I N D E X M A N A G E M E N TI N D E P T H
A n d re a G i u l i a n o
@ b i t _ s h a r k
D ATA B A S E M A N A G E M E N T S Y S T E M S
T H E A R C H I T E C T U R E
D A TA B A S E M A N A G E M E N T S Y S T E M S
web forms Application Front Ends SQL Interface
SQL COMMANDS
Plan Executor Parser
OptimizerOperator Evaluator
Access File Manager
SQL Engine
Buffer Manager
Disk Manager
Transaction Manager
Lock Manager
Recovery
Manager
Concurrency Control
DBMS
S Q L E N G I N E
A R C H I T E C T U R E O F A D B M S
web forms Application Front Ends SQL Interface
SQL COMMANDS
Plan Executor Parser
OptimizerOperator Evaluator
Access File Manager
SQL Engine
Buffer Manager
Disk Manager
Transaction Manager
Lock Manager
Recovery
Manager
Concurrency Control
DBMS
A C C E S S F I L E M A N A G E R
A R C H I T E C T U R E O F A D B M S
web forms Application Front Ends SQL Interface
SQL COMMANDS
Plan Executor Parser
OptimizerOperator Evaluator
Access File Manager
SQL Engine
Buffer Manager
Disk Manager
Transaction Manager
Lock Manager
Recovery
Manager
Concurrency Control
DBMS
B U F F E R M A N A G E R
A R C H I T E C T U R E O F A D B M S
web forms Application Front Ends SQL Interface
SQL COMMANDS
Plan Executor Parser
OptimizerOperator Evaluator
Access File Manager
SQL Engine
Buffer Manager
Disk Manager
Transaction Manager
Lock Manager
Recovery
Manager
Concurrency Control
DBMS
D I S K M A N A G E R
A R C H I T E C T U R E O F A D B M S
web forms Application Front Ends SQL Interface
SQL COMMANDS
Plan Executor Parser
OptimizerOperator Evaluator
Access File Manager
SQL Engine
Buffer Manager
Disk Manager
Transaction Manager
Lock Manager
Recovery
Manager
Concurrency Control
DBMS
U N I T O F I N F O R M AT I O N
Page
size ranges from 2Kb to 64Kb
I/O of pages dominates the cost of the operations
F I L E O R G A N I Z AT I O N
method of arranging the records in a file
–Sars, Roebuck, and Co, Consumers’ Guide, 1897
“If you don’t find it in the index, look very carefully
through the entire catalog.”
I N D E X E S
organize data records on disk to optimize retrieval operations
I N D E X E S
data entry
record stored in an index file
data record
record stored in a database file
P R O P E R T I E S O F A N I N D E X
1. Structure of data entries
2. Clustered/unclustered
3. Primary/secondary
4. Dense/sparse
5. Organization of the index
S T R U C T U R E O F D ATA E N T R I E S
k*: data entry whose search key value is k
1. k* is a data record
-extreme case
2. k* is a pair (k, rid)
-the index file is independent from the data file
3. k* is a pair <k, rid-list>
-the index file is independent from the data file
-better use of space but variable-length data entries
P R O P E R T I E S O F A N I N D E X
C L U S T E R E D / U N C L U S T E R E D I N D E X
unclustered clustered
data record
file
index file
data records
data
entries
data
entries
index entries
data records
P R O P E R T I E S O F A N I N D E X
P E R F O R M A N C E
data record
file
index file
data records
data
entries
Clustered
only few pages
have to be retrieved
Unclustered
as many data page I/Os as
the number of data entries
C L U S T E R E D / U N C L U S T E R E D I N D E X
P R I M A RY A N D S E C O N D A RY I N D E X
P R O P E R T I E S O F A N I N D E X
10
20
30
40
10
20
30
40
page pointers
page in index file
page in data file
P R O P E R T I E S O F A N I N D E X
D E N S E I N D E X
10
30
50
70
10
20
30
40
50
60
70
80
page pointers
page in index file
page in data file
P R O P E R T I E S O F A N I N D E X
S PA R S E I N D E X
P R O P E R T I E S O F A N I N D E X
O R G A N I Z AT I O N O F T H E I N D E X
sorted index
the index is a sorted file
tree-based index
the index is a tree
hash-based index
the index is a function from search key values
to record addresses
I S A M A N D B +
- T R E E
T R E E - B A S E D I N D E X
ISAM
used when the relation is static: no insertion
and deletion on the tree
b+-tree
effective in dynamic situations with insertion
and deletion
Data Pages
Index Pages
Overflow Pages
Page Allocation in ISAM
…
…
Non-leaf
pages
Leaf
pages
Primary pages
Overflow page
I S A M
T R E E - B A S E D I N D E X
I S A M : O P E R AT I O N S
T R E E - B A S E D I N D E X
search
identical to b+-tree (more on this soon).
