SlideShare a Scribd company logo
1 of 62
Monroe L. Weber-Shirk
School of Civil and
Environmental Engineering
Open Channel Flow
Sensitivity: LNT Construction Internal Use
Open Channel Flow
 Liquid (water) flow with a ____ ________
(interface between water and air)
 relevant for
 natural channels: rivers, streams
 engineered channels: canals, sewer
lines or culverts (partially full), storm drains
 of interest to hydraulic engineers
 location of free surface
 velocity distribution
 discharge - stage (______) relationships
 optimal channel design
free surface
depth
Sensitivity: LNT Construction Internal Use
Topics in Open Channel Flow
 Uniform Flow
 Discharge-Depth relationships
 Channel transitions
 Control structures (sluice gates, weirs…)
 Rapid changes in bottom elevation or cross section
 Critical, Subcritical and Supercritical Flow
 Hydraulic Jump
 Gradually Varied Flow
 Classification of flows
 Surface profiles
normal depth
Sensitivity: LNT Construction Internal Use
Classification of Flows
 Steady and Unsteady
 Steady: velocity at a given point does not change with
time
 Uniform, Gradually Varied, and Nonuniform
 Uniform: velocity at a given time does not change
within a given length of a channel
 Gradually varied: gradual changes in velocity with
distance
 Laminar and Turbulent
 Laminar: flow appears to be as a movement of thin
layers on top of each other
 Turbulent: packets of liquid move in irregular paths
(Temporal)
(Spatial)
Sensitivity: LNT Construction Internal Use
Momentum and Energy
Equations
 Conservation of Energy
 “losses” due to conversion of turbulence to heat
 useful when energy losses are known or small
 ____________
 Must account for losses if applied over long distances
 _______________________________________________
 Conservation of Momentum
 “losses” due to shear at the boundaries
 useful when energy losses are unknown
 ____________
Contractions
Expansion
We need an equation for losses
Sensitivity: LNT Construction Internal Use
 Given a long channel of
constant slope and cross
section find the relationship
between discharge and depth
 Assume
 Steady Uniform Flow - ___ _____________
 prismatic channel (no change in _________ with distance)
 Use Energy and Momentum, Empirical or
Dimensional Analysis?
 What controls depth given a discharge?
 Why doesn’t the flow accelerate?
Open Channel Flow:
Discharge/Depth Relationship
P
no acceleration
geometry
Force balance
A
Sensitivity: LNT Construction Internal Use
Steady-Uniform Flow: Force
Balance

W

W sin 
Dx
a
b
c
d
Shear force
Energy grade line
Hydraulic grade line
Shear force =________
0
sin 
D

D x
P
x
A o





 sin
P
A
o 
h
R
=
P
A



sin
cos
sin


S
W cos 
g
V
2
2
Wetted perimeter = __
Gravitational force = ________
Hydraulic radius
Relationship between shear and velocity? ______________
oP D x
P
A Dx sin
Turbulence
Sensitivity: LNT Construction Internal Use
 Geometric parameters
 ___________________
 ___________________
 ___________________
 Write the functional relationship
 Does Fr affect shear? _________
P
A
Rh 
Hydraulic radius (Rh)
Channel length (l)
Roughness (e)
Open Conduits:
Dimensional Analysis
f , ,Re,
p
h h
l
C r
R R
e
æ ö
= ç ÷
è ø
F ,M,W
V
Fr
yg
=
No!
Sensitivity: LNT Construction Internal Use
Pressure Coefficient for Open
Channel Flow?
2
2
C
V
p
p

