SlideShare a Scribd company logo
1 of 25
Download to read offline
Intro	
  to	
  Neural	
  Networks	
  
Dean	
  Wya2e	
  
Boulder	
  Data	
  Science	
  
@drwya2e	
  
June	
  9,	
  2016	
  
Neural	
  Networks	
  
•  AI	
  summer	
  is	
  here!	
  
•  In	
  the	
  last	
  year	
  NNs	
  
have	
  	
  
–  ConFnued	
  SOA	
  
advancements	
  in	
  
image	
  and	
  speech	
  
recogniFon	
  
–  Beaten	
  a	
  human	
  player	
  
in	
  Go	
  
–  Provided	
  some	
  
quanFficaFon	
  of	
  “art”	
  
	
  
About	
  me	
  
•  100,000,000,000	
  neurons	
  
•  10,000	
  dendriFc	
  inputs	
  per	
  
neuron	
  
•  1	
  electrical	
  output	
  
How	
  does	
  your	
  brain	
  work?	
  
One	
  simple	
  abstracFon	
  
Dendri'c	
  
input	
  
Synap'c	
  
weights	
  
Soma	
   Axonal	
  output	
  
Digression	
  into	
  regression	
  
•  Linear	
  regression	
  
•  LogisFc	
  regression	
  
How	
  to	
  learn	
  the	
  weights?	
  
•  If	
  we	
  know	
  what	
  output	
  should	
  look	
  like,	
  can	
  
compute	
  error	
  and	
  update	
  weights	
  to	
  minimize	
  it	
  
–  OpFmizaFon	
  problem,	
  typically	
  use	
  gradient	
  descent	
  
_	
   Correct	
  output	
  
	
  
Output	
  
Error	
  
Gradient	
  descent	
  
•  Given	
  a	
  cost	
  funcFon	
  
– MSE	
  
– Cross-­‐entropy	
  
– etc.	
  
•  Can	
  take	
  step	
  in	
  opposite	
  direcFon	
  of	
  cost	
  
gradient	
  by	
  compuFng	
  derivaFve	
  w.r.t.	
  
weights	
  
•  Scale	
  by	
  learning	
  rate	
  (Fny	
  step)	
  
A	
  brief	
  history	
  of	
  neural	
  networks:	
  
The	
  Perceptron	
  
x1	
   x2	
   y	
  
0	
   0	
   0	
  
0	
   1	
   0	
  
1	
   0	
   0	
  
1	
   1	
   1	
  
~1960:	
  “The	
  perceptron”	
  
Universal	
  funcFon	
  approximator	
  
AND	
  
A	
  brief	
  history	
  of	
  neural	
  networks:	
  
The	
  Perceptron	
  
~1960:	
  “The	
  perceptron”	
  
Universal	
  funcFon	
  approximator	
  
x1	
   x2	
   y	
  
0	
   0	
   0	
  
0	
   1	
   1	
  
1	
   0	
   1	
  
1	
   1	
   0	
  
…but	
  only	
  if	
  funcFon	
  is	
  linearly	
  separable	
  
XOR	
  
?	
  
A	
  brief	
  history	
  of	
  neural	
  networks:	
  
The	
  Perceptron	
  
•  Neural	
  network	
  research	
  halts	
  	
  
(AI	
  winter)	
  
•  Meanwhile…	
  
–  Support	
  Vector	
  Machine	
  (SVM)	
  
invented,	
  solves	
  non-­‐linear	
  
problems	
  
•  Shif	
  toward	
  separaFon	
  of	
  feature	
  
representaFon	
  and	
  classificaFon	
  
–  Handcraf	
  the	
  best	
  features,	
  train	
  
the	
  SVM	
  (or	
  current	
  state-­‐of-­‐the-­‐
art)	
  to	
  do	
  the	
  classificaFon	
  
•  Eventually,	
  mulF-­‐layer	
  perceptron	
  
generalizaFon	
  realized,	
  solves	
  non-­‐linear	
  
problems	
  
–  Nobody	
  cares…	
  
A	
  brief	
  history	
  of	
  neural	
  networks:	
  
Next	
  ~30	
  years	
  	
  
h"ps://www.youtube.com/watch?v=3liCbRZPrZA	
  
Handcrafed	
  arFsanal	
  features	
  
•  Discovering	
  good	
  features	
  is	
  hard!	
  