insertion
find the right position on the tree and write the
key (possible overflow pages).
deletion
remove the entry and the empty overflow page if
needed. Leave the empty primary page as it is.
B +
- T R E E
T R E E - B A S E D I N D E X
Index entries
Data entries
Index file
12 78
3 9 19 56 86 94
33 44
Daniel, 22, 6003
Ashby, 25, 3000
Basu, 33, 4003 Rossi, 44, 3000
Bianchi, 50, 5004
B +
- T R E E
T R E E - B A S E D I N D E X
… … … … … … ……
12 78
3 9 19 56 86 94
33 44
Daniel, 22, 6003
Ashby, 25, 3000
Basu, 33, 4003 Rossi, 44, 3000
Bianchi, 50, 5004
… … … … … … ……
B +
- T R E E : S E A R C H
T R E E - B A S E D I N D E X
Start search
B +
- T R E E : S E A R C H
T R E E - B A S E D I N D E X
12 78
3 9 19 56 86 94
33 44
Daniel, 22, 6003
Ashby, 25, 3000
Basu, 33, 4003 Rossi, 44, 3000
Bianchi, 50, 5004
… … … … … … ……
Start search
A
B
L1 L2 L3
find all data entries with
24 < key < 50
12 78
3 9 19 56
33 44
Daniel, 22, 6003
Ashby, 25, 3000
Basu, 33, 4003 Rossi, 44, 3000
Bianchi, 50, 5004
… … … …
…
…
Start search
A
B
L1 L2 L3
S E A R C H : C O S T
T R E E - B A S E D I N D E X
f: fanout
h: height
m: leaves (f h
)
Cost of a search
[logF m]
T R E E - B A S E D I N D E X
12 78
3 9 19 56
33 44
Daniel, 22, 6003
Ashby, 25, 3000
Basu, 33, 4003 Rossi, 44, 3000
Bianchi, 50, 5004
… … … …
…
…
Start search
A
B
L1 L2 L3
S E A R C H : C O S T
f = 3
h = 3
m = 27
I/Os
[log3 27] = 3
B +
- T R E E : I N S E R T
T R E E - B A S E D I N D E X
13 17 24 30
2* 3* 5* 7*
14* 16* 19* 20* 22* 24* 27* 29*
33* 34* 38* 39*
Insertion of a data record with search key value 8
2* 3* 5* 7* 8*
B +
- T R E E : I N S E R T
T R E E - B A S E D I N D E X
…
5
data entry is copied up
B +
- T R E E : I N S E R T
T R E E - B A S E D I N D E X
17
data entry is pushed up
5 13 24 30
B +
- T R E E : I N S E R T
T R E E - B A S E D I N D E X
17
5* 7* 8* 14
*
16
*
19
*
20
*
22
*
24
*
27
*
29
*
33
*
34
*
38
*
39
*
5 13 24 30
2* 3*
The resulting tree after the insertion of a data record with search key value 8.
B +
- T R E E : D E L E T E
T R E E - B A S E D I N D E X
17
5* 7* 8* 14
*
16
*
22 24 27 29 33
*
34
*
38
*
39
*
5 13 27 30
2* 3*
The resulting tree after deleting entries 19* and 20*
- 2.000.000 records
- 200.000 pages
- 10 data record in a page
- 200 records with the same value of the attribute cost
(on average)
- dense unclustered b+
-tree index with search key cost
- alternative 2 (k*, rid)
Book
code
author
cost
publisher
E X A M P L E
D E N S E U N C L U S T E R E D I N D E X
SELECT code, author, publisher
FROM Book
WHERE cost = %cost%
- 2.000.000 records
- 200.000 pages
- 10 data record in a page
- 200 records with the same value of the attribute cost
(on average)
- dense unclustered b+
-tree index with search key cost
- alternative 2 (k*, rid)
Book
code
author
cost
publisher
E X A M P L E
D E N S E U N C L U S T E R E D I N D E X
SELECT code, author, publisher
FROM Book
WHERE cost = %cost%
- 2.000.000 records
- 200.000 pages
- 10 data record in a page
- 200 records with the same value of the attribute cost
(on average)
- dense unclustered b+
-tree index with search key cost
- alternative 2 (k*, rid)
Book
code
author
cost
publisher
how many page accesses
do we need to answer to the query?