D


2
2
C
V
ghl
hl

2
2
C f
f
S
gS l
V
=
l f
h S l
=
l
h
p 

D

Pressure Coefficient
Head loss coefficient
Friction slope coefficient
(Energy Loss Coefficient)
Friction slope
Slope of EGL
Sensitivity: LNT Construction Internal Use
Dimensional Analysis
f , ,Re
f
S
h h
l
C
R R
e
æ ö
= ç ÷
è ø
f
h
S
R
C
l
l
=
2
2 f h
gS l R
V l
l
=
2 f h
gS R
V
l
=
2
f h
g
V S R
l
=
f ,Re
f
S
h h
l
C
R R
e
æ ö
= ç ÷
è ø
Head loss  length of channel
f ,Re
f
h
S
h
R
C
l R
e
l
æ ö
= =
ç ÷
è ø
2
2
f
f
S
gS l
C
V
=
(like f in Darcy-Weisbach)
Sensitivity: LNT Construction Internal Use
Chezy equation (1768)
 Introduced by the French engineer Antoine
Chezy in 1768 while designing a canal for
the water-supply system of Paris
h f
V C R S
=
150
<
C
<
60
s
m
s
m
where C = Chezy coefficient
where 60 is for rough and 150 is for smooth
also a function of R (like f in Darcy-Weisbach)
2
f h
g
V S R
l
=
compare
Sensitivity: LNT Construction Internal Use
Darcy-Weisbach equation (1840)
where d84 = rock size larger than 84% of
the rocks in a random sample
For rock-bedded streams
f = Darcy-Weisbach friction factor
2
84
1
1.2 2.03log h
f
R
d
=
æ ö
é ù
+ ê ú
ç ÷
è ø
ë û
4
4
P
2
d
d
d
A
Rh 












2
2
l
l V
h f
d g
=
2
4 2
l
h
l V
h f
R g
=
2
4 2
f
h
l V
S l f
R g
=
2
8
f h
V
S R f
g
=
8
f h
g
V S R
f
=
Sensitivity: LNT Construction Internal Use
Manning Equation (1891)
 Most popular in U.S. for open channels
(English system)
1/2
o
2/3
h S
R
1
n
V 
1/2
o
2/3
h S
R
49
.
1
n
V 
VA
Q 
2
/
1
3
/
2
1
o
h S
AR
n
Q  very sensitive to n
Dimensions of n?
Is n only a function of roughness?
(MKS units!)
NO!
T /L1/3
Bottom slope
Sensitivity: LNT Construction Internal Use
Values of Manning n
Lined Canals n
Cement plaster 0.011
Untreated gunite 0.016
Wood, planed 0.012
Wood, unplaned 0.013
Concrete, trowled 0.012
Concrete, wood forms, unfinished 0.015
Rubble in cement 0.020
Asphalt, smooth 0.013
Asphalt, rough 0.016
Natural Channels
Gravel beds, straight 0.025
Gravel beds plus large boulders 0.040
Earth, straight, with some grass 0.026
Earth, winding, no vegetation 0.030
Earth , winding with vegetation 0.050
d = median size of bed material
n = f(surface
roughness,
channel
irregularity,
stage...)
6
/
1
038
.
0 d
n 
6
/
1
031
.
0 d
n  d in
ft
d in m
Sensitivity: LNT Construction Internal Use
Trapezoidal Channel
 Derive P = f(y) and A = f(y) for a
trapezoidal channel
 How would you obtain y = f(Q)?
z
1
b
y
z
y
yb
A 2


 
  b
yz
y
P 


2
/
1
2
2
2
  b
z
y
P 


2
/
1
2
1
2
2
/
1
3
/
2
1
o
h S
AR
n
Q 
Use Solver!
Sensitivity: LNT Construction Internal Use
Flow in Round Conduits







 

r
y
r
arccos

 


 cos
sin
2

 r
A

sin
2r
T 

y
T
A
r

r
P 2

radians
Maximum discharge
when y = ______
0.938d
( )( )
sin cos
r r
q q
=
Sensitivity: LNT Construction Internal Use
Open Channel Flow: Energy
Relations
2g
V2
1
1

2g
V2
2
2

x
SoD
2
y
1
y
x
D
L f
h S x
= D
energy
grade line
hydraulic
grade line
velocity head
Bottom slope (So) not necessarily equal to surface slope (Sf)
water surface
Sensitivity: LNT Construction Internal Use
Energy relationships
2 2
1 1 2 2
1 1 2 2
2 2 L
p V p V
z z h
g g
a a
g g
+ + = + + +
2 2
1 2
1 2
2 2
o f
V V
y S x y S x
g g
+ D + = + + D
Turbulent flow (  1)
z - measured from
horizontal datum
y - depth of flow
Pipe flow
Energy Equation for Open Channel Flow
2 2
1 2
1 2
2 2
o f
V V
y S x y S x
g g
+ + D = + + D
From diagram on previous slide...
Sensitivity: LNT Construction Internal Use
Specific Energy
 The sum of the depth of flow and the
velocity head is the specific energy:
g
V
y
E
2
2


If channel bottom is horizontal and no head loss
2
1 E
E 
y - potential energy
g
V
2
2
- kinetic energy
For a change in bottom elevation
1 2
E y E
- D =
x
S
E
x
S
E o D


