SlideShare a Scribd company logo
1 of 4
Download to read offline
GeoConvention 2016: Optimizing Resources 1
Integrating lithostatic compression into velocity models for
anisotropic depth imaging of complex-structure land seismics
Rob W Vestrum and Dennis Ellison
Thrust Belt Imaging
Zoë E Vestrum
University of Calgary
Summary
In complex-structure land settings, like a continental rift in Central Africa or a thrust belt in the Andes,
seismic data is often affected by low signal-to-noise ratios and subsurface complexity. Under these
conditions, the seismic data is far too underconstrained for data-driven seismic methods, so we need as
many geologic constraints as possible to constrain the seismic velocity model.
Subsurface rock velocity is a function of lithology, geologic age, and compression due to lithostatic load.
Our goal is to isolate the compression effect so that we may focus on the interpretation of the geologic
structures and the rock types within the fault blocks. Ideally, our velocity model would be parameterized
such that the same lithology of the same age would have the same velocity regardless of the depth of
burial, and then, prior to depth migration, we can include a compression factor into the velocity model to
account for the lithostatic load that results from depth of burial.
We tested a few parameterization schemes, including weighted averages and multiplicative scalars, and
we have examples from a variety of structural-geology settings where different methods apply with varying
degrees of success. Generally, we find that parameterizing the compression function as a multiplicative
scalar is the most effective method for incorporating compressive effects into a geologic velocity
model. Data examples include the foothills of the Rockies, Andes, and Zagros mountains.
Introduction
Seismic imaging in thrust-belt environments benefits significantly from geologial input to velocities used for
depth imaging. With low fold in the near surface, low signal-to-noise ratios, and complex horizon
geometries, automated velocity-model-building tools fail to produce an optimum velocity model for TTI
anisotropic depth imaging in these areas. In a setting with such under-constrained seismic velocities,
geologic constraints are crucial in the interpretation of our velocity model.
The interpretive, geologically constrained approach to depth migration for these noisy data areas has
developed over decades (e.g., Schmid et al., 1996; .Wu et al., 1996, Vestrum and Muenzer, 1997; Isaac
and Lawton, 1999; Vestrum et al., 1999; Kirthland Grech et al., 2003; Newrick and Lawton, 2005; Vestrum,
2014). The principle is simple: any update to the velocity model must have a geological justification. For
example, if the depth-imaging practicioner observes high velocity in a certain zone in the subsurface, then
he or she would identify a geologic reason for increasing the velocity before updating the model. The
explanation may be as simple as lithostatic compression causing the velocity of a rock unit to be higher at
depth, or the depth imager may need to consult with the structural geologist to determine the likelihood of a
GeoConvention 2016: Optimizing Resources 2
structural change to the velocity model that wold add higher-velocity lithology above a major fault. The
factor that we focus on for this study is the dependence of velocity on depth of burial or lithostatic load.
If we can separate out the effect of lithostatic load on the depth-imaging velocity model, we can simplify the
model-building process in addition to creating models that are both more consistent and more accurate.
Theory and Method
Hooke’s Law tells us that the force needed to compress a spring increases linearly with the amount of
compression, so it logially holds that rocks under increased pressure would be less compressible. Since
early studies in seismic velocity effects (e.g., Faust, 1950), geoscientists have observed that seismic
velocity increases with an increase in confining pressure. Depth-imaging practitioners understand thid
phoneomenon from both a theoretical perspective and from experience building velocity models for depth
migration. It is second nature to incorporate a depth dependency of the seismic velocities.
The objective here is to separate out the compression effect and build velocity models that depend only on
lithology and geologic age in the context of the structural model. If we can separate out the compression
effect, we may simplfy the model-building process by using one velocity function for a given lithologic unit,
regardless of the depth of burial. The models become simplified, and the models also become more
consistent. If we expect minimal stratigraphic changes across an exploration block, then we can build
