SlideShare a Scribd company logo
1 of 29
IC 05 / semestre printemps 2008 IC 05 / semestre printemps 2008 Franck.ghitalla Département TSH Président de  WebAtlas [email_address] Mesure(s) de phénomènes dynamiques sur le web Théorie(s), modèle(s), expérimentation(s), interfaces
IC 05 / semestre printemps 2008 Temporal patterns, Topic Detection and Tracking, network and human dynamics… 1) Quelques repères bibliographiques
IC 05 / semestre printemps 2008 A.-L. Barabasi,  Nature , 2005.
IC 05 / semestre printemps 2008 A.-L. Barabasi,  Physics , 2005.
IC 05 / semestre printemps 2008 Kumar-Raghavan-Novak-Tomkins,  WWW3 conference , 2003.
IC 05 / semestre printemps 2008 Beyond serving as online diaries, weblogs have evolved into a complex social structure, one which is in many ways ideal for the study of the propagation of information. As weblog authors discover and republish information, we are able to use the existing link structure of blogspace to track its flow. Where the path by which it spreads is ambiguous, we utilize a novel inference scheme that takes advantage of data describing historical, repeating patterns of "infection." Our paper describes this technique as well as a visualization system that allows for the graphical tracking of information flow.  E. Adar, Lada A. Adamic,  WebIntelligence Conference,  2005.
IC 05 / semestre printemps 2008 Abstract A fundamental problem in text data mining is to extract meaningful structure from document streams that arrive continuously over time. E-mail and news articles are two natural examples of such streams, each characterized by topics that appear, grow in intensity for a period of time, and then fade away. The published literature in a particular research eld can be seen to exhibit similar phenomena over a much longer time scale. Underlying much of the text mining work in this area is the following intuitive premise | that the appearance of a topic in a document stream is signaled by a urst of activity," with certain features rising sharply in frequency as the topic emerges. The goal of the present work is to develop a formal approach for modeling such bursts," in such a way that they can be robustly and eciently identied, and can provide an organizational framework for analyzing the underlying content. The approach is based on modeling the stream using an innite-state automaton, in which bursts appear naturally as state transitions; it can be viewed as drawing an analogy with models from queueing theory for bursty network trac. The resulting algorithms are highly ecient, and yield a nested representation of the set of bursts that imposes a hierarchical structure on the overall stream. Experiments with e-mail and research paper archives suggest that the resulting structures have a natural meaning in terms of the content that gave rise to them. J. Kleinberg, 8th ACM SIGKDD international conference on Knowledge discovery and data mining  ,  2002.
IC 05 / semestre printemps 2008 Temporal patterns, Topic Detection and Tracking, network and human dynamics… 2) Modéliser les phénomènes temporels sur le web
IC 05 / semestre printemps 2008 1 2 3 4 Articulation des  TYPES  de temporalité (information  ON  and  IN  the net) Topic Detection and Tracking ( TDT ) Dynamics of network ( patterns temporels ) Articulation des  NIVEAUX  de temporalité( Global / local  dynamics) Modèle opérationnel Design du système(s) de mesure Production/vérification des hypothèses Optimisation/profiling des systèmes de capture et de traitement Question(s) sémiologique(s) de visualisation et le défi de la spatialisation de phénomènes temporels
IC 05 / semestre printemps 2008 2-1) Articulation des  TYPES  de temporalité (information  ON  and  IN  the net) Préoccupation contemporaine : téléphonie, cryptographie, norme Ipv6 et réseaux ad-hoc…et maintenant le web / à différentes échelles Extraire des structures signifiantes des flux d’informations / le champ de la TDT ( Topic Detection and Tracking )  /  Un thème dans un  courant de documents  : développement de l’activité autour du thème, puis retombée / Le temps comme ordre (principe d’ordonnancement) MAIS distinction à faire entre «  événement de structure  » (Network dynamics) et modèle  propagatoire  (épidémiologique et/ou viral) de la diffusion ou des flux   Information  IN  and  ON  the Net IN  and hypertext topology « Any local change in the network topology can be obtained through a combination of four elementary processes: addition and removal of a node and addition or removal of an edge. » / growth, preferential attachment as dynamic rules ON  and information propagation Modèles de circulation virale / la topologie du réseau comme  vecteur Épidémiologie, rumeur, diffusion de l’innovation
IC 05 / semestre printemps 2008 2-2) Articulation des  NIVEAUX  de temporalité, ( Global / local  dynamics) Verrous théorique et technique  : Temporalité propre des objets réseau  /  temporalité du phénomène étudié  (détection de signal faible, mouvement de « fond », organisation d’acteurs…) /  temporalité des mesures / modèles théoriques de l’Histoire Exemple  : quand (et quoi) sonder? Avec quelle régularité pour quel résultats?  Propriété méthodologique : cartographie = rendre statique du dynamique, mesure de phénomènes dynamiques : introduire du temps dans du statique / l’aller-retour statique-dynamique
IC 05 / semestre printemps 2008 2-3) Topic Detection and Tracking ( TDT ) TOPIC DETECTION AND TRACKING « Time series » / queuing theory Data elements are a function of time : D = {(t 1 ,y 1 ),(t 2 ,y 2 ),…,(t n ,y n )} Théorie du Signal : (fréquence / amplitude ou intensité) appliqué au  Text Mining Mesure à deux états (au plus simple) par rapport à un seuil Mesure à états multiples : choix du type d’indicateurs, définition des échelles TEMPORAL PATTERNS Equal / non-equal time  steps linear (cycles) / non-linear  patterns  (but non chaotic)
IC 05 / semestre printemps 2008 2-3) Topic Detection and Tracking ( TDT ) Hierarchical Structure and E-mail Streams all the mail I sent and received during this period, unltered by content but excluding long les. It contains 34344 messages in UNIX mailbox format, totaling 41.7 megabytes of ascii text, excluding message headers. Subsets of the collection can be chosen by selecting all messages that contain a particular string or set of strings; this can be viewed as an analogue of a older" of related messages, although messages in the present case are related not because they were manually led together but because they are the response set to a particular query. To give a qualitative sense for the kind of structure one obtains, Figures 2 and 3 show the results of computing bursts for two dierent queries using the automaton A2. Figure 2 shows an analysis of the stream of all messages containing the word TR," which is prominent in my e-mail because it is the name of a large National Science Foundation program for which my colleagues and I wrote two proposals in 1999-2000.
IC 05 / semestre printemps 2008 2-3) Topic Detection and Tracking ( TDT ) Text Mining
IC 05 / semestre printemps 2008 2-4) Dynamics of network ( patterns temporels ) L’inscription du temps dans les systèmes : temps « invisible et continu » du système / temporalité d’événements remarquables Emergence : the « first event » « The sudden jump in network property occurs at a « critical state ». In random network theory, this state is <K>=1. From a mostly disconnected state, the system evolves suddenly to a single connected component » ,[object Object],[object Object],[object Object]
IC 05 / semestre printemps 2008 2-4) Dynamics of network ( patterns temporels ) critical states / phase transition (facteur interne?) Équilibre? Feature of spontaneous order?  Signal faible et  prédictibilité Bibliothèque de cas et méthodes de repérage des courbes ascendantes/naissantes Mémoire et réseaux (réactivation potentielle des topologies/états critiques) Robustness/Vulnerability (facteur externe?) Error and Attack Tolerance / planed organisation and developpment? Ordered / random (crystal/liquid) Connected / fragmented (percolation) Synchronized / random-phased (lazer/light) Quels types/degrés de corrélation entre facteurs externes et phase transition? Mutations systémiques
IC 05 / semestre printemps 2008 Temporal patterns, Topic Detection and Tracking, network and human dynamics… 3) Systèmes, interfaces, cas
IC 05 / semestre printemps 2008 Temporal patterns, Topic Detection and Tracking, network and human dynamics… Detect and validate properties of an unknown function  f Temporal behavior of data elements When was something greatest/least? Is there a pattern? Are two series similar? Do any of the series match a pattern? Provide simpler, faster access to the series OBJECTIVES OF TIME SERIES VISUALIZATION(S) OR NETWORK EVOLUTION
IC 05 / semestre printemps 2008 Modéliser les propriétés topologiques (statiques) du domaine (cartographie) Distribuer les systèmes de mesure, traiter les données, assurer la visualisation des patterns Disposer de modèles prédictifs ou des  scénarios évolutifs ( ce qui suppose de les avoir testés dans plusieurs cas) dans leur articulation à la cartographie Verrous théorique et technique  : Bibliothèque de cas Exemple :  la « grippe aviaire » comme phénomène informationnel stratégique Modèle opérationnel  :  Global/local (topologie, contenu), niveau de couches (haute/agrégats), phénomènes dynamiques/statiques Un exemple en veille stratégique : la « grippe aviaire » Contexte : qui parle du H5N1 sur le web? En quels termes? La thémétique est-elle localisable sur le web? Par quels canaux et/ou relais d’opinion se propage l’information? Peut-on fournir des indicateurs a) de localisation b) de densité c) de propagation des informations associées à la thématique?
IC 05 / semestre printemps 2008 Mesure quantitative de « bruit » (type  Tendançologue ) Analyse thématique quantitative et qualitative (contenu textuel) SYNTHESE Global/local (topologie, contenu), niveau de couches (haute/agrégats), phénomènes dynamiques/statiques
IC 05 / semestre printemps 2008 ThemeRiver:  Visualizing Thematic Changes in Large Document Collections Susan Havre,   Elizabeth Hetzler,   Paul Whitney,   Lucy Nowell Interactive Visualization of Serial Periodic Data John Carlis, Joseph Konstan Visual Queries for Finding Patterns in Time Series Data Harry Hochheiser, Ben Shneiderman 3 exemples de systèmes
IC 05 / semestre printemps 2008 ThemeRiver:  Visualizing Thematic Changes in Large Document Collections River metaphor: Each attribute is mapped to a “ current ” in the “ river ”, flowing along the timeline Current width ~= strength of theme River width ~= global strength Color mapping (similar themes – same color family) Comparing two rivers
IC 05 / semestre printemps 2008 ThemeRiver:  Visualizing Thematic Changes in Large Document Collections
IC 05 / semestre printemps 2008 Interactive Visualization of Serial Periodic Data Spiral axis =  serial attributes Radii =  periodic attributes Period   =  360° Focus on pure serial periodic data (equal durations of cycles) Simultaneous  display of serial and periodic attributes (e.g. seasonality) Traditional layouts exaggerate distance across period boundaries Focus+Context / Zoom unsuitable Chimpanzees Monthly food consumption 1980-1988
IC 05 / semestre printemps 2008 Interactive Visualization of Serial Periodic Data 12 common food types Consistent ordering Boundary lines Helpful ? 112 food types Muliple linked spirals:  2 chimpanzees group avg size / max size ,[object Object],[object Object],[object Object]
IC 05 / semestre printemps 2008 Visual Queries for Finding Patterns in Time Series Data ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
IC 05 / semestre printemps 2008 Visual Queries for Finding Patterns in Time Series Data ,[object Object],[object Object],[object Object],[object Object],[object Object],http://www.cs.umd.edu/hcil/timesearcher/
IC 05 / semestre printemps 2008 http://cdc25.biol.vt.edu/Pubs/TysonNR.pdf
IC 05 / semestre printemps 2008 IC 05 / semestre printemps 2008 Franck.ghitalla Département TSH Président de  WebAtlas [email_address] Mesure(s) de phénomènes dynamiques sur le web Théorie(s), modèle(s), expérimentation(s), interfaces