–  Requires	
  a	
  lot	
  of	
  domain	
  knowledge	
  
–  State	
  of	
  the	
  art	
  in	
  computer	
  vision	
  was	
  the	
  culminaFon	
  of	
  years	
  of	
  
collaboraFon	
  between	
  computer	
  vision	
  scienFsts,	
  neuroscienFsts,	
  etc.	
  
•  Neural	
  networks	
  automaFcally	
  learn	
  features	
  (weights)	
  from	
  examples	
  
based	
  on	
  the	
  task	
  
–  Each	
  neuron	
  is	
  a	
  “feature	
  detector”	
  that	
  acFvates	
  proporFonately	
  to	
  how	
  
well	
  its	
  input	
  matches	
  its	
  weights	
  
–  Deep	
  learning:	
  Shif	
  back	
  from	
  hand-­‐crafed	
  features	
  to	
  features	
  learned	
  
from	
  task	
  
General	
  learning	
  methods	
  for	
  robust	
  feature	
  
representaFon	
  and	
  classificaFon	
  
Hidden	
  1	
   Hidden	
  2	
   Hidden	
  3	
  
•  Handful	
  of	
  researchers	
  sFll	
  toiling	
  away	
  on	
  neural	
  networks	
  with	
  li2le-­‐to-­‐no	
  
recogniFon	
  
–  2012:	
  one	
  grad	
  student	
  studying	
  how	
  to	
  implement	
  neural	
  networks	
  on	
  GPUs	
  submits	
  
first	
  “deep	
  learning”	
  architecture	
  to	
  image	
  recogniFon	
  challenge,	
  wins	
  by	
  a	
  landslide	
  
–  2013:	
  Almost	
  every	
  submission	
  the	
  is	
  a	
  deep	
  neural	
  network	
  executed	
  on	
  GPU	
  
(conFnuing	
  trend)	
  
A	
  brief	
  history	
  of	
  neural	
  networks:	
  
Deep	
  learning	
  bandwagon	
  
First	
  deep	
  neural	
  network	
  
•  8	
  layers	
  
•  650,000	
  “neurons”	
  (units)	
  
•  60,000,000	
  learned	
  parameters	
  
•  630,000,000	
  connecFons	
  
•  Uses	
  same	
  basic	
  algorithm	
  as	
  mulF-­‐layer	
  perceptron	
  to	
  learn	
  weights	
  
•  Finally	
  caught	
  on	
  because	
  
–  Can	
  do	
  it	
  “fast”	
  (~1	
  week	
  in	
  2012)	
  thanks	
  to	
  GPU-­‐based	
  computaFon	
  
–  Actually	
  works	
  and	
  with	
  less	
  overfikng	
  due	
  to	
  tricks	
  and	
  massive	
  amounts	
  of	
  data	
  
AlexNet	
  
AlexNet	
  	
  
96	
  11x11	
  pixel	
  filter	
  weights	
  learned	
  from	
  ImageNet	
  	
  
AlexNet	
  
Handcrafed	
  Textons	
  
Unseen	
  image	
  classificaFons	
  
Neural	
  Networks	
  in	
  2016	
  
•  Variety	
  of	
  libraries	
  that	
  specify	
  
inputs	
  as	
  tensor	
  minibatch	
  and	
  
automaFcally	
  compute	
  gradients	
  
–  Tensorflow	
  
–  Theano	
  (Keras/Lasagne)	
  
–  Torch	
  
•  Libraries	
  also	
  available	
  for	
  
common	
  Neural	
  Network	
  layer	
  
types	
  
–  ConvoluFonal,	
  acFvaFon,	
  pooling,	
  	
  
dropout,	
  RNN,	
  etc.	
  