D
 f
2
1
y
Sensitivity: LNT Construction Internal Use
Specific Energy
In a channel with constant discharge, Q
2
2
1
1 V
A
V
A
Q 

2
2
2gA
Q
y
E 

g
V
y
E
2
2

 where A=f(y)
Consider rectangular channel (A=By) and Q=qB
2
2
2gy
q
y
E 

A
B
y
3 roots (one is negative)
q is the discharge per unit width of channel
Sensitivity: LNT Construction Internal Use
0
1
2
3
4
5
6
7
8
9
10
0 1 2 3 4 5 6 7 8 9 10
E
y
Specific Energy: Sluice Gate
2
2
2gy
q
y
E 

1
2
2
1 E
E 
sluice gate
y1
y2
EGL
y1 and y2 are ___________ depths (same specific energy)
Why not use momentum conservation to find y1?
q = 5.5 m2/s
y2 = 0.45 m
V2 = 12.2 m/s
E2 = 8 m
alternate
Given downstream depth and discharge, find upstream depth.
Sensitivity: LNT Construction Internal Use
0
1
2
3
4
0 1 2 3 4
E
y Specific Energy: Raise the Sluice
Gate
2
2
2gy
q
y
E 

1 2
E1  E2
sluice gate
y1
y2
EGL
as sluice gate is raised y1 approaches y2 and E is
minimized: Maximum discharge for given energy.
Sensitivity: LNT Construction Internal Use
0
1
2
3
4
0 1 2 3 4
E
y
Specific Energy: Step Up
Short, smooth step with rise Dy in channel
Dy
1 2
E E y
= + D
Given upstream depth and
discharge find y2
0
1
2
3
4
0 1 2 3 4
E
y
Increase step height?
Sensitivity: LNT Construction Internal Use
P
A
Critical Flow
T
dy
y
T=surface width
Find critical depth, yc
2
2
2gA
Q
y
E 

0

dy
dE
Tdy
dA 
0
dE
dy
= =
3
2
1
c
c
gA
T
Q

Arbitrary cross-section
A=f(y)
2
3
2
Fr
gA
T
Q

2
2
Fr
gA
T
V

dA
A
D
T
= Hydraulic Depth
2
3
1
Q dA
gA dy
-
0
1
2
3
4
0 1 2 3 4
E
y
yc
Sensitivity: LNT Construction Internal Use
Critical Flow:
Rectangular channel
yc
T
Ac
3
2
1
c
c
gA
T
Q

qT
Q  T
y
A c
c 
3
2
3
3
3
2
1
c
c gy
q
T
gy
T
q


3
/
1
2









g
q
yc
3
c
gy
q 
Only for rectangular channels!
c
T
T 
Given the depth we can find the flow!
Sensitivity: LNT Construction Internal Use
Critical Flow Relationships:
Rectangular Channels
3
/
1
2









g
q
yc c
c y
V
q 









g
y
V
y
c
c
c
2
2
3
g
V
y
c
c
2

1

g
y
V
c
c
Froude number
velocity head =
because
g
V
y c
c
2
2
2

2
c
c
y
y
E 
 E
yc
3
2

force
gravity
force
inertial
0.5 (depth)
g
V
y
E
2
2


Kinetic energy
Potential energy
Sensitivity: LNT Construction Internal Use
Critical Flow
 Characteristics
 Unstable surface
 Series of standing waves
 Occurrence
 Broad crested weir (and other weirs)
 Channel Controls (rapid changes in cross-section)
 Over falls
 Changes in channel slope from mild to steep
 Used for flow measurements
 ___________________________________________
Unique relationship between depth and discharge
Difficult to measure depth
0
1
2
3
4
0 1 2 3 4
E
y
Sensitivity: LNT Construction Internal Use
Broad-crested Weir
H
P
yc
E
3
c
gy
q  3
c
Q b gy
=
E
yc
3
2