More Related Content

Viewers also liked

Viewers also liked (10)

Sharing Information In An Augmented World
Sharing Information In An Augmented WorldSharing Information In An Augmented World
Sharing Information In An Augmented World
 
Printemps 2. ildy
Printemps 2.  ildyPrintemps 2.  ildy
Printemps 2. ildy
 
Programme printemps numérique_international 2017
Programme printemps numérique_international 2017Programme printemps numérique_international 2017
Programme printemps numérique_international 2017
 
Printemps 4. ildy
Printemps 4. ildyPrintemps 4. ildy
Printemps 4. ildy
 
Printemps 3. ildy
Printemps 3.  ildyPrintemps 3.  ildy
Printemps 3. ildy
 
Printemps ildy
Printemps  ildyPrintemps  ildy
Printemps ildy
 
Printemps, a prestigious French flagship
Printemps, a prestigious French flagshipPrintemps, a prestigious French flagship
Printemps, a prestigious French flagship
 
Au Printemps - French spring easy reading
Au Printemps - French spring easy readingAu Printemps - French spring easy reading
Au Printemps - French spring easy reading
 
Benchmark Retail - Tendances Printemps-Eté 2017
Benchmark Retail - Tendances Printemps-Eté 2017Benchmark Retail - Tendances Printemps-Eté 2017
Benchmark Retail - Tendances Printemps-Eté 2017
 
Marketing Plan Presentation
Marketing Plan PresentationMarketing Plan Presentation
Marketing Plan Presentation
 

Similar to IC05 cours 4

Pre-defense_talk
Pre-defense_talkPre-defense_talk
Pre-defense_talk
aphex34
 
Dr31564567
Dr31564567Dr31564567
Dr31564567
IJMER
 
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
aimsnist
 
The Matrix: connecting and re-using digital records of archaeological investi...
The Matrix: connecting and re-using digital records of archaeological investi...The Matrix: connecting and re-using digital records of archaeological investi...
The Matrix: connecting and re-using digital records of archaeological investi...
Keith.May
 
On nonmetric similarity search problems in complex domains
On nonmetric similarity search problems in complex domainsOn nonmetric similarity search problems in complex domains
On nonmetric similarity search problems in complex domains
unyil96
 
Nonmetric similarity search
Nonmetric similarity searchNonmetric similarity search
Nonmetric similarity search
unyil96
 

Similar to IC05 cours 4 (20)

Pre-defense_talk
Pre-defense_talkPre-defense_talk
Pre-defense_talk
 
00b7d51ed81834e4d7000000
00b7d51ed81834e4d700000000b7d51ed81834e4d7000000
00b7d51ed81834e4d7000000
 
Dr31564567
Dr31564567Dr31564567
Dr31564567
 
SWiM – A Semantic Wiki for Mathematical Knowledge Management
SWiM – A Semantic Wiki for Mathematical Knowledge ManagementSWiM – A Semantic Wiki for Mathematical Knowledge Management
SWiM – A Semantic Wiki for Mathematical Knowledge Management
 
Space-Time in the Matrix and Uses of Allen Temporal Operators for Stratigraph...
Space-Time in the Matrix and Uses of Allen Temporal Operators for Stratigraph...Space-Time in the Matrix and Uses of Allen Temporal Operators for Stratigraph...
Space-Time in the Matrix and Uses of Allen Temporal Operators for Stratigraph...
 
Automatic Classification of Springer Nature Proceedings with Smart Topic Miner
Automatic Classification of Springer Nature Proceedings with Smart Topic MinerAutomatic Classification of Springer Nature Proceedings with Smart Topic Miner
Automatic Classification of Springer Nature Proceedings with Smart Topic Miner
 
Stream data mining & CluStream framework
Stream data mining & CluStream frameworkStream data mining & CluStream framework
Stream data mining & CluStream framework
 
Workshop on Real-time & Stream Analytics IEEE BigData 2016
Workshop on Real-time & Stream Analytics IEEE BigData 2016Workshop on Real-time & Stream Analytics IEEE BigData 2016
Workshop on Real-time & Stream Analytics IEEE BigData 2016
 
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
 
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and ApplicationsData Mining to Discovery for Inorganic Solids: Software Tools and Applications
Data Mining to Discovery for Inorganic Solids: Software Tools and Applications
 
The Matrix: connecting and re-using digital records of archaeological investi...
The Matrix: connecting and re-using digital records of archaeological investi...The Matrix: connecting and re-using digital records of archaeological investi...
The Matrix: connecting and re-using digital records of archaeological investi...
 
Sensors1(1)
Sensors1(1)Sensors1(1)
Sensors1(1)
 
Mining Users Rare Sequential Topic Patterns from Tweets based on Topic Extrac...
Mining Users Rare Sequential Topic Patterns from Tweets based on Topic Extrac...Mining Users Rare Sequential Topic Patterns from Tweets based on Topic Extrac...
Mining Users Rare Sequential Topic Patterns from Tweets based on Topic Extrac...
 
Network Science: Theory, Modeling and Applications
Network Science: Theory, Modeling and ApplicationsNetwork Science: Theory, Modeling and Applications
Network Science: Theory, Modeling and Applications
 
SWiM – A wiki for collaborating on mathematical ontologies
SWiM – A wiki for collaborating on mathematical ontologiesSWiM – A wiki for collaborating on mathematical ontologies
SWiM – A wiki for collaborating on mathematical ontologies
 
Spreading processes on temporal networks
Spreading processes on temporal networksSpreading processes on temporal networks
Spreading processes on temporal networks
 
On the Navigability of Social Tagging Systems
On the Navigability of Social Tagging SystemsOn the Navigability of Social Tagging Systems
On the Navigability of Social Tagging Systems
 
On nonmetric similarity search problems in complex domains
On nonmetric similarity search problems in complex domainsOn nonmetric similarity search problems in complex domains
On nonmetric similarity search problems in complex domains
 
Nonmetric similarity search
Nonmetric similarity searchNonmetric similarity search
Nonmetric similarity search
 
Temporal Recurrent Activation Networks
Temporal Recurrent Activation NetworksTemporal Recurrent Activation Networks
Temporal Recurrent Activation Networks
 

More from Sébastien

Monitoring User-System Interactions through Graph-Based Intrinsic Dynamics An...
Monitoring User-System Interactions through Graph-Based Intrinsic Dynamics An...Monitoring User-System Interactions through Graph-Based Intrinsic Dynamics An...
Monitoring User-System Interactions through Graph-Based Intrinsic Dynamics An...
Sébastien
 
Gephi short introduction
Gephi short introductionGephi short introduction
Gephi short introduction
Sébastien
 
Outskewer: Using Skewness to Spot Outliers in Samples and Time Series
Outskewer: Using Skewness to Spot Outliers in Samples and Time SeriesOutskewer: Using Skewness to Spot Outliers in Samples and Time Series
Outskewer: Using Skewness to Spot Outliers in Samples and Time Series
Sébastien
 
Réseau thématique Analyse Exploratoire de Données pour les Réseaux Dynamiques
Réseau thématique Analyse Exploratoire de Données pour les Réseaux DynamiquesRéseau thématique Analyse Exploratoire de Données pour les Réseaux Dynamiques
Réseau thématique Analyse Exploratoire de Données pour les Réseaux Dynamiques
Sébastien
 

More from Sébastien (17)

PhD Defense: Analyse exploratoire de flots de liens pour la détection d'événe...
PhD Defense: Analyse exploratoire de flots de liens pour la détection d'événe...PhD Defense: Analyse exploratoire de flots de liens pour la détection d'événe...
PhD Defense: Analyse exploratoire de flots de liens pour la détection d'événe...
 
Monitoring User-System Interactions through Graph-Based Intrinsic Dynamics An...
Monitoring User-System Interactions through Graph-Based Intrinsic Dynamics An...Monitoring User-System Interactions through Graph-Based Intrinsic Dynamics An...
Monitoring User-System Interactions through Graph-Based Intrinsic Dynamics An...
 
Gephi short introduction
Gephi short introductionGephi short introduction
Gephi short introduction
 
Gephi : dynamic features
Gephi : dynamic featuresGephi : dynamic features
Gephi : dynamic features
 
Motivation in FLOSS communities
Motivation in FLOSS communitiesMotivation in FLOSS communities
Motivation in FLOSS communities
 
Outskewer: Using Skewness to Spot Outliers in Samples and Time Series
Outskewer: Using Skewness to Spot Outliers in Samples and Time SeriesOutskewer: Using Skewness to Spot Outliers in Samples and Time Series
Outskewer: Using Skewness to Spot Outliers in Samples and Time Series
 
Réseau thématique Analyse Exploratoire de Données pour les Réseaux Dynamiques
Réseau thématique Analyse Exploratoire de Données pour les Réseaux DynamiquesRéseau thématique Analyse Exploratoire de Données pour les Réseaux Dynamiques
Réseau thématique Analyse Exploratoire de Données pour les Réseaux Dynamiques
 
Conclusion du cours Exploration du Web
Conclusion du cours Exploration du WebConclusion du cours Exploration du Web
Conclusion du cours Exploration du Web
 
Introduction à l'exploration du Web
Introduction à l'exploration du WebIntroduction à l'exploration du Web
Introduction à l'exploration du Web
 
Diseasome
DiseasomeDiseasome
Diseasome
 
WebCSTI Rencontres OCIM 2009
WebCSTI Rencontres OCIM 2009WebCSTI Rencontres OCIM 2009
WebCSTI Rencontres OCIM 2009
 
IC05 cours 3
IC05 cours 3IC05 cours 3
IC05 cours 3
 
IC05 cours 2
IC05 cours 2IC05 cours 2
IC05 cours 2
 
IC05 cours 1
IC05 cours 1IC05 cours 1
IC05 cours 1
 
IC05 2008 - Le Web, objet de science?
IC05 2008 - Le Web, objet de science?IC05 2008 - Le Web, objet de science?
IC05 2008 - Le Web, objet de science?
 
Des traces d'usages aux patterns relationnels : la construction technologique...
Des traces d'usages aux patterns relationnels : la construction technologique...Des traces d'usages aux patterns relationnels : la construction technologique...
Des traces d'usages aux patterns relationnels : la construction technologique...
 
Tour d'horizon des personnes morales adhérentes à l'APRIL
Tour d'horizon des personnes morales adhérentes à l'APRILTour d'horizon des personnes morales adhérentes à l'APRIL
Tour d'horizon des personnes morales adhérentes à l'APRIL
 

Recently uploaded

TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
FIDO Alliance
 

Recently uploaded (20)

TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
 
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
Observability Concepts EVERY Developer Should Know (DevOpsDays Seattle)
 
JavaScript Usage Statistics 2024 - The Ultimate Guide
JavaScript Usage Statistics 2024 - The Ultimate GuideJavaScript Usage Statistics 2024 - The Ultimate Guide
JavaScript Usage Statistics 2024 - The Ultimate Guide
 
Google I/O Extended 2024 Warsaw
Google I/O Extended 2024 WarsawGoogle I/O Extended 2024 Warsaw
Google I/O Extended 2024 Warsaw
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
 
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdfLinux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
 
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdfHow Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
How Red Hat Uses FDO in Device Lifecycle _ Costin and Vitaliy at Red Hat.pdf
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024
 
Portal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russePortal Kombat : extension du réseau de propagande russe
Portal Kombat : extension du réseau de propagande russe
 
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
ASRock Industrial FDO Solutions in Action for Industrial Edge AI _ Kenny at A...
 
Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...
Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...
Secure Zero Touch enabled Edge compute with Dell NativeEdge via FDO _ Brad at...
 
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on ThanabotsContinuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
Continuing Bonds Through AI: A Hermeneutic Reflection on Thanabots
 
How we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdfHow we scaled to 80K users by doing nothing!.pdf
How we scaled to 80K users by doing nothing!.pdf
 
Vector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptxVector Search @ sw2con for slideshare.pptx
Vector Search @ sw2con for slideshare.pptx
 
Intro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджераIntro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджера
 
Design and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data ScienceDesign and Development of a Provenance Capture Platform for Data Science
Design and Development of a Provenance Capture Platform for Data Science
 
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
 
Generative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdfGenerative AI Use Cases and Applications.pdf
Generative AI Use Cases and Applications.pdf
 
UiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overviewUiPath manufacturing technology benefits and AI overview
UiPath manufacturing technology benefits and AI overview
 
Intro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptxIntro to Passkeys and the State of Passwordless.pptx
Intro to Passkeys and the State of Passwordless.pptx
 

IC05 cours 4

  • 1. IC 05 / semestre printemps 2008 IC 05 / semestre printemps 2008 Franck.ghitalla Département TSH Président de WebAtlas [email_address] Mesure(s) de phénomènes dynamiques sur le web Théorie(s), modèle(s), expérimentation(s), interfaces
  • 2. IC 05 / semestre printemps 2008 Temporal patterns, Topic Detection and Tracking, network and human dynamics… 1) Quelques repères bibliographiques
  • 3. IC 05 / semestre printemps 2008 A.-L. Barabasi, Nature , 2005.
  • 4. IC 05 / semestre printemps 2008 A.-L. Barabasi, Physics , 2005.
  • 5. IC 05 / semestre printemps 2008 Kumar-Raghavan-Novak-Tomkins, WWW3 conference , 2003.
  • 6. IC 05 / semestre printemps 2008 Beyond serving as online diaries, weblogs have evolved into a complex social structure, one which is in many ways ideal for the study of the propagation of information. As weblog authors discover and republish information, we are able to use the existing link structure of blogspace to track its flow. Where the path by which it spreads is ambiguous, we utilize a novel inference scheme that takes advantage of data describing historical, repeating patterns of &quot;infection.&quot; Our paper describes this technique as well as a visualization system that allows for the graphical tracking of information flow. E. Adar, Lada A. Adamic, WebIntelligence Conference, 2005.
  • 7. IC 05 / semestre printemps 2008 Abstract A fundamental problem in text data mining is to extract meaningful structure from document streams that arrive continuously over time. E-mail and news articles are two natural examples of such streams, each characterized by topics that appear, grow in intensity for a period of time, and then fade away. The published literature in a particular research eld can be seen to exhibit similar phenomena over a much longer time scale. Underlying much of the text mining work in this area is the following intuitive premise | that the appearance of a topic in a document stream is signaled by a urst of activity,&quot; with certain features rising sharply in frequency as the topic emerges. The goal of the present work is to develop a formal approach for modeling such bursts,&quot; in such a way that they can be robustly and eciently identied, and can provide an organizational framework for analyzing the underlying content. The approach is based on modeling the stream using an innite-state automaton, in which bursts appear naturally as state transitions; it can be viewed as drawing an analogy with models from queueing theory for bursty network trac. The resulting algorithms are highly ecient, and yield a nested representation of the set of bursts that imposes a hierarchical structure on the overall stream. Experiments with e-mail and research paper archives suggest that the resulting structures have a natural meaning in terms of the content that gave rise to them. J. Kleinberg, 8th ACM SIGKDD international conference on Knowledge discovery and data mining , 2002.
  • 8. IC 05 / semestre printemps 2008 Temporal patterns, Topic Detection and Tracking, network and human dynamics… 2) Modéliser les phénomènes temporels sur le web
  • 9. IC 05 / semestre printemps 2008 1 2 3 4 Articulation des TYPES de temporalité (information ON and IN the net) Topic Detection and Tracking ( TDT ) Dynamics of network ( patterns temporels ) Articulation des NIVEAUX de temporalité( Global / local dynamics) Modèle opérationnel Design du système(s) de mesure Production/vérification des hypothèses Optimisation/profiling des systèmes de capture et de traitement Question(s) sémiologique(s) de visualisation et le défi de la spatialisation de phénomènes temporels
  • 10. IC 05 / semestre printemps 2008 2-1) Articulation des TYPES de temporalité (information ON and IN the net) Préoccupation contemporaine : téléphonie, cryptographie, norme Ipv6 et réseaux ad-hoc…et maintenant le web / à différentes échelles Extraire des structures signifiantes des flux d’informations / le champ de la TDT ( Topic Detection and Tracking ) / Un thème dans un courant de documents  : développement de l’activité autour du thème, puis retombée / Le temps comme ordre (principe d’ordonnancement) MAIS distinction à faire entre «  événement de structure  » (Network dynamics) et modèle propagatoire (épidémiologique et/ou viral) de la diffusion ou des flux Information IN and ON the Net IN and hypertext topology « Any local change in the network topology can be obtained through a combination of four elementary processes: addition and removal of a node and addition or removal of an edge. » / growth, preferential attachment as dynamic rules ON and information propagation Modèles de circulation virale / la topologie du réseau comme vecteur Épidémiologie, rumeur, diffusion de l’innovation
  • 11. IC 05 / semestre printemps 2008 2-2) Articulation des NIVEAUX de temporalité, ( Global / local dynamics) Verrous théorique et technique : Temporalité propre des objets réseau / temporalité du phénomène étudié (détection de signal faible, mouvement de « fond », organisation d’acteurs…) / temporalité des mesures / modèles théoriques de l’Histoire Exemple : quand (et quoi) sonder? Avec quelle régularité pour quel résultats? Propriété méthodologique : cartographie = rendre statique du dynamique, mesure de phénomènes dynamiques : introduire du temps dans du statique / l’aller-retour statique-dynamique