•  Almost	
  too	
  easy	
  
–  Mind	
  the	
  danger	
  zone!	
  
Data	
  science	
  due	
  diligence	
  
“Neural	
  Networks	
  sound	
  awesome	
  and	
  will	
  solve	
  all	
  our	
  
problems!”	
  
	
  
•  Significant	
  investment	
  in	
  resources.	
  GPU	
  (TPU?)	
  cluster,	
  ramp-­‐up	
  
on	
  niche/rapidly-­‐evolving	
  tools	
  
•  Long	
  feedback	
  loop	
  for	
  architecture	
  improvement.	
  Typically	
  launch	
  
many	
  jobs	
  and	
  terminate	
  bad	
  models	
  (see	
  above)	
  
•  Need	
  a	
  lot	
  of	
  high-­‐dimensional	
  data	
  with	
  variability	
  (millions	
  of	
  
unique	
  observaFons	
  and/or	
  heavy	
  data	
  augmentaFon).	
  Delicate	
  
balance	
  of	
  increased	
  predicFve	
  power/overfikng	
  	
  
•  Hard	
  to	
  debug	
  when	
  not	
  working.	
  Millions	
  of	
  reasons	
  (literally)	
  a	
  
model	
  can	
  be	
  wrong,	
  few	
  ways	
  it	
  can	
  be	
  right.	
  “Black	
  magic”	
  
•  Deep	
  nonlinear	
  models	
  suffer	
  from	
  interpretability	
  issues.	
  Blackbox	
  
model	
  (although	
  acFve	
  research	
  here)	
  
Thanks	
  
Manuel	
  Ruder,	
  Alexey	
  Dosovitskiy,	
  Thomas	
  Brox	
  (2016).	
  ArFsFc	
  style	
  transfer	
  for	
  videos.	
  
h2p://arxiv.org/abs/1604.08610	
  
h2ps://www.youtube.com/watch?v=Khuj4ASldmU	
  
Resources	
  
“This	
  is	
  cool,	
  but	
  I	
  don’t	
  (want	
  to)	
  code”	
  
h2p://playground.tensorflow.org	
  
“I	
  am	
  comfortable	
  with	
  the	
  SciPy	
  stack	
  
and	
  want	
  to	
  understand	
  more”	
  
	
  A	
  Neural	
  Network	
  in	
  11	
  lines	
  of	
  Python	
  
h2p://iamtrask.github.io/2015/07/12/basic-­‐python-­‐network/	
  
“I	
  am	
  comfortable	
  with	
  ML	
  libraries	
  and	
  
want	
  to	
  build	
  a	
  model”	
  
	
  MNIST	
  
•  Keras	
  
h2ps://github.com/fchollet/keras/blob/master/examples/
mnist_cnn.py	
  
•  Tensorflow	
  
h2ps://www.tensorflow.org/versions/r0.8/tutorials/mnist/pros/
index.html	
  
Varia'onal	
  Autoencoders	
  (also	
  using	
  MNIST)	
  
•  Keras	
  
h2p://blog.keras.io/building-­‐autoencoders-­‐in-­‐keras.html	
  
•  Tensorflow	
  
h2ps://jmetzen.github.io/2015-­‐11-­‐27/vae.html	
  

More Related Content

What's hot

Artificial neural network
Artificial neural networkArtificial neural network
Artificial neural networkmustafa aadel
 
Feedforward neural network
Feedforward neural networkFeedforward neural network
Feedforward neural networkSopheaktra YONG
 
Artificial Neural Network
Artificial Neural NetworkArtificial Neural Network
Artificial Neural NetworkPrakash K
 