3/ 2
3/ 2
2
3
Q b g E
æ ö
=
è ø
Cd corrects for using H rather
than E.
3
/
1
2









g
q
yc
Broad-crested
weir
E measured from top of weir
3/ 2
2
3
d
Q C b g H
æ ö
=
è ø
Hard to measure yc
Sensitivity: LNT Construction Internal Use
Broad-crested Weir: Example
 Calculate the flow and the depth upstream.
The channel is 3 m wide. Is H approximately
equal to E?
0.5
yc
E
Broad-crested
weir
yc=0.3 m
Solution
How do you find flow?____________________
How do you find H?______________________
Critical flow relation
Energy equation
Sensitivity: LNT Construction Internal Use
Hydraulic Jump
 Used for energy dissipation
 Occurs when flow transitions from
supercritical to subcritical
 base of spillway
 We would like to know depth of water
downstream from jump as well as the
location of the jump
 Which equation, Energy or Momentum?
Sensitivity: LNT Construction Internal Use
Hydraulic Jump!
Sensitivity: LNT Construction Internal Use
Hydraulic Jump
y1
y2
L
EGL
hL
Conservation of Momentum
2
2
1
1
2
1 A
p
A
p
QV
QV 


 

2
gy
p


A
Q
V 
2
2
2
2
1
1
2
2
1
2
A
gy
A
gy
A
Q
A
Q




x
x p
p
x
x F
F
M
M 2
1
2
1 


1
2
1
1 A
V
M x 


2
2
2
2 A
V
M x 

ss
p
p F
F
F
W
M
M 



 2
1
2
1
Sensitivity: LNT Construction Internal Use
Hydraulic Jump:
Conjugate Depths
Much algebra
For a rectangular channel make the following substitutions
By
A  1
1V
By
Q 
1
1
1
V
Fr
gy
= Froude number
 
2
1
1
2 8
1
1
2
Fr
y
y 



valid for slopes < 0.02
Sensitivity: LNT Construction Internal Use
Hydraulic Jump:
Energy Loss and Length
No general theoretical solution
Experiments show
2
6y
L  20
4 1 
 Fr
•Length of jump
•Energy Loss
2
2
2gy
q
y
E 

L
h
E
E 
 2
1
significant energy loss (to turbulence) in jump
 
2
1
3
1
2
4 y
y
y
y
hL


algebra
for
Sensitivity: LNT Construction Internal Use
Gradually Varied Flow
2 2
1 2
1 2
2 2
o f
V V
y S x y S x
g g
+ + D = + + D
Energy equation for non-
uniform, steady flow
1
2 y
y
dy 

2
2 f o
V
dy d S dx S dx
g
æ ö
+ + =
ç ÷
è ø
P
A
T
dy
y
dy
dx
S
dy
dx
S
g
V
dy
d
dy
dy
o
f 










2
2
( )
2 2
2 1
2 1
2 2
o f
V V
S dx y y S dx
g g
æ ö
= - + - +
ç ÷
è ø
Sensitivity: LNT Construction Internal Use
Gradually Varied Flow
2
3
2
3
2
2
2
2
2
2
2
2
Fr
gA
T
Q
dy
dA
gA
Q
gA
Q
dy
d
g
V
dy
d









 









 


















  f
o S
S
Fr
dx
dy


 2
1
dy
dx
S
dy
dx
S
g
V
dy
d
dy
dy
o
f 










2
2
dy
dx
S
dy
dx
S
Fr o
f 

 2
1
Change in KE
Change in PE
We are holding Q constant!
2
1 Fr
S
S
dx
dy f
o



Sensitivity: LNT Construction Internal Use
Gradually Varied Flow
2
1 Fr
S
S
dx
dy f
o


 Governing equation for
gradually varied flow
 Gives change of water depth with distance along channel
 Note
 So and Sf are positive when sloping down in
direction of flow
 y is measured from channel bottom
 dy/dx =0 means water depth is constant
yn is when o f
S S
=
Sensitivity: LNT Construction Internal Use
Surface Profiles
 Mild slope (yn>yc)
 in a long channel subcritical flow will occur
 Steep slope (yn<yc)
 in a long channel supercritical flow will occur
 Critical slope (yn=yc)
 in a long channel unstable flow will occur
 Horizontal slope (So=0)
 yn undefined
 Adverse slope (So<0)
 yn undefined
Note: These slopes are f(Q)!
Sensitivity: LNT Construction Internal Use
Normal depth
Steep slope (S2)
Hydraulic Jump
Sluice gate
Steep slope
Obstruction
Surface Profiles
2
1 Fr
S
S
dx
dy f
o


 S0 - Sf 1 - Fr2 dy/dx
+ + +
- + -
- - + 0
1
2
3
4
0 1 2 3 4
E
y
yn
yc
Sensitivity: LNT Construction Internal Use
More Surface Profiles
S0 - Sf 1 - Fr2 dy/dx
1 + + +
2 + - -
3 - - + 0
1
2
3
4
0 1 2 3 4
E
y
yn
yc
2
1 Fr
S
S
dx
dy f
o