E X A M P L E
D E N S E U N C L U S T E R E D I N D E X
E X A M P L E
D E N S E U N C L U S T E R E D I N D E X
- 2.000.000 records
- 200.000 pages
- 10 data record in a page
- 200 records with the same value of the attribute cost
(on average)
- dense unclustered b+
-tree index with search key cost
- alternative 2 (k*, rid)
Book
code
author
cost
publisher
Let’s build the index structure
each record has 4 field so in each page there are 40 fields
20 data entries fit in one leaf page of the index
the tree has a fan-out of 20
E X A M P L E
D E N S E U N C L U S T E R E D I N D E X
fanout: 20
occupancy factor of 67%
leads to 13 data entries in the leaves
How many leaves are there in the tree?
2.000.000/13 = 153.846
log20 (153.846) = 4 I/O page accesses
E X A M P L E
D E N S E U N C L U S T E R E D I N D E X
How many I/Os are needed to go to the leaves?
leaves: 153.846
fanout: 20
E X A M P L E
D E N S E U N C L U S T E R E D I N D E X
- 200 records with the same value of the attribute cost
(on average)
- 13 data entries in the leaves
- dense unclustered b+
-tree index with search key cost
Book
code
author
cost
publisher
SELECT code, author, publisher
FROM Book
WHERE cost = %cost%
- 15 pages (200/13) to visit for reaching data
records with the same cost value (on average)
~ 3 sec
E X A M P L E
D E N S E U N C L U S T E R E D I N D E X
Costs
path to the leaves: 4 I/Os
leaves access: 15 I/Os
data records: 200 I/Os
Total cost
4 + 15 + 200 = 219 I/Os
- 2.000.000 records
- 200.000 pages
- 10 data record in a page
- 200 records with the same value of the attribute cost
(on average)
- sparse clustered b+
-tree index with search key cost
- alternative 2 (k*, rid)
Book
code
author
cost
publisher
E X A M P L E
S PA R S E C L U S T E R E D I N D E X
- 2.000.000 records
- 200.000 pages
- 10 data record in a page
- 200 records with the same value of the attribute cost
(on average)
- sparse clustered b+
-tree index with search key cost
- alternative 2 (k*, rid)
Book
code
author
cost
publisher
E X A M P L E
S PA R S E C L U S T E R E D I N D E X
SELECT code, author, publisher
FROM Book
WHERE cost = %cost%
- 2.000.000 records
- 200.000 pages
- 10 data record in a page
- 200 records with the same value of the attribute cost
(on average)
- sparse clustered b+
-tree index with search key cost
- alternative 2 (k*, rid)
Book
code
author
cost
publisher
E X A M P L E
S PA R S E C L U S T E R E D I N D E X
SELECT code, author, publisher
FROM Book
WHERE cost = %cost%
how many page accesses
do we need to answer to the query?
- 2.000.000 records
- 200.000 pages
- 10 data record in a page
- 200 records with the same value of the attribute cost
(on average)
- sparse clustered b+
-tree index with search key cost
- alternative 2 (k*, rid)
Book
code
author
cost
publisher
E X A M P L E
S PA R S E C L U S T E R E D I N D E X
Let’s build the index structure
each record has 4 field so in each page there are 40 fields
20 data entries fit in one leaf page of the index
the tree has a fan-out of 20
E X A M P L E
S PA R S E C L U S T E R E D I N D E X
fanout: 20
How many pages store 2.000.000 data records?
2.000.000/10 = 200.000
each data entry points to a
data record page
E X A M P L E
S PA R S E C L U S T E R E D I N D E X
fanout: 20
occupancy factor of 67%
leads to 13 data entries in the leaves
How many leaves are there in the tree?