Neural network & its applications
Neural network & its applications Neural network & its applications
Neural network & its applications Ahmed_hashmi
 
Introduction to Generative Adversarial Networks (GANs)
Introduction to Generative Adversarial Networks (GANs)Introduction to Generative Adversarial Networks (GANs)
Introduction to Generative Adversarial Networks (GANs)Appsilon Data Science
 
Neural networks.ppt
Neural networks.pptNeural networks.ppt
Neural networks.pptSrinivashR3
 
Batch normalization presentation
Batch normalization presentationBatch normalization presentation
Batch normalization presentationOwin Will
 
Artificial Neural Networks - ANN
Artificial Neural Networks - ANNArtificial Neural Networks - ANN
Artificial Neural Networks - ANNMohamed Talaat
 
backpropagation in neural networks
backpropagation in neural networksbackpropagation in neural networks
backpropagation in neural networksAkash Goel
 
Back propagation
Back propagationBack propagation
Back propagationNagarajan
 
Regularization in deep learning
Regularization in deep learningRegularization in deep learning
Regularization in deep learningKien Le
 
Artificial nueral network slideshare
Artificial nueral network slideshareArtificial nueral network slideshare
Artificial nueral network slideshareRed Innovators
 
Deep Feed Forward Neural Networks and Regularization
Deep Feed Forward Neural Networks and RegularizationDeep Feed Forward Neural Networks and Regularization
Deep Feed Forward Neural Networks and RegularizationYan Xu
 
Artificial Neural Network seminar presentation using ppt.
Artificial Neural Network seminar presentation using ppt.Artificial Neural Network seminar presentation using ppt.
Artificial Neural Network seminar presentation using ppt.Mohd Faiz
 
Artificial Neural Network
Artificial Neural NetworkArtificial Neural Network
Artificial Neural NetworkNainaBhatt1
 
Autoencoders
AutoencodersAutoencoders
AutoencodersCloudxLab
 

What's hot (20)

Neural network
Neural networkNeural network
Neural network
 
Artificial neural network
Artificial neural networkArtificial neural network
Artificial neural network
 
Feedforward neural network
Feedforward neural networkFeedforward neural network
Feedforward neural network
 
Artificial Neural Network
Artificial Neural NetworkArtificial Neural Network
Artificial Neural Network
 
Perceptron & Neural Networks
Perceptron & Neural NetworksPerceptron & Neural Networks
Perceptron & Neural Networks
 
Deep learning
Deep learningDeep learning
Deep learning
 
Neural network & its applications
Neural network & its applications Neural network & its applications
Neural network & its applications
 
Introduction to Generative Adversarial Networks (GANs)
Introduction to Generative Adversarial Networks (GANs)Introduction to Generative Adversarial Networks (GANs)
Introduction to Generative Adversarial Networks (GANs)
 
Neural networks.ppt
Neural networks.pptNeural networks.ppt
Neural networks.ppt
 
Batch normalization presentation
Batch normalization presentationBatch normalization presentation
Batch normalization presentation
 
Artificial Neural Networks - ANN
Artificial Neural Networks - ANNArtificial Neural Networks - ANN
Artificial Neural Networks - ANN
 
backpropagation in neural networks
backpropagation in neural networksbackpropagation in neural networks
backpropagation in neural networks
 
Back propagation
Back propagationBack propagation
Back propagation
 
HOPFIELD NETWORK
HOPFIELD NETWORKHOPFIELD NETWORK
HOPFIELD NETWORK
 
Regularization in deep learning
Regularization in deep learningRegularization in deep learning
Regularization in deep learning
 
Artificial nueral network slideshare
Artificial nueral network slideshareArtificial nueral network slideshare
Artificial nueral network slideshare
 
Deep Feed Forward Neural Networks and Regularization
Deep Feed Forward Neural Networks and RegularizationDeep Feed Forward Neural Networks and Regularization
Deep Feed Forward Neural Networks and Regularization
 
Artificial Neural Network seminar presentation using ppt.
Artificial Neural Network seminar presentation using ppt.Artificial Neural Network seminar presentation using ppt.
Artificial Neural Network seminar presentation using ppt.
 