Sensitivity: LNT Construction Internal Use
Direct Step Method
x
S
g
V
y
x
S
g
V
y f
o D



D


2
2
2
2
2
2
1
1
o
f S
S
g
V
g
V
y
y
x





D
2
2
2
2
2
1
2
1
energy equation
solve for Dx
1
1
y
q
V 
2
2
y
q
V 
2
2
A
Q
V 
1
1
A
Q
V 
rectangular channel prismatic channel
Sensitivity: LNT Construction Internal Use
Direct Step Method
Friction Slope
2 2
4/3
f
h
n V
S
R
=
2 2
4/3
2.22
f
h
n V
S
R
=
2
8
f
h
fV
S
gR
=
Manning Darcy-Weisbach
SI units
English units
Sensitivity: LNT Construction Internal Use
Direct Step
 Limitation: channel must be _________ (so that
velocity is a function of depth only and not a
function of x)
 Method
 identify type of profile (determines whether Dy is + or -)
 choose Dy and thus yn+1
 calculate hydraulic radius and velocity at yn and yn+1
 calculate friction slope yn and yn+1
 calculate average friction slope
 calculate Dx
prismatic
Sensitivity: LNT Construction Internal Use
Direct Step Method
=(G16-G15)/((F15+F16)/2-So)
A B C D E F G H I J K L M
y A P Rh V Sf E Dx x T Fr bottom surface
0.900 1.799 4.223 0.426 0.139 0.00004 0.901 0 3.799 0.065 0.000 0.900
0.870 1.687 4.089 0.412 0.148 0.00005 0.871 0.498 0.5 3.679 0.070 0.030 0.900
=y*b+y^2*z
=2*y*(1+z^2)^0.5 +b
=A/P
=Q/A
=(n*V)^2/Rh^(4/3)
=y+(V^2)/(2*g)
o
f S
S
g
V
g
V
y
y
x





D
2
2
2
2
2
1
2
1
Sensitivity: LNT Construction Internal Use
Standard Step
 Given a depth at one location, determine the depth at a
second location
 Step size (Dx) must be small enough so that changes in
water depth aren’t very large. Otherwise estimates of the
friction slope and the velocity head are inaccurate
 Can solve in upstream or downstream direction
 upstream for subcritical
 downstream for supercritical
 Find a depth that satisfies the energy equation
x
S
g
V
y
x
S
g
V
y f
o D



D


2
2
2
2
2
2
1
1
Sensitivity: LNT Construction Internal Use
What curves are available?
S1
S3
Is there a curve between yc and yn that
decreases in depth in the upstream direction?
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0
5
10
15
20
distance upstream (m)
elevation
(m)
bottom
surface
yc
yn
Sensitivity: LNT Construction Internal Use
Wave Celerity
2
1
2
1
gy
F 
  2
2
2
1
y
y
g
F 
 

 
 
2
2
2
1
2
1
y
y
y
g
F
F
Fr 
 




F1
y+y
V+V
V
Vw
unsteady flow
y y y+y
V+V-Vw
V-Vw
steady flow
V+V-Vw
V-Vw
F2
Sensitivity: LNT Construction Internal Use
Wave Celerity:
Momentum Conservation
     
 
w
w
w
r V
V
V
V
V
V
V
y
F 




 

  V
V
V
y
F w
r 
 

 
    V
V
V
y
y
y
y
g w 


 



2
2
2
1
    V
V
V
y
y
y
g w 
 

 2
2
1
  V
V
V
y
g w 
 


y y+y
V+V-Vw
V-Vw
steady flow
1
2 M
M
Fr 
   y
V
V
M w
2
1 

  Per unit width
Sensitivity: LNT Construction Internal Use
Wave Celerity
    
w
w V
V
V
y
y
V
V
y 



 

w
w
w yV
yV
V
y
V
y
yV
yV
yV
yV 



 






 
y
y
V
V
V w

 


  V
V
V
y
g w 
 


 
y
y
V
V
y
g w

 2


 2
w
V
V
gy 
 w
V
V
c 
 gy
c 
Mass conservation
y y+y
V+V-Vw
V-Vw
steady flow
Momentum
c
V
Fr
yg
V