200.000/13 = 15.384
log20 (15.384) = 3 I/O page accesses
E X A M P L E
S PA R S E C L U S T E R E D I N D E X
How many I/Os are needed to go to the leaves?
leaves: 15.384
fanout: 20
fanout: 20
E X A M P L E
S PA R S E C L U S T E R E D I N D E X
- 200 records with the same value of the attribute cost
(on average)
- 10 data records in a page
- sparse clustered b+
-tree index with search key cost
Book
code
author
cost
publisher
SELECT code, author, publisher
FROM Book
WHERE cost = %cost%
- 20 pages (200/10) of data records to visit 

(on average)
~ 0.3 sec
E X A M P L E
S PA R S E C L U S T E R E D I N D E X
Costs
path to the leaves: 3 I/Os
data records: 20 I/Os
Total cost
3 + 20 = 23 I/Os
E X A M P L E
A VA R I A N T
What if the attributes were part of the search key?
SELECT code, author, publisher
FROM Book
WHERE cost = %cost%
E X A M P L E
W I T H O U T I N D E X
In the worst case we have to visit 2.000.000 records
SELECT code, author, publisher
FROM Book
WHERE cost = %cost%
~ 50 min
$ W H O A M I
Andrea Giuliano
@bit_shark
www.andreagiuliano.it
joind.in/13333
Please rate the talk!
Ramakrishan, Gehrke “Database Management Systems”
Assets:
https://farm4.staticflickr.com/3577/3492185538_a39dbb4511_b_d.jpg
https://farm3.staticflickr.com/2852/10740309163_12f6a671cc_k_d.jpg
https://farm3.staticflickr.com/2456/3835365695_5e515a3492_b_d.jpg
https://farm5.staticflickr.com/4048/4332381194_3cfbed7f8e_b_d.jpg
https://farm5.staticflickr.com/4117/4800819674_3cf963deaa_b_d.jpg
https://farm5.staticflickr.com/4141/4772464179_0672159bbd_b.jpg
https://farm9.staticflickr.com/8530/8574154090_bd14f9ccbf_o_d.jpg
https://farm8.staticflickr.com/7370/10847923014_2b3fc30cea_k_d.jpg
R E F E R E N C E S

Index management in depth

  • 1.
    I N DE X M A N A G E M E N TI N D E P T H A n d re a G i u l i a n o @ b i t _ s h a r k
  • 2.
    D ATA BA S E M A N A G E M E N T S Y S T E M S
  • 3.
    T H EA R C H I T E C T U R E D A TA B A S E M A N A G E M E N T S Y S T E M S web forms Application Front Ends SQL Interface SQL COMMANDS Plan Executor Parser OptimizerOperator Evaluator Access File Manager SQL Engine Buffer Manager Disk Manager Transaction Manager Lock Manager Recovery Manager Concurrency Control DBMS
  • 4.
    S Q LE N G I N E A R C H I T E C T U R E O F A D B M S web forms Application Front Ends SQL Interface SQL COMMANDS Plan Executor Parser OptimizerOperator Evaluator Access File Manager SQL Engine Buffer Manager Disk Manager Transaction Manager Lock Manager Recovery Manager Concurrency Control DBMS
  • 5.
    A C CE S S F I L E M A N A G E R A R C H I T E C T U R E O F A D B M S web forms Application Front Ends SQL Interface SQL COMMANDS Plan Executor Parser OptimizerOperator Evaluator Access File Manager SQL Engine Buffer Manager Disk Manager Transaction Manager Lock Manager Recovery Manager Concurrency Control DBMS
  • 6.
    B U FF E R M A N A G E R A R C H I T E C T U R E O F A D B M S web forms Application Front Ends SQL Interface SQL COMMANDS Plan Executor Parser OptimizerOperator Evaluator Access File Manager SQL Engine Buffer Manager Disk Manager Transaction Manager Lock Manager Recovery Manager Concurrency Control DBMS
  • 7.
    D I SK M A N A G E R A R C H I T E C T U R E O F A D B M S web forms Application Front Ends SQL Interface SQL COMMANDS Plan Executor Parser OptimizerOperator Evaluator Access File Manager SQL Engine Buffer Manager Disk Manager Transaction Manager Lock Manager Recovery Manager Concurrency Control DBMS
  • 8.
    U N IT O F I N F O R M AT I O N Page size ranges from 2Kb to 64Kb I/O of pages dominates the cost of the operations
  • 9.
    F I LE O R G A N I Z AT I O N method of arranging the records in a file
  • 10.
    –Sars, Roebuck, andCo, Consumers’ Guide, 1897 “If you don’t find it in the index, look very carefully through the entire catalog.”
  • 11.
    I N DE X E S organize data records on disk to optimize retrieval operations
  • 12.
    I N DE X E S data entry record stored in an index file data record record stored in a database file
  • 13.
    P R OP E R T I E S O F A N I N D E X 1. Structure of data entries 2. Clustered/unclustered 3. Primary/secondary 4. Dense/sparse 5. Organization of the index
  • 14.
    S T RU C T U R E O F D ATA E N T R I E S k*: data entry whose search key value is k 1. k* is a data record -extreme case 2. k* is a pair (k, rid) -the index file is independent from the data file 3. k* is a pair <k, rid-list> -the index file is independent from the data file -better use of space but variable-length data entries P R O P E R T I E S O F A N I N D E X
  • 15.
    C L US T E R E D / U N C L U S T E R E D I N D E X unclustered clustered data record file index file data records data entries data entries index entries data records P R O P E R T I E S O F A N I N D E X
  • 16.
    P E RF O R M A N C E data record file index file data records data entries Clustered only few pages have to be retrieved Unclustered as many data page I/Os as the number of data entries C L U S T E R E D / U N C L U S T E R E D I N D E X
  • 17.
    P R IM A RY A N D S E C O N D A RY I N D E X P R O P E R T I E S O F A N I N D E X
  • 18.
    10 20 30 40 10 20 30 40 page pointers page inindex file page in data file P R O P E R T I E S O F A N I N D E X D E N S E I N D E X
  • 19.
    10 30 50 70 10 20 30 40 50 60 70 80 page pointers page inindex file page in data file P R O P E R T I E S O F A N I N D E X S PA R S E I N D E X
  • 20.
    P R OP E R T I E S O F A N I N D E X O R G A N I Z AT I O N O F T H E I N D E X sorted index the index is a sorted file tree-based index the index is a tree hash-based index the index is a function from search key values to record addresses
  • 21.
    I S AM A N D B + - T R E E T R E E - B A S E D I N D E X ISAM used when the relation is static: no insertion and deletion on the tree b+-tree effective in dynamic situations with insertion and deletion
  • 22.
    Data Pages Index Pages OverflowPages Page Allocation in ISAM … … Non-leaf pages Leaf pages Primary pages Overflow page I S A M T R E E - B A S E D I N D E X
  • 23.
    I S AM : O P E R AT I O N S T R E E - B A S E D I N D E X search identical to b+-tree (more on this soon). insertion find the right position on the tree and write the key (possible overflow pages). deletion remove the entry and the empty overflow page if needed. Leave the empty primary page as it is.
  • 24.
    B + - TR E E T R E E - B A S E D I N D E X Index entries Data entries Index file
  • 25.
    12 78 3 919 56 86 94 33 44 Daniel, 22, 6003 Ashby, 25, 3000 Basu, 33, 4003 Rossi, 44, 3000 Bianchi, 50, 5004 B + - T R E E T R E E - B A S E D I N D E X … … … … … … ……
  • 26.
    12 78 3 919 56 86 94 33 44 Daniel, 22, 6003 Ashby, 25, 3000 Basu, 33, 4003 Rossi, 44, 3000 Bianchi, 50, 5004 … … … … … … …… B + - T R E E : S E A R C H T R E E - B A S E D I N D E X Start search
  • 27.
    B + - TR E E : S E A R C H T R E E - B A S E D I N D E X 12 78 3 9 19 56 86 94 33 44 Daniel, 22, 6003 Ashby, 25, 3000 Basu, 33, 4003 Rossi, 44, 3000 Bianchi, 50, 5004 … … … … … … …… Start search A B L1 L2 L3 find all data entries with 24 < key < 50
  • 28.