Artificial Neural Network
Artificial Neural NetworkArtificial Neural Network
Artificial Neural Network
 
Autoencoders
AutoencodersAutoencoders
Autoencoders
 

Similar to Introduction to Neural Networks

MDEC Data Matters Series: machine learning and Deep Learning, A Primer
MDEC Data Matters Series: machine learning and Deep Learning, A PrimerMDEC Data Matters Series: machine learning and Deep Learning, A Primer
MDEC Data Matters Series: machine learning and Deep Learning, A PrimerPoo Kuan Hoong
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learningAmr Rashed
 
An Introduction to Deep Learning
An Introduction to Deep LearningAn Introduction to Deep Learning
An Introduction to Deep LearningPoo Kuan Hoong
 
Deep Learning and Tensorflow Implementation(딥러닝, 텐서플로우, 파이썬, CNN)_Myungyon Ki...
Deep Learning and Tensorflow Implementation(딥러닝, 텐서플로우, 파이썬, CNN)_Myungyon Ki...Deep Learning and Tensorflow Implementation(딥러닝, 텐서플로우, 파이썬, CNN)_Myungyon Ki...
Deep Learning and Tensorflow Implementation(딥러닝, 텐서플로우, 파이썬, CNN)_Myungyon Ki...Myungyon Kim
 
Deep Learning Training at Intel
Deep Learning Training at IntelDeep Learning Training at Intel
Deep Learning Training at IntelAtul Vaish
 
From neural networks to deep learning
From neural networks to deep learningFrom neural networks to deep learning
From neural networks to deep learningViet-Trung TRAN
 
Artificial Neural Networks Lect1: Introduction & neural computation
Artificial Neural Networks Lect1: Introduction & neural computationArtificial Neural Networks Lect1: Introduction & neural computation
Artificial Neural Networks Lect1: Introduction & neural computationMohammed Bennamoun
 
Big Data Malaysia - A Primer on Deep Learning
Big Data Malaysia - A Primer on Deep LearningBig Data Malaysia - A Primer on Deep Learning
Big Data Malaysia - A Primer on Deep LearningPoo Kuan Hoong
 
DSRLab seminar Introduction to deep learning
DSRLab seminar   Introduction to deep learningDSRLab seminar   Introduction to deep learning
DSRLab seminar Introduction to deep learningPoo Kuan Hoong
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkYan Xu
 
Artificial Intelligence, Machine Learning and Deep Learning
Artificial Intelligence, Machine Learning and Deep LearningArtificial Intelligence, Machine Learning and Deep Learning
Artificial Intelligence, Machine Learning and Deep LearningSujit Pal
 
Introduction to Neural Networks in Tensorflow
Introduction to Neural Networks in TensorflowIntroduction to Neural Networks in Tensorflow
Introduction to Neural Networks in TensorflowNicholas McClure
 
introduction to deeplearning
introduction to deeplearningintroduction to deeplearning
introduction to deeplearningEyad Alshami
 
Neural Networks and Deep Learning Basics
Neural Networks and Deep Learning BasicsNeural Networks and Deep Learning Basics
Neural Networks and Deep Learning BasicsJon Lederman
 
A brief introduction to recent segmentation methods
A brief introduction to recent segmentation methodsA brief introduction to recent segmentation methods
A brief introduction to recent segmentation methodsShunta Saito
 
Deep Learning with Python (PyData Seattle 2015)
Deep Learning with Python (PyData Seattle 2015)Deep Learning with Python (PyData Seattle 2015)
Deep Learning with Python (PyData Seattle 2015)Alexander Korbonits
 