Sensitivity: LNT Construction Internal Use
Wave Propagation
 Supercritical flow
 c<V
 waves only propagate downstream
 water doesn’t “know” what is happening downstream
 _________ control
 Critical flow
 c=V
 Subcritical flow
 c>V
 waves propagate both upstream and downstream
upstream
Sensitivity: LNT Construction Internal Use
Most Efficient Hydraulic
Sections
 A section that gives maximum discharge for a
specified flow area
 Minimum perimeter per area
 No frictional losses on the free surface
 Analogy to pipe flow
 Best shapes
 best
 best with 2 sides
 best with 3 sides
Sensitivity: LNT Construction Internal Use
Why isn’t the most efficient
hydraulic section the best design?
Minimum area = least excavation only if top of
channel is at grade
Cost of liner
Complexity of form work
Erosion constraint - stability of side walls
Sensitivity: LNT Construction Internal Use
Open Channel Flow Discharge
Measurements
 Discharge
 Weir
 broad crested
 sharp crested
 triangular
 Venturi Flume
 Spillways
 Sluice gates
 Velocity-Area-Integration
Sensitivity: LNT Construction Internal Use
Discharge Measurements
Sharp-Crested Weir
Triangular Weir
Broad-Crested Weir
Sluice Gate
5/ 2
8
2 tan
15 2
d
Q C g H
q
æ ö
=
è ø
3/ 2
2
3
d
Q C b g H
æ ö
=
è ø
3/ 2
2
2
3 d
Q C b gH
=
1
2
d g
Q C by gy
=
Explain the exponents of H!
Sensitivity: LNT Construction Internal Use
Summary
 All the complications of pipe flow plus
additional parameter... _________________
 Various descriptions of head loss term
 Chezy, Manning, Darcy-Weisbach
 Importance of Froude Number
 Fr>1 decrease in E gives increase in y
 Fr<1 decrease in E gives decrease in y
 Fr=1 standing waves (also min E given Q)
 Methods of calculating location of free surface
free surface location
0
1
2
3
4
0 1 2 3 4
E
y
Sensitivity: LNT Construction Internal Use
Broad-crested Weir: Solution
0.5
yc
E
Broad-crested
weir
yc=0.3 m
3
c
gy
q 
 3
2
3
.
0
)
/
8
.
9
( m
s
m
q 
s
m
q /
5144
.
0 2

s
m
qL
Q /
54
.
1 3


E
yc
3
2

m
y
E c 45
.
0
2
3
2 

1 2 0.95
E E y m
= + D =
2
1
2
1
1
2gy
q
y
E 

435
.
0
5
.
0
1
1 

 m
y
H
935
.
0
1 
y
2
1 1
2
1
2
q
E y
gE
- @
Sensitivity: LNT Construction Internal Use
Sluice Gate
2 m
10 cm
Sluice gate
reservoir
Sensitivity: LNT Construction Internal Use
Summary/Overview
Energy losses
Dimensional Analysis
Empirical
8
f h
g
V S R
f
=
1/2
o
2/3
h S
R
1
n
V 
Sensitivity: LNT Construction Internal Use
Energy Equation
Specific Energy
Two depths with same energy!
How do we know which depth
is the right one?
Is the path to the new depth
possible?
2 2
1 2
1 2
2 2
o f
V V
y S x y S x
g g
+ + D = + + D
2
2
2
q
y
gy
= +
g
V
y
E
2
2


2
2
2
Q
y
gA
= +
0
1
2
3
4
0 1 2 3 4
E
y
Sensitivity: LNT Construction Internal Use
0
1
2
3
4
0 1 2 3 4
E
y
Specific Energy: Step Up
Short, smooth step with rise Dy in channel
Dy
1 2
E E y
= + D
Given upstream depth and
discharge find y2
0
1
2
3
4
0 1 2 3 4
E
y
Increase step height?
Sensitivity: LNT Construction Internal Use
Critical Depth
Minimum energy for q
When
When kinetic = potential!
Fr=1
Fr>1 = Supercritical
Fr<1 = Subcritical
0

dy
dE
0
1
2
3
4
0 1 2 3 4
E
y
g
V
y c
c
2
2
2

3
T
Q
gA
=
3
c
q
gy
=
c
c
V
Fr
y g
=
Sensitivity: LNT Construction Internal Use
What next?
 Water surface profiles
 Rapidly varied flow
 A way to move from supercritical to subcritical flow
(Hydraulic Jump)
 Gradually varied flow equations
 Surface profiles
 Direct step
 Standard step