    12 78 3 919 56 33 44 Daniel, 22, 6003 Ashby, 25, 3000 Basu, 33, 4003 Rossi, 44, 3000 Bianchi, 50, 5004 … … … … … … Start search A B L1 L2 L3 S E A R C H : C O S T T R E E - B A S E D I N D E X f: fanout h: height m: leaves (f h ) Cost of a search [logF m]
  • 29.
    T R EE - B A S E D I N D E X 12 78 3 9 19 56 33 44 Daniel, 22, 6003 Ashby, 25, 3000 Basu, 33, 4003 Rossi, 44, 3000 Bianchi, 50, 5004 … … … … … … Start search A B L1 L2 L3 S E A R C H : C O S T f = 3 h = 3 m = 27 I/Os [log3 27] = 3
  • 30.
    B + - TR E E : I N S E R T T R E E - B A S E D I N D E X 13 17 24 30 2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* Insertion of a data record with search key value 8
  • 31.
    2* 3* 5*7* 8* B + - T R E E : I N S E R T T R E E - B A S E D I N D E X … 5 data entry is copied up
  • 32.
    B + - TR E E : I N S E R T T R E E - B A S E D I N D E X 17 data entry is pushed up 5 13 24 30
  • 33.
    B + - TR E E : I N S E R T T R E E - B A S E D I N D E X 17 5* 7* 8* 14 * 16 * 19 * 20 * 22 * 24 * 27 * 29 * 33 * 34 * 38 * 39 * 5 13 24 30 2* 3* The resulting tree after the insertion of a data record with search key value 8.
  • 34.
    B + - TR E E : D E L E T E T R E E - B A S E D I N D E X 17 5* 7* 8* 14 * 16 * 22 24 27 29 33 * 34 * 38 * 39 * 5 13 27 30 2* 3* The resulting tree after deleting entries 19* and 20*
  • 36.
    - 2.000.000 records -200.000 pages - 10 data record in a page - 200 records with the same value of the attribute cost (on average) - dense unclustered b+ -tree index with search key cost - alternative 2 (k*, rid) Book code author cost publisher E X A M P L E D E N S E U N C L U S T E R E D I N D E X
  • 37.
    SELECT code, author,publisher FROM Book WHERE cost = %cost% - 2.000.000 records - 200.000 pages - 10 data record in a page - 200 records with the same value of the attribute cost (on average) - dense unclustered b+ -tree index with search key cost - alternative 2 (k*, rid) Book code author cost publisher E X A M P L E D E N S E U N C L U S T E R E D I N D E X
  • 38.
    SELECT code, author,publisher FROM Book WHERE cost = %cost% - 2.000.000 records - 200.000 pages - 10 data record in a page - 200 records with the same value of the attribute cost (on average) - dense unclustered b+ -tree index with search key cost - alternative 2 (k*, rid) Book code author cost publisher how many page accesses do we need to answer to the query? E X A M P L E D E N S E U N C L U S T E R E D I N D E X
  • 39.
    E X AM P L E D E N S E U N C L U S T E R E D I N D E X - 2.000.000 records - 200.000 pages - 10 data record in a page - 200 records with the same value of the attribute cost (on average) - dense unclustered b+ -tree index with search key cost - alternative 2 (k*, rid) Book code author cost publisher Let’s build the index structure each record has 4 field so in each page there are 40 fields 20 data entries fit in one leaf page of the index the tree has a fan-out of 20
  • 40.
    E X AM P L E D E N S E U N C L U S T E R E D I N D E X fanout: 20 occupancy factor of 67% leads to 13 data entries in the leaves How many leaves are there in the tree? 2.000.000/13 = 153.846
  • 41.
    log20 (153.846) =4 I/O page accesses E X A M P L E D E N S E U N C L U S T E R E D I N D E X How many I/Os are needed to go to the leaves? leaves: 153.846 fanout: 20
  • 42.
    E X AM P L E D E N S E U N C L U S T E R E D I N D E X - 200 records with the same value of the attribute cost (on average) - 13 data entries in the leaves - dense unclustered b+ -tree index with search key cost Book code author cost publisher SELECT code, author, publisher FROM Book WHERE cost = %cost% - 15 pages (200/13) to visit for reaching data records with the same cost value (on average)
  • 43.
    ~ 3 sec EX A M P L E D E N S E U N C L U S T E R E D I N D E X Costs path to the leaves: 4 I/Os leaves access: 15 I/Os data records: 200 I/Os Total cost 4 + 15 + 200 = 219 I/Os
  • 44.