models with consistent velocities in each rock unit across the modelling area, which has an application for
building a consistent 3D model across a grid of 2D seismic data (Vestrum et al, 2015).
For the first attempt at separating out the compressional component used a weighted average of the
lithologic model and the compressional model on a 3D survey the Zagros Foothills (Vestrum, 2014) and a
2D project in the Peruvian Andes (Vestrum et al, 2015). It worked well in those specific cases, but that
approach breaks down when there is significant lateral velocity variation in the near surface, because the
averaging would bias high velocities down or low velocities up. (It is a mystery to these authors how we
didn’t see that one coming.)
To extend the method to areas with dramatic lateral-velocity variation, we decided to parameterize the
compression factor with a compression multiplier. Following a concave-down pattern from Faust (1951),
shown in Figure 1, we chose a function that we could parameterize the scalar, s, in terms of a minimum
scalar, m, and a depth factor, d, as follows:
s =
2
π
(1− m)*arctan
x
d
"
#$
%
&' . (1)
Figure 2 shows the velocity scaling function with values m=0.6 and d=1000. The depth factor gives the
depth at which the scaling factor is halfway between the minimum scaling function, m, and 1, which is the
asymptote for the scaling function.
Rocks become more resistant to compression as they are under greater pressure as pore spaces
decrease in size and fractures close under increasing pressure. Observations of rock samples under
pressure (e.g., He and Schmitt, 2006; Schijn et al., 2010) show that compressional velocities change
rapidly at low pressures and stabilize at higher pressure.
GeoConvention 2016: Optimizing Resources 3
Figure 1: Seismic velocity as a function of depth and geologic age
Figure 2: Compression scaling function using Equation 1 for m=0.6 and d=1000.
Example
Figure 3 shows the depth-imaging velocity model for the public-domain foothills dataset from Benjamin
Creek. Figure 3a shows the lithologic velocity model that has constant velocities within each layer of the
same lithologic type and age. Figure 3b shows the velocity model after application of a compressional
scaler. The result of applying the scalar is that the same rock units exhibit slighly lower velocity near the
surface than at depth for the same rock layer.
Conclusions
By separating out the effect of compression using a scaling function, we are able to create more
lithologically consistent velocity models for depth migration. With a separate compression factor, the
depth-imaging practitioner can focus on defining the lithologic velocities for the rock layers and the fold
GeoConvention 2016: Optimizing Resources 4
and fault structures. The benefits are consistency in the velocities and efficiency in the model-building
process.
Figure 3: Velocity model for depth imaging (a) before and (b) after applying a compressional scalar.
References
Faust, L.Y. (1951). ”Seismic velocity as a function of depth and geologic time” GEOPHYSICS, 16 (2), 192-206.
He, Taiwei, and Schmitt, D.R. (2006) “Velocity measurements of conglomerates and pressure sensitivity analysis of AVA
response”, 206 Natnl. Mtg., Soc. Expl. Geophys
Kirtland Grech, M. Graziella, Don C. Lawton, and Scott Cheadle (2003) ”Integrated prestack depth migration of vertical seismic
profile and surface seismic data from the Rocky Mountain Foothills of southern Alberta, Canada.” GEOPHYSICS, 68(6), 1782-
1791.
Newrick, R.T. and Lawton, D.C. (2005) “Geologically Reasonable Vεδθ Models for Depth Imaging”, RECORDER 30, no. 6,
Schijns, H., Schmitt, D.R., Jackson, I. (2010) “Velocity dispersion measurements on micro-cracked and fluid-saturated rock”, 2010
Natnl. Mtg., Soc. Expl. Geophys.
Schmid, Ron, Brian Link, and Patrick Butler (1996) “A comprehensive approach to depth imaging in thrust belt environments”. SEG
Technical Program Expanded Abstracts 1996: pp. 366-368.
Vestrum, R.W. (2014) “Geologically constrained seismic imaging in the Kurdistan fold belt”, PETEX 2014, London.
Vestrum, R.W., Don C. Lawton, and Ron Schmid (1999) ”Imaging structures below dipping TI media” GEOPHYSICS, 64(4), 1239-
1246.
Vestrum, R.W. and Muenzer, K. (1997) “Imaging below dipping anisotropic shales:” 1997 Natnl. Mtg., Can. Soc. Expl. Geophys.
Vestrum, R.W., J. Vilca, M. Di Giulio Colimberti and D.K. Ellison (2015) “Creating a 3D Geologic Model for 2D Depth Migration in
the Peruvian Andes”, 77th EAGE Conference and Exhibition 2015.
Wu, Wen‐Jing, Larry Lines, Andrew Burton, Han‐Xing Lu, William Jamison, Jinming Zhu, and R. Phillip Bording (1996) “Prestack
depth migration of an Alberta Foothills data set — The Husky experience”. SEG Technical Program Expanded Abstracts 1996: pp.
559-561.

More Related Content

What's hot

A Gravity survey is an indirect (surface) means of calculating the density pr...
A Gravity survey is an indirect (surface) means of calculating the density pr...A Gravity survey is an indirect (surface) means of calculating the density pr...
A Gravity survey is an indirect (surface) means of calculating the density pr...Shahid Hussain
 
Bouguer anomaly and free-air anomaly correlation signatures in parts of Benue...
Bouguer anomaly and free-air anomaly correlation signatures in parts of Benue...Bouguer anomaly and free-air anomaly correlation signatures in parts of Benue...
Bouguer anomaly and free-air anomaly correlation signatures in parts of Benue...Premier Publishers
 
Topographic Analysis Linkages among Climate, Erosion and Tectonics
Topographic Analysis Linkages among Climate, Erosion and TectonicsTopographic Analysis Linkages among Climate, Erosion and Tectonics
Topographic Analysis Linkages among Climate, Erosion and TectonicsShahadat Hossain Shakil
 
A measurement of_the_black_hole_mass_in_ngc_1097_using_alma
A measurement of_the_black_hole_mass_in_ngc_1097_using_almaA measurement of_the_black_hole_mass_in_ngc_1097_using_alma
A measurement of_the_black_hole_mass_in_ngc_1097_using_almaSérgio Sacani
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSAli Osman Öncel
 
Rupture processes of the 2012 September 5 Mw 7.6 Nicoya CONSTRAINED
Rupture processes of the 2012 September 5 Mw 7.6 Nicoya CONSTRAINEDRupture processes of the 2012 September 5 Mw 7.6 Nicoya CONSTRAINED
Rupture processes of the 2012 September 5 Mw 7.6 Nicoya CONSTRAINEDAllan Lopez
 
Dynamic analysis of foundation of bir hospital
Dynamic analysis of foundation of bir hospitalDynamic analysis of foundation of bir hospital
Dynamic analysis of foundation of bir hospitalshyamawal
 
Deprem Verilerinin H/V Oranının Mevsimsel Değişimi
Deprem Verilerinin H/V Oranının Mevsimsel Değişimi Deprem Verilerinin H/V Oranının Mevsimsel Değişimi
Deprem Verilerinin H/V Oranının Mevsimsel Değişimi Ali Osman Öncel
 
Unstable/Astatic Gravimeters and Marine Gravity Survey
Unstable/Astatic Gravimeters and Marine Gravity SurveyUnstable/Astatic Gravimeters and Marine Gravity Survey
Unstable/Astatic Gravimeters and Marine Gravity SurveyRaianIslamEvan
 

What's hot (18)

A Gravity survey is an indirect (surface) means of calculating the density pr...
A Gravity survey is an indirect (surface) means of calculating the density pr...A Gravity survey is an indirect (surface) means of calculating the density pr...
A Gravity survey is an indirect (surface) means of calculating the density pr...
 
Gravity Method
Gravity MethodGravity Method
Gravity Method
 
Bouguer anomaly and free-air anomaly correlation signatures in parts of Benue...
Bouguer anomaly and free-air anomaly correlation signatures in parts of Benue...Bouguer anomaly and free-air anomaly correlation signatures in parts of Benue...
Bouguer anomaly and free-air anomaly correlation signatures in parts of Benue...
 