More Related Content

Similar to 11 open_channel.ppt

Chapter 1
Chapter 1Chapter 1
Chapter 1nimcan1
 
(Part ii)- open channels
(Part ii)- open channels(Part ii)- open channels
(Part ii)- open channelsMohsin Siddique
 
Terbulent Flow in fluid mechanics
Terbulent Flow in fluid mechanicsTerbulent Flow in fluid mechanics
Terbulent Flow in fluid mechanicsPavan Narkhede
 
Flow of incompressible fluids through pipes
Flow of incompressible fluids through pipes Flow of incompressible fluids through pipes
Flow of incompressible fluids through pipes MAULIKM1
 
Chapter 2 open channel hydraulics
Chapter 2 open channel hydraulicsChapter 2 open channel hydraulics
Chapter 2 open channel hydraulicsMohsin Siddique
 
Top schools in ghaziabad
Top schools in ghaziabadTop schools in ghaziabad
Top schools in ghaziabadEdhole.com
 
0 open channel intro 5
0 open channel   intro 50 open channel   intro 5
0 open channel intro 5Refee Lubong
 
Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Mohsin Siddique
 
ODDLS: Overlapping domain decomposition Level Set Method
ODDLS: Overlapping domain decomposition Level Set MethodODDLS: Overlapping domain decomposition Level Set Method
ODDLS: Overlapping domain decomposition Level Set MethodAleix Valls
 
Computational hydraulics
Computational hydraulicsComputational hydraulics
Computational hydraulicsRavi Teja
 
Fluid Flow inside and outside of the pipe
Fluid Flow inside and outside of the pipeFluid Flow inside and outside of the pipe
Fluid Flow inside and outside of the pipeAmin394100
 
010a (PPT) Flow through pipes.pdf .
010a (PPT) Flow through pipes.pdf          .010a (PPT) Flow through pipes.pdf          .
010a (PPT) Flow through pipes.pdf .happycocoman
 
Presentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUB
Presentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUBPresentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUB
Presentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUBWorld University of Bangladesh
 
FYP Presentation v2.0
FYP Presentation v2.0FYP Presentation v2.0
FYP Presentation v2.0Bianchi Dy
 
Energy and momentum principles in open channel flow
Energy and momentum principles in open channel flowEnergy and momentum principles in open channel flow
Energy and momentum principles in open channel flowBinu Khadka
 

Similar to 11 open_channel.ppt (20)

Chapter 1
Chapter 1Chapter 1
Chapter 1
 
(Part ii)- open channels
(Part ii)- open channels(Part ii)- open channels
(Part ii)- open channels
 
Terbulent Flow in fluid mechanics
Terbulent Flow in fluid mechanicsTerbulent Flow in fluid mechanics
Terbulent Flow in fluid mechanics
 
Turbulent flow
Turbulent flowTurbulent flow
Turbulent flow
 
10me36b-unit6.ppt
10me36b-unit6.ppt10me36b-unit6.ppt
10me36b-unit6.ppt
 
Open channel Flow
Open channel FlowOpen channel Flow
Open channel Flow
 
Nce 403 mod unit1
Nce 403 mod unit1Nce 403 mod unit1
Nce 403 mod unit1
 
Flow of incompressible fluids through pipes
Flow of incompressible fluids through pipes Flow of incompressible fluids through pipes
Flow of incompressible fluids through pipes
 
Chapter 2 open channel hydraulics
Chapter 2 open channel hydraulicsChapter 2 open channel hydraulics
Chapter 2 open channel hydraulics
 
Top schools in ghaziabad
Top schools in ghaziabadTop schools in ghaziabad
Top schools in ghaziabad
 
0 open channel intro 5
0 open channel   intro 50 open channel   intro 5
0 open channel intro 5
 
Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)Hydraulic analysis of complex piping systems (updated)
Hydraulic analysis of complex piping systems (updated)
 
ODDLS: Overlapping domain decomposition Level Set Method
ODDLS: Overlapping domain decomposition Level Set MethodODDLS: Overlapping domain decomposition Level Set Method
ODDLS: Overlapping domain decomposition Level Set Method
 
Computational hydraulics
Computational hydraulicsComputational hydraulics
Computational hydraulics
 
Fluid Flow inside and outside of the pipe
Fluid Flow inside and outside of the pipeFluid Flow inside and outside of the pipe
Fluid Flow inside and outside of the pipe
 
010a (PPT) Flow through pipes.pdf .
010a (PPT) Flow through pipes.pdf          .010a (PPT) Flow through pipes.pdf          .
010a (PPT) Flow through pipes.pdf .
 
Presentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUB
Presentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUBPresentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUB
Presentation 3 ce801 by Rabindra Ranjan Saha, PEng, Assoc. Prof. WUB
 
FYP Presentation v2.0
FYP Presentation v2.0FYP Presentation v2.0
FYP Presentation v2.0
 
Flow through pipes
Flow through pipesFlow through pipes
Flow through pipes
 
Energy and momentum principles in open channel flow
Energy and momentum principles in open channel flowEnergy and momentum principles in open channel flow
Energy and momentum principles in open channel flow
 

Recently uploaded

Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Call Girls Mumbai
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiessarkmank1
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEselvakumar948
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsvanyagupta248
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilVinayVitekari
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxchumtiyababu
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 

Recently uploaded (20)

Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
Bhubaneswar🌹Call Girls Bhubaneswar ❤Komal 9777949614 💟 Full Trusted CALL GIRL...
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLEGEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
GEAR TRAIN- BASIC CONCEPTS AND WORKING PRINCIPLE
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
Moment Distribution Method For Btech Civil
Moment Distribution Method For Btech CivilMoment Distribution Method For Btech Civil
Moment Distribution Method For Btech Civil
 
Verification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptxVerification of thevenin's theorem for BEEE Lab (1).pptx
Verification of thevenin's theorem for BEEE Lab (1).pptx
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 

11 open_channel.ppt

  • 1. Monroe L. Weber-Shirk School of Civil and Environmental Engineering Open Channel Flow
  • 2. Sensitivity: LNT Construction Internal Use Open Channel Flow  Liquid (water) flow with a ____ ________ (interface between water and air)  relevant for  natural channels: rivers, streams  engineered channels: canals, sewer lines or culverts (partially full), storm drains  of interest to hydraulic engineers  location of free surface  velocity distribution  discharge - stage (______) relationships  optimal channel design free surface depth
  • 3. Sensitivity: LNT Construction Internal Use Topics in Open Channel Flow  Uniform Flow  Discharge-Depth relationships  Channel transitions  Control structures (sluice gates, weirs…)  Rapid changes in bottom elevation or cross section  Critical, Subcritical and Supercritical Flow  Hydraulic Jump  Gradually Varied Flow  Classification of flows  Surface profiles normal depth
  • 4. Sensitivity: LNT Construction Internal Use Classification of Flows  Steady and Unsteady  Steady: velocity at a given point does not change with time  Uniform, Gradually Varied, and Nonuniform  Uniform: velocity at a given time does not change within a given length of a channel  Gradually varied: gradual changes in velocity with distance  Laminar and Turbulent  Laminar: flow appears to be as a movement of thin layers on top of each other  Turbulent: packets of liquid move in irregular paths (Temporal) (Spatial)
  • 5. Sensitivity: LNT Construction Internal Use Momentum and Energy Equations  Conservation of Energy  “losses” due to conversion of turbulence to heat  useful when energy losses are known or small  ____________  Must account for losses if applied over long distances  _______________________________________________  Conservation of Momentum  “losses” due to shear at the boundaries  useful when energy losses are unknown  ____________ Contractions Expansion We need an equation for losses
  • 6. Sensitivity: LNT Construction Internal Use  Given a long channel of constant slope and cross section find the relationship between discharge and depth  Assume  Steady Uniform Flow - ___ _____________  prismatic channel (no change in _________ with distance)  Use Energy and Momentum, Empirical or Dimensional Analysis?  What controls depth given a discharge?  Why doesn’t the flow accelerate? Open Channel Flow: Discharge/Depth Relationship P no acceleration geometry Force balance A
  • 7. Sensitivity: LNT Construction Internal Use Steady-Uniform Flow: Force Balance  W  W sin  Dx a b c d Shear force Energy grade line Hydraulic grade line Shear force =________ 0 sin  D  D x P x A o       sin P A o  h R = P A    sin cos sin   S W cos  g V 2 2 Wetted perimeter = __ Gravitational force = ________ Hydraulic radius Relationship between shear and velocity? ______________ oP D x P A Dx sin Turbulence
  • 8. Sensitivity: LNT Construction Internal Use  Geometric parameters  ___________________  ___________________  ___________________  Write the functional relationship  Does Fr affect shear? _________ P A Rh  Hydