This document discusses various techniques for image segmentation. It begins with an abstract discussing image segmentation and its importance in image processing. It then discusses different types of image segmentation like semantic and instance segmentation.
The document then discusses implementation of different image segmentation techniques. It implements region-based segmentation using Mask R-CNN. It performs thresholding-based segmentation using simple thresholding, Otsu's automatic thresholding. It also implements clustering-based segmentation using K-means and Fuzzy C-means. Furthermore, it implements edge-based segmentation using gradient-based techniques like Sobel and Prewitt, and Gaussian-based techniques like Laplacian and Canny edge detectors. Code snippets and output images are provided.