Topographic Analysis Linkages among Climate, Erosion and Tectonics
Topographic Analysis Linkages among Climate, Erosion and TectonicsTopographic Analysis Linkages among Climate, Erosion and Tectonics
Topographic Analysis Linkages among Climate, Erosion and Tectonics
 
A measurement of_the_black_hole_mass_in_ngc_1097_using_alma
A measurement of_the_black_hole_mass_in_ngc_1097_using_almaA measurement of_the_black_hole_mass_in_ngc_1097_using_alma
A measurement of_the_black_hole_mass_in_ngc_1097_using_alma
 
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICSÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
ÖNCEL AKADEMİ: INTRODUCTION TO GEOPHYSICS
 
Gravity method
Gravity method Gravity method
Gravity method
 
Rupture processes of the 2012 September 5 Mw 7.6 Nicoya CONSTRAINED
Rupture processes of the 2012 September 5 Mw 7.6 Nicoya CONSTRAINEDRupture processes of the 2012 September 5 Mw 7.6 Nicoya CONSTRAINED
Rupture processes of the 2012 September 5 Mw 7.6 Nicoya CONSTRAINED
 
Gravity method report
Gravity method reportGravity method report
Gravity method report
 
Dynamic analysis of foundation of bir hospital
Dynamic analysis of foundation of bir hospitalDynamic analysis of foundation of bir hospital
Dynamic analysis of foundation of bir hospital
 
MASW_Love_Waves
MASW_Love_WavesMASW_Love_Waves
MASW_Love_Waves
 
Fundementals of MASW
Fundementals of MASWFundementals of MASW
Fundementals of MASW
 
Geotermal 1
Geotermal 1Geotermal 1
Geotermal 1
 
Deprem Verilerinin H/V Oranının Mevsimsel Değişimi
Deprem Verilerinin H/V Oranının Mevsimsel Değişimi Deprem Verilerinin H/V Oranının Mevsimsel Değişimi
Deprem Verilerinin H/V Oranının Mevsimsel Değişimi
 
Unstable/Astatic Gravimeters and Marine Gravity Survey
Unstable/Astatic Gravimeters and Marine Gravity SurveyUnstable/Astatic Gravimeters and Marine Gravity Survey
Unstable/Astatic Gravimeters and Marine Gravity Survey
 
SOM-VIS
SOM-VISSOM-VIS
SOM-VIS
 
GPS Strain Rates
GPS Strain RatesGPS Strain Rates
GPS Strain Rates
 
Seismic Risk in Marmara
Seismic Risk in  MarmaraSeismic Risk in  Marmara
Seismic Risk in Marmara
 

Viewers also liked

Accelerated learning pathways print
Accelerated learning pathways printAccelerated learning pathways print
Accelerated learning pathways printPlanet2025 Network
 
Megatrends in the healthcare industry
Megatrends in the healthcare industryMegatrends in the healthcare industry
Megatrends in the healthcare industryIgnacio Riesgo
 
Las empresas de tecnología médica frente a los restos de sostenibilidad del...
Las empresas de tecnología médica frente a los restos de sostenibilidad del...Las empresas de tecnología médica frente a los restos de sostenibilidad del...
Las empresas de tecnología médica frente a los restos de sostenibilidad del...Ignacio Riesgo
 
Medicina Digital: una visión de futuro
Medicina Digital: una visión de futuroMedicina Digital: una visión de futuro
Medicina Digital: una visión de futuroIgnacio Riesgo
 
Tiganokinisi1415
Tiganokinisi1415Tiganokinisi1415
Tiganokinisi1415chrysossa
 
ALC 2015_MARKETING YEAR END REPORT_AIESEC IN KOLKATA
ALC 2015_MARKETING YEAR END REPORT_AIESEC IN KOLKATAALC 2015_MARKETING YEAR END REPORT_AIESEC IN KOLKATA
ALC 2015_MARKETING YEAR END REPORT_AIESEC IN KOLKATAShreyansh Rohatgi
 
Ante el inicio de la recuperación, ¿cual va a ser el impacto sobre las indust...
Ante el inicio de la recuperación, ¿cual va a ser el impacto sobre las indust...Ante el inicio de la recuperación, ¿cual va a ser el impacto sobre las indust...
Ante el inicio de la recuperación, ¿cual va a ser el impacto sobre las indust...Ignacio Riesgo
 

Viewers also liked (9)

Accelerated learning pathways print
Accelerated learning pathways printAccelerated learning pathways print
Accelerated learning pathways print
 
Megatrends in the healthcare industry
Megatrends in the healthcare industryMegatrends in the healthcare industry
Megatrends in the healthcare industry
 
Las empresas de tecnología médica frente a los restos de sostenibilidad del...
Las empresas de tecnología médica frente a los restos de sostenibilidad del...Las empresas de tecnología médica frente a los restos de sostenibilidad del...
Las empresas de tecnología médica frente a los restos de sostenibilidad del...
 
Planet2025 communities
Planet2025 communitiesPlanet2025 communities
Planet2025 communities
 
Medicina Digital: una visión de futuro
Medicina Digital: una visión de futuroMedicina Digital: una visión de futuro
Medicina Digital: una visión de futuro
 
Tiganokinisi1415
Tiganokinisi1415Tiganokinisi1415
Tiganokinisi1415
 
ALC 2015_MARKETING YEAR END REPORT_AIESEC IN KOLKATA
ALC 2015_MARKETING YEAR END REPORT_AIESEC IN KOLKATAALC 2015_MARKETING YEAR END REPORT_AIESEC IN KOLKATA
ALC 2015_MARKETING YEAR END REPORT_AIESEC IN KOLKATA
 
Ante el inicio de la recuperación, ¿cual va a ser el impacto sobre las indust...
Ante el inicio de la recuperación, ¿cual va a ser el impacto sobre las indust...Ante el inicio de la recuperación, ¿cual va a ser el impacto sobre las indust...
Ante el inicio de la recuperación, ¿cual va a ser el impacto sobre las indust...
 
Untitled Presentation
Untitled PresentationUntitled Presentation
Untitled Presentation
 

Similar to Integrating_lithostatic_compression_into_velocity_models

A Numerical Model for the Analysis of Rapid Landslide Motion
A Numerical Model for the Analysis of Rapid Landslide MotionA Numerical Model for the Analysis of Rapid Landslide Motion
A Numerical Model for the Analysis of Rapid Landslide MotionUniversitasGadjahMada
 
Hayashi masw gravity
Hayashi masw gravityHayashi masw gravity
Hayashi masw gravityhugang2003
 
Estimating geo mechanical strength of reservoir rocks from well logs for safe...
Estimating geo mechanical strength of reservoir rocks from well logs for safe...Estimating geo mechanical strength of reservoir rocks from well logs for safe...
Estimating geo mechanical strength of reservoir rocks from well logs for safe...Alexander Decker
 
A global reference model of the lithosphere and upper mantle from joint inver...
A global reference model of the lithosphere and upper mantle from joint inver...A global reference model of the lithosphere and upper mantle from joint inver...
A global reference model of the lithosphere and upper mantle from joint inver...Sérgio Sacani
 
Motion detection applied to
Motion detection applied toMotion detection applied to
Motion detection applied toijcsa
 
2D and 3D Density Block Models Creation Based on Isostasy Usage
2D and 3D Density Block Models Creation Based on Isostasy Usage2D and 3D Density Block Models Creation Based on Isostasy Usage
2D and 3D Density Block Models Creation Based on Isostasy Usageatsidaev
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiAli Osman Öncel
 
ÖNCEL AKADEMİ: İSTANBUL DEPREMİ
ÖNCEL AKADEMİ: İSTANBUL DEPREMİÖNCEL AKADEMİ: İSTANBUL DEPREMİ
ÖNCEL AKADEMİ: İSTANBUL DEPREMİAli Osman Öncel
 
Seismic Inversion Techniques Choice And Benefits Fb May2011
Seismic Inversion Techniques Choice And Benefits Fb May2011Seismic Inversion Techniques Choice And Benefits Fb May2011
Seismic Inversion Techniques Choice And Benefits Fb May2011Carlos Pinto
 