    - 2.000.000 records -200.000 pages - 10 data record in a page - 200 records with the same value of the attribute cost (on average) - sparse clustered b+ -tree index with search key cost - alternative 2 (k*, rid) Book code author cost publisher E X A M P L E S PA R S E C L U S T E R E D I N D E X
  • 45.
    - 2.000.000 records -200.000 pages - 10 data record in a page - 200 records with the same value of the attribute cost (on average) - sparse clustered b+ -tree index with search key cost - alternative 2 (k*, rid) Book code author cost publisher E X A M P L E S PA R S E C L U S T E R E D I N D E X SELECT code, author, publisher FROM Book WHERE cost = %cost%
  • 46.
    - 2.000.000 records -200.000 pages - 10 data record in a page - 200 records with the same value of the attribute cost (on average) - sparse clustered b+ -tree index with search key cost - alternative 2 (k*, rid) Book code author cost publisher E X A M P L E S PA R S E C L U S T E R E D I N D E X SELECT code, author, publisher FROM Book WHERE cost = %cost% how many page accesses do we need to answer to the query?
  • 47.
    - 2.000.000 records -200.000 pages - 10 data record in a page - 200 records with the same value of the attribute cost (on average) - sparse clustered b+ -tree index with search key cost - alternative 2 (k*, rid) Book code author cost publisher E X A M P L E S PA R S E C L U S T E R E D I N D E X Let’s build the index structure each record has 4 field so in each page there are 40 fields 20 data entries fit in one leaf page of the index the tree has a fan-out of 20
  • 48.
    E X AM P L E S PA R S E C L U S T E R E D I N D E X fanout: 20 How many pages store 2.000.000 data records? 2.000.000/10 = 200.000 each data entry points to a data record page
  • 49.
    E X AM P L E S PA R S E C L U S T E R E D I N D E X fanout: 20 occupancy factor of 67% leads to 13 data entries in the leaves How many leaves are there in the tree? 200.000/13 = 15.384
  • 50.
    log20 (15.384) =3 I/O page accesses E X A M P L E S PA R S E C L U S T E R E D I N D E X How many I/Os are needed to go to the leaves? leaves: 15.384 fanout: 20 fanout: 20
  • 51.
    E X AM P L E S PA R S E C L U S T E R E D I N D E X - 200 records with the same value of the attribute cost (on average) - 10 data records in a page - sparse clustered b+ -tree index with search key cost Book code author cost publisher SELECT code, author, publisher FROM Book WHERE cost = %cost% - 20 pages (200/10) of data records to visit 
 (on average)
  • 52.
    ~ 0.3 sec EX A M P L E S PA R S E C L U S T E R E D I N D E X Costs path to the leaves: 3 I/Os data records: 20 I/Os Total cost 3 + 20 = 23 I/Os
  • 53.
    E X AM P L E A VA R I A N T What if the attributes were part of the search key? SELECT code, author, publisher FROM Book WHERE cost = %cost%
  • 54.
    E X AM P L E W I T H O U T I N D E X In the worst case we have to visit 2.000.000 records SELECT code, author, publisher FROM Book WHERE cost = %cost% ~ 50 min
  • 56.
    $ W HO A M I Andrea Giuliano @bit_shark www.andreagiuliano.it
  • 57.
  • 58.
    Ramakrishan, Gehrke “DatabaseManagement Systems” Assets: https://farm4.staticflickr.com/3577/3492185538_a39dbb4511_b_d.jpg https://farm3.staticflickr.com/2852/10740309163_12f6a671cc_k_d.jpg https://farm3.staticflickr.com/2456/3835365695_5e515a3492_b_d.jpg https://farm5.staticflickr.com/4048/4332381194_3cfbed7f8e_b_d.jpg https://farm5.staticflickr.com/4117/4800819674_3cf963deaa_b_d.jpg https://farm5.staticflickr.com/4141/4772464179_0672159bbd_b.jpg https://farm9.staticflickr.com/8530/8574154090_bd14f9ccbf_o_d.jpg https://farm8.staticflickr.com/7370/10847923014_2b3fc30cea_k_d.jpg R E F E R E N C E S