Neural Networks and Deep Learning: An Intro
Neural Networks and Deep Learning: An IntroNeural Networks and Deep Learning: An Intro
Neural Networks and Deep Learning: An IntroFariz Darari
 

Similar to Introduction to Neural Networks (20)

MDEC Data Matters Series: machine learning and Deep Learning, A Primer
MDEC Data Matters Series: machine learning and Deep Learning, A PrimerMDEC Data Matters Series: machine learning and Deep Learning, A Primer
MDEC Data Matters Series: machine learning and Deep Learning, A Primer
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learning
 
An Introduction to Deep Learning
An Introduction to Deep LearningAn Introduction to Deep Learning
An Introduction to Deep Learning
 
Deep Learning and Tensorflow Implementation(딥러닝, 텐서플로우, 파이썬, CNN)_Myungyon Ki...
Deep Learning and Tensorflow Implementation(딥러닝, 텐서플로우, 파이썬, CNN)_Myungyon Ki...Deep Learning and Tensorflow Implementation(딥러닝, 텐서플로우, 파이썬, CNN)_Myungyon Ki...
Deep Learning and Tensorflow Implementation(딥러닝, 텐서플로우, 파이썬, CNN)_Myungyon Ki...
 
Neural Networks-1
Neural Networks-1Neural Networks-1
Neural Networks-1
 
Deep Learning
Deep LearningDeep Learning
Deep Learning
 
Deep Learning Training at Intel
Deep Learning Training at IntelDeep Learning Training at Intel
Deep Learning Training at Intel
 
From neural networks to deep learning
From neural networks to deep learningFrom neural networks to deep learning
From neural networks to deep learning
 
Artificial Neural Networks Lect1: Introduction & neural computation
Artificial Neural Networks Lect1: Introduction & neural computationArtificial Neural Networks Lect1: Introduction & neural computation
Artificial Neural Networks Lect1: Introduction & neural computation
 
Big Data Malaysia - A Primer on Deep Learning
Big Data Malaysia - A Primer on Deep LearningBig Data Malaysia - A Primer on Deep Learning
Big Data Malaysia - A Primer on Deep Learning
 
DSRLab seminar Introduction to deep learning
DSRLab seminar   Introduction to deep learningDSRLab seminar   Introduction to deep learning
DSRLab seminar Introduction to deep learning
 
Introduction to Recurrent Neural Network
Introduction to Recurrent Neural NetworkIntroduction to Recurrent Neural Network
Introduction to Recurrent Neural Network
 
Artificial Intelligence, Machine Learning and Deep Learning
Artificial Intelligence, Machine Learning and Deep LearningArtificial Intelligence, Machine Learning and Deep Learning
Artificial Intelligence, Machine Learning and Deep Learning
 
Introduction to Neural Networks in Tensorflow
Introduction to Neural Networks in TensorflowIntroduction to Neural Networks in Tensorflow
Introduction to Neural Networks in Tensorflow
 
introduction to deeplearning
introduction to deeplearningintroduction to deeplearning
introduction to deeplearning
 
CNN Algorithm
CNN AlgorithmCNN Algorithm
CNN Algorithm
 
Neural Networks and Deep Learning Basics
Neural Networks and Deep Learning BasicsNeural Networks and Deep Learning Basics
Neural Networks and Deep Learning Basics
 
A brief introduction to recent segmentation methods
A brief introduction to recent segmentation methodsA brief introduction to recent segmentation methods
A brief introduction to recent segmentation methods
 
Deep Learning with Python (PyData Seattle 2015)
Deep Learning with Python (PyData Seattle 2015)Deep Learning with Python (PyData Seattle 2015)
Deep Learning with Python (PyData Seattle 2015)
 
Neural Networks and Deep Learning: An Intro
Neural Networks and Deep Learning: An IntroNeural Networks and Deep Learning: An Intro
Neural Networks and Deep Learning: An Intro
 