  • 12. IC 05 / semestre printemps 2008 2-3) Topic Detection and Tracking ( TDT ) TOPIC DETECTION AND TRACKING « Time series » / queuing theory Data elements are a function of time : D = {(t 1 ,y 1 ),(t 2 ,y 2 ),…,(t n ,y n )} Théorie du Signal : (fréquence / amplitude ou intensité) appliqué au Text Mining Mesure à deux états (au plus simple) par rapport à un seuil Mesure à états multiples : choix du type d’indicateurs, définition des échelles TEMPORAL PATTERNS Equal / non-equal time steps linear (cycles) / non-linear patterns (but non chaotic)
  • 13. IC 05 / semestre printemps 2008 2-3) Topic Detection and Tracking ( TDT ) Hierarchical Structure and E-mail Streams all the mail I sent and received during this period, unltered by content but excluding long les. It contains 34344 messages in UNIX mailbox format, totaling 41.7 megabytes of ascii text, excluding message headers. Subsets of the collection can be chosen by selecting all messages that contain a particular string or set of strings; this can be viewed as an analogue of a older&quot; of related messages, although messages in the present case are related not because they were manually led together but because they are the response set to a particular query. To give a qualitative sense for the kind of structure one obtains, Figures 2 and 3 show the results of computing bursts for two dierent queries using the automaton A2. Figure 2 shows an analysis of the stream of all messages containing the word TR,&quot; which is prominent in my e-mail because it is the name of a large National Science Foundation program for which my colleagues and I wrote two proposals in 1999-2000.
  • 14. IC 05 / semestre printemps 2008 2-3) Topic Detection and Tracking ( TDT ) Text Mining
  • 15.
  • 16. IC 05 / semestre printemps 2008 2-4) Dynamics of network ( patterns temporels ) critical states / phase transition (facteur interne?) Équilibre? Feature of spontaneous order? Signal faible et prédictibilité Bibliothèque de cas et méthodes de repérage des courbes ascendantes/naissantes Mémoire et réseaux (réactivation potentielle des topologies/états critiques) Robustness/Vulnerability (facteur externe?) Error and Attack Tolerance / planed organisation and developpment? Ordered / random (crystal/liquid) Connected / fragmented (percolation) Synchronized / random-phased (lazer/light) Quels types/degrés de corrélation entre facteurs externes et phase transition? Mutations systémiques
  • 17. IC 05 / semestre printemps 2008 Temporal patterns, Topic Detection and Tracking, network and human dynamics… 3) Systèmes, interfaces, cas
  • 18. IC 05 / semestre printemps 2008 Temporal patterns, Topic Detection and Tracking, network and human dynamics… Detect and validate properties of an unknown function f Temporal behavior of data elements When was something greatest/least? Is there a pattern? Are two series similar? Do any of the series match a pattern? Provide simpler, faster access to the series OBJECTIVES OF TIME SERIES VISUALIZATION(S) OR NETWORK EVOLUTION
  • 19. IC 05 / semestre printemps 2008 Modéliser les propriétés topologiques (statiques) du domaine (cartographie) Distribuer les systèmes de mesure, traiter les données, assurer la visualisation des patterns Disposer de modèles prédictifs ou des scénarios évolutifs ( ce qui suppose de les avoir testés dans plusieurs cas) dans leur articulation à la cartographie Verrous théorique et technique : Bibliothèque de cas Exemple : la « grippe aviaire » comme phénomène informationnel stratégique Modèle opérationnel : Global/local (topologie, contenu), niveau de couches (haute/agrégats), phénomènes dynamiques/statiques Un exemple en veille stratégique : la « grippe aviaire » Contexte : qui parle du H5N1 sur le web? En quels termes? La thémétique est-elle localisable sur le web? Par quels canaux et/ou relais d’opinion se propage l’information? Peut-on fournir des indicateurs a) de localisation b) de densité c) de propagation des informations associées à la thématique?
  • 20. IC 05 / semestre printemps 2008 Mesure quantitative de « bruit » (type Tendançologue ) Analyse thématique quantitative et qualitative (contenu textuel) SYNTHESE Global/local (topologie, contenu), niveau de couches (haute/agrégats), phénomènes dynamiques/statiques
  • 21. IC 05 / semestre printemps 2008 ThemeRiver: Visualizing Thematic Changes in Large Document Collections Susan Havre, Elizabeth Hetzler, Paul Whitney, Lucy Nowell Interactive Visualization of Serial Periodic Data John Carlis, Joseph Konstan Visual Queries for Finding Patterns in Time Series Data Harry Hochheiser, Ben Shneiderman 3 exemples de systèmes
  • 22. IC 05 / semestre printemps 2008 ThemeRiver: Visualizing Thematic Changes in Large Document Collections River metaphor: Each attribute is mapped to a “ current ” in the “ river ”, flowing along the timeline Current width ~= strength of theme River width ~= global strength Color mapping (similar themes – same color family) Comparing two rivers
  • 23. IC 05 / semestre printemps 2008 ThemeRiver: Visualizing Thematic Changes in Large Document Collections
  • 24. IC 05 / semestre printemps 2008 Interactive Visualization of Serial Periodic Data Spiral axis = serial attributes Radii = periodic attributes Period = 360° Focus on pure serial periodic data (equal durations of cycles) Simultaneous display of serial and periodic attributes (e.g. seasonality) Traditional layouts exaggerate distance across period boundaries Focus+Context / Zoom unsuitable Chimpanzees Monthly food consumption 1980-1988
  • 25.
  • 26.
  • 27.
  • 28. IC 05 / semestre printemps 2008 http://cdc25.biol.vt.edu/Pubs/TysonNR.pdf
  • 29. IC 05 / semestre printemps 2008 IC 05 / semestre printemps 2008 Franck.ghitalla Département TSH Président de WebAtlas [email_address] Mesure(s) de phénomènes dynamiques sur le web Théorie(s), modèle(s), expérimentation(s), interfaces