Similar to Integrating_lithostatic_compression_into_velocity_models (20)

A Numerical Model for the Analysis of Rapid Landslide Motion
A Numerical Model for the Analysis of Rapid Landslide MotionA Numerical Model for the Analysis of Rapid Landslide Motion
A Numerical Model for the Analysis of Rapid Landslide Motion
 
Hayashi masw gravity
Hayashi masw gravityHayashi masw gravity
Hayashi masw gravity
 
GJI_Saul_Lumley13
GJI_Saul_Lumley13GJI_Saul_Lumley13
GJI_Saul_Lumley13
 
Ax35277281
Ax35277281Ax35277281
Ax35277281
 
16634-19010-1-PB
16634-19010-1-PB16634-19010-1-PB
16634-19010-1-PB
 
Estimating geo mechanical strength of reservoir rocks from well logs for safe...
Estimating geo mechanical strength of reservoir rocks from well logs for safe...Estimating geo mechanical strength of reservoir rocks from well logs for safe...
Estimating geo mechanical strength of reservoir rocks from well logs for safe...
 
05. AJMS_04_18[Case Study].pdf
05. AJMS_04_18[Case Study].pdf05. AJMS_04_18[Case Study].pdf
05. AJMS_04_18[Case Study].pdf
 
05. AJMS_04_18[Case Study].pdf
05. AJMS_04_18[Case Study].pdf05. AJMS_04_18[Case Study].pdf
05. AJMS_04_18[Case Study].pdf
 
E05833135
E05833135E05833135
E05833135
 
A global reference model of the lithosphere and upper mantle from joint inver...
A global reference model of the lithosphere and upper mantle from joint inver...A global reference model of the lithosphere and upper mantle from joint inver...
A global reference model of the lithosphere and upper mantle from joint inver...
 
Motion detection applied to
Motion detection applied toMotion detection applied to
Motion detection applied to
 
ONCEL AKADEMİ: PROJE
ONCEL AKADEMİ: PROJEONCEL AKADEMİ: PROJE
ONCEL AKADEMİ: PROJE
 
2D and 3D Density Block Models Creation Based on Isostasy Usage
2D and 3D Density Block Models Creation Based on Isostasy Usage2D and 3D Density Block Models Creation Based on Isostasy Usage
2D and 3D Density Block Models Creation Based on Isostasy Usage
 
Shearwaves2
Shearwaves2Shearwaves2
Shearwaves2
 
Öncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel SismolojiÖncel Akademi: İstatistiksel Sismoloji
Öncel Akademi: İstatistiksel Sismoloji
 
tle31050528.1
tle31050528.1tle31050528.1
tle31050528.1
 
ÖNCEL AKADEMİ: İSTANBUL DEPREMİ
ÖNCEL AKADEMİ: İSTANBUL DEPREMİÖNCEL AKADEMİ: İSTANBUL DEPREMİ
ÖNCEL AKADEMİ: İSTANBUL DEPREMİ
 
Progressin physicalgeography 2015-pnek-168-98
Progressin physicalgeography 2015-pnek-168-98Progressin physicalgeography 2015-pnek-168-98
Progressin physicalgeography 2015-pnek-168-98
 
apj_825_1_40
apj_825_1_40apj_825_1_40
apj_825_1_40
 
Seismic Inversion Techniques Choice And Benefits Fb May2011
Seismic Inversion Techniques Choice And Benefits Fb May2011Seismic Inversion Techniques Choice And Benefits Fb May2011
Seismic Inversion Techniques Choice And Benefits Fb May2011
 