Recently uploaded

All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdfNAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdfWadeK3
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxpradhanghanshyam7136
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 

Recently uploaded (20)

All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdfNAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
NAVSEA PEO USC - Unmanned & Small Combatants 26Oct23.pdf
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Cultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptxCultivation of KODO MILLET . made by Ghanshyam pptx
Cultivation of KODO MILLET . made by Ghanshyam pptx
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 

Introduction to Neural Networks

  • 1. Intro  to  Neural  Networks   Dean  Wya2e   Boulder  Data  Science   @drwya2e   June  9,  2016  
  • 2. Neural  Networks   •  AI  summer  is  here!   •  In  the  last  year  NNs   have     –  ConFnued  SOA   advancements  in   image  and  speech   recogniFon   –  Beaten  a  human  player   in  Go   –  Provided  some   quanFficaFon  of  “art”    
  • 4. •  100,000,000,000  neurons   •  10,000  dendriFc  inputs  per   neuron   •  1  electrical  output   How  does  your  brain  work?  
  • 5. One  simple  abstracFon   Dendri'c   input   Synap'c   weights   Soma   Axonal  output  
  • 6. Digression  into  regression   •  Linear  regression   •  LogisFc  regression  
  • 7. How  to  learn  the  weights?   •  If  we  know  what  output  should  look  like,  can   compute  error  and  update  weights  to  minimize  it   –  OpFmizaFon  problem,  typically  use  gradient  descent   _   Correct  output     Output   Error  
  • 8. Gradient  descent   •  Given  a  cost  funcFon   – MSE   – Cross-­‐entropy   – etc.   •  Can  take  step  in  opposite  direcFon  of  cost   gradient  by  compuFng  derivaFve  w.r.t.   weights   •  Scale  by  learning  rate  (Fny  step)  
  • 9. A  brief  history  of  neural  networks:   The  Perceptron   x1   x2   y   0   0   0   0   1   0   1   0   0   1   1   1   ~1960:  “The  perceptron”   Universal  funcFon  approximator   AND  
  • 10. A  brief  history  of  neural  networks:   The  Perceptron   ~1960:  “The  perceptron”   Universal  funcFon  approximator  
  • 11. x1   x2   y   0   0   0   0   1   1   1   0   1   1   1   0   …but  only  if  funcFon  is  linearly  separable   XOR   ?   A  brief  history  of  neural  networks:   The  Perceptron  
  • 12. •  Neural  network  research  halts     (AI  winter)   •  Meanwhile…   –  Support  Vector  Machine  (SVM)   invented,  solves  non-­‐linear   problems   •  Shif  toward  separaFon  of  feature   representaFon  and  classificaFon   –  Handcraf  the  best  features,  train   the  SVM  (or  current  state-­‐of-­‐the-­‐ art)  to  do  the  classificaFon   •  Eventually,  mulF-­‐layer  perceptron   generalizaFon  realized,  solves  non-­‐linear   problems   –  Nobody  cares…   A  brief  history  of  neural  networks:   Next  ~30  years     h"ps://www.youtube.com/watch?v=3liCbRZPrZA  
  • 14. •  Discovering  good  features  is  hard!   –  Requires  a  lot  of  domain  knowledge   –  State  of  the  art  in  computer  vision  was  the  culminaFon  of  years  of   collaboraFon  between  computer  vision  scienFsts,  neuroscienFsts,  etc.   •  Neural  networks  automaFcally  learn  features  (weights)  from  examples   based  on  the  task   –  Each  neuron  is  a  “feature  detector”  that  acFvates  proporFonately  to  how   well  its  input  matches  its  weights   –  Deep  learning:  Shif  back  from  hand-­‐crafed  features  to  features  learned   from  task   General  learning  methods  for  robust  feature   representaFon  and  classificaFon   Hidden  1   Hidden  2   Hidden  3  
