits and the  intensity of size‐selective fish harvest of this species,  evolutionary responses in this sedentary fish population could  modify optimal strategies (driven evolutionary responses to  “be smaller”) Fisheries‐induced evolution Phenotype Physiology Genotype Behavior Vulnerability Selection Life‐history
  • 32. Danke schön  & Thank you for your attention