Integrating_lithostatic_compression_into_velocity_models

  • 1. GeoConvention 2016: Optimizing Resources 1 Integrating lithostatic compression into velocity models for anisotropic depth imaging of complex-structure land seismics Rob W Vestrum and Dennis Ellison Thrust Belt Imaging Zoë E Vestrum University of Calgary Summary In complex-structure land settings, like a continental rift in Central Africa or a thrust belt in the Andes, seismic data is often affected by low signal-to-noise ratios and subsurface complexity. Under these conditions, the seismic data is far too underconstrained for data-driven seismic methods, so we need as many geologic constraints as possible to constrain the seismic velocity model. Subsurface rock velocity is a function of lithology, geologic age, and compression due to lithostatic load. Our goal is to isolate the compression effect so that we may focus on the interpretation of the geologic structures and the rock types within the fault blocks. Ideally, our velocity model would be parameterized such that the same lithology of the same age would have the same velocity regardless of the depth of burial, and then, prior to depth migration, we can include a compression factor into the velocity model to account for the lithostatic load that results from depth of burial. We tested a few parameterization schemes, including weighted averages and multiplicative scalars, and we have examples from a variety of structural-geology settings where different methods apply with varying degrees of success. Generally, we find that parameterizing the compression function as a multiplicative scalar is the most effective method for incorporating compressive effects into a geologic velocity model. Data examples include the foothills of the Rockies, Andes, and Zagros mountains. Introduction Seismic imaging in thrust-belt environments benefits significantly from geologial input to velocities used for depth imaging. With low fold in the near surface, low signal-to-noise ratios, and complex horizon geometries, automated velocity-model-building tools fail to produce an optimum velocity model for TTI anisotropic depth imaging in these areas. In a setting with such under-constrained seismic velocities, geologic constraints are crucial in the interpretation of our velocity model. The interpretive, geologically constrained approach to depth migration for these noisy data areas has developed over decades (e.g., Schmid et al., 1996; .Wu et al., 1996, Vestrum and Muenzer, 1997; Isaac and Lawton, 1999; Vestrum et al., 1999; Kirthland Grech et al., 2003; Newrick and Lawton, 2005; Vestrum, 2014). The principle is simple: any update to the velocity model must have a geological justification. For example, if the depth-imaging practicioner observes high velocity in a certain zone in the subsurface, then he or she would identify a geologic reason for increasing the velocity before updating the model. The explanation may be as simple as lithostatic compression causing the velocity of a rock unit to be higher at depth, or the depth imager may need to consult with the structural geologist to determine the likelihood of a
  • 2. GeoConvention 2016: Optimizing Resources 2 structural change to the velocity model that wold add higher-velocity lithology above a major fault. The factor that we focus on for this study is the dependence of velocity on depth of burial or lithostatic load. If we can separate out the effect of lithostatic load on the depth-imaging velocity model, we can simplify the model-building process in addition to creating models that are both more consistent and more accurate. Theory and Method Hooke’s Law tells us that the force needed to compress a spring increases linearly with the amount of compression, so it logially holds that rocks under increased pressure would be less compressible. Since early studies in seismic velocity effects (e.g., Faust, 1950), geoscientists have observed that seismic velocity increases with an increase in confining pressure. Depth-imaging practitioners understand thid phoneomenon from both a theoretical perspective and from experience building velocity models for depth migration. It is second nature to incorporate a depth dependency of the seismic velocities. The objective here is to separate out the compression effect and build velocity models that depend only on lithology and geologic age in the context of the structural model. If we can separate out the compression effect, we may simplfy the model-building process by using one velocity function for a given lithologic unit, regardless of the depth of burial. The models become simplified, and the models also become more consistent. If we expect minimal stratigraphic changes across an exploration block, then we can build models with consistent velocities in each rock unit across the modelling area, which has an application for building a consistent 3D model across a grid of 2D seismic data (Vestrum et al, 2015). For the first attempt at separating out the compressional component used a weighted average of the lithologic model and the compressional model on a 3D survey the Zagros Foothills (Vestrum, 2014) and a 2D project in the Peruvian Andes (Vestrum et al, 2015). It worked well in those specific cases, but that approach breaks down when there is significant lateral velocity variation in the near surface, because the averaging would bias high velocities down or low velocities up. (It is a mystery to these authors how we didn’t see that one coming.) To extend the method to areas with dramatic lateral-velocity variation, we decided to parameterize the compression factor with a compression multiplier. Following a concave-down pattern from Faust (1951), shown in Figure 1, we chose a function that we could parameterize the scalar, s, in terms of a minimum scalar, m, and a depth factor, d, as follows: s = 2 π (1− m)*arctan x d " #$ % &' . (1) Figure 2 shows the velocity scaling function with values m=0.6 and d=1000. The depth factor gives the depth at which the scaling factor is halfway between the minimum scaling function, m, and 1, which is the asymptote for the scaling function. Rocks become more resistant to compression as they are under greater pressure as pore spaces decrease in size and fractures close under increasing pressure. Observations of rock samples under pressure (e.g., He and Schmitt, 2006; Schijn et al., 2010) show that compressional velocities change rapidly at low pressures and stabilize at higher pressure.
  • 3. GeoConvention 2016: Optimizing Resources 3 Figure 1: Seismic velocity as a function of depth and geologic age Figure 2: Compression scaling function using Equation 1 for m=0.6 and d=1000. Example Figure 3 shows the depth-imaging velocity model for the public-domain foothills dataset from Benjamin Creek. Figure 3a shows the lithologic velocity model that has constant velocities within each layer of the same lithologic type and age. Figure 3b shows the velocity model after application of a compressional scaler. The result of applying the scalar is that the same rock units exhibit slighly lower velocity near the surface than at depth for the same rock layer. Conclusions By separating out the effect of compression using a scaling function, we are able to create more lithologically consistent velocity models for depth migration. With a separate compression factor, the depth-imaging practitioner can focus on defining the lithologic velocities for the rock layers and the fold
  • 4. GeoConvention 2016: Optimizing Resources 4 and fault structures. The benefits are consistency in the velocities and efficiency in the model-building process. Figure 3: Velocity model for depth imaging (a) before and (b) after applying a compressional scalar. References Faust, L.Y. (1951). ”Seismic velocity as a function of depth and geologic time” GEOPHYSICS, 16 (2), 192-206. He, Taiwei, and Schmitt, D.R. (2006) “Velocity measurements of conglomerates and pressure sensitivity analysis of AVA response”, 206 Natnl. Mtg., Soc. Expl. Geophys Kirtland Grech, M. Graziella, Don C. Lawton, and Scott Cheadle (2003) ”Integrated prestack depth migration of vertical seismic profile and surface seismic data from the Rocky Mountain Foothills of southern Alberta, Canada.” GEOPHYSICS, 68(6), 1782- 1791. Newrick, R.T. and Lawton, D.C. (2005) “Geologically Reasonable Vεδθ Models for Depth Imaging”, RECORDER 30, no. 6, Schijns, H., Schmitt, D.R., Jackson, I. (2010) “Velocity dispersion measurements on micro-cracked and fluid-saturated rock”, 2010 Natnl. Mtg., Soc. Expl. Geophys. Schmid, Ron, Brian Link, and Patrick Butler (1996) “A comprehensive approach to depth imaging in thrust belt environments”. SEG Technical Program Expanded Abstracts 1996: pp. 366-368. Vestrum, R.W. (2014) “Geologically constrained seismic imaging in the Kurdistan fold belt”, PETEX 2014, London. Vestrum, R.W., Don C. Lawton, and Ron Schmid (1999) ”Imaging structures below dipping TI media” GEOPHYSICS, 64(4), 1239- 1246. Vestrum, R.W. and Muenzer, K. (1997) “Imaging below dipping anisotropic shales:” 1997 Natnl. Mtg., Can. Soc. Expl. Geophys. Vestrum, R.W., J. Vilca, M. Di Giulio Colimberti and D.K. Ellison (2015) “Creating a 3D Geologic Model for 2D Depth Migration in the Peruvian Andes”, 77th EAGE Conference and Exhibition 2015. Wu, Wen‐Jing, Larry Lines, Andrew Burton, Han‐Xing Lu, William Jamison, Jinming Zhu, and R. Phillip Bording (1996) “Prestack depth migration of an Alberta Foothills data set — The Husky experience”. SEG Technical Program Expanded Abstracts 1996: pp. 559-561.