  • 15. •  Handful  of  researchers  sFll  toiling  away  on  neural  networks  with  li2le-­‐to-­‐no   recogniFon   –  2012:  one  grad  student  studying  how  to  implement  neural  networks  on  GPUs  submits   first  “deep  learning”  architecture  to  image  recogniFon  challenge,  wins  by  a  landslide   –  2013:  Almost  every  submission  the  is  a  deep  neural  network  executed  on  GPU   (conFnuing  trend)   A  brief  history  of  neural  networks:   Deep  learning  bandwagon   First  deep  neural  network  
  • 16. •  8  layers   •  650,000  “neurons”  (units)   •  60,000,000  learned  parameters   •  630,000,000  connecFons   •  Uses  same  basic  algorithm  as  mulF-­‐layer  perceptron  to  learn  weights   •  Finally  caught  on  because   –  Can  do  it  “fast”  (~1  week  in  2012)  thanks  to  GPU-­‐based  computaFon   –  Actually  works  and  with  less  overfikng  due  to  tricks  and  massive  amounts  of  data   AlexNet  
  • 17. AlexNet     96  11x11  pixel  filter  weights  learned  from  ImageNet     AlexNet   Handcrafed  Textons   Unseen  image  classificaFons  
  • 18. Neural  Networks  in  2016   •  Variety  of  libraries  that  specify   inputs  as  tensor  minibatch  and   automaFcally  compute  gradients   –  Tensorflow   –  Theano  (Keras/Lasagne)   –  Torch   •  Libraries  also  available  for   common  Neural  Network  layer   types   –  ConvoluFonal,  acFvaFon,  pooling,     dropout,  RNN,  etc.   •  Almost  too  easy   –  Mind  the  danger  zone!  
  • 19. Data  science  due  diligence   “Neural  Networks  sound  awesome  and  will  solve  all  our   problems!”     •  Significant  investment  in  resources.  GPU  (TPU?)  cluster,  ramp-­‐up   on  niche/rapidly-­‐evolving  tools   •  Long  feedback  loop  for  architecture  improvement.  Typically  launch   many  jobs  and  terminate  bad  models  (see  above)   •  Need  a  lot  of  high-­‐dimensional  data  with  variability  (millions  of   unique  observaFons  and/or  heavy  data  augmentaFon).  Delicate   balance  of  increased  predicFve  power/overfikng     •  Hard  to  debug  when  not  working.  Millions  of  reasons  (literally)  a   model  can  be  wrong,  few  ways  it  can  be  right.  “Black  magic”   •  Deep  nonlinear  models  suffer  from  interpretability  issues.  Blackbox   model  (although  acFve  research  here)  
  • 20.
  • 21. Thanks   Manuel  Ruder,  Alexey  Dosovitskiy,  Thomas  Brox  (2016).  ArFsFc  style  transfer  for  videos.   h2p://arxiv.org/abs/1604.08610   h2ps://www.youtube.com/watch?v=Khuj4ASldmU  
  • 23. “This  is  cool,  but  I  don’t  (want  to)  code”   h2p://playground.tensorflow.org  
  • 24. “I  am  comfortable  with  the  SciPy  stack   and  want  to  understand  more”    A  Neural  Network  in  11  lines  of  Python   h2p://iamtrask.github.io/2015/07/12/basic-­‐python-­‐network/  
  • 25. “I  am  comfortable  with  ML  libraries  and   want  to  build  a  model”    MNIST   •  Keras   h2ps://github.com/fchollet/keras/blob/master/examples/ mnist_cnn.py   •  Tensorflow   h2ps://www.tensorflow.org/versions/r0.8/tutorials/mnist/pros/ index.html   Varia'onal  Autoencoders  (also  using  MNIST)   •  Keras   h2p://blog.keras.io/building-­‐autoencoders-­‐in-­‐keras.html   •  Tensorflow   h2ps://jmetzen.github.io/2015-­‐11-­‐27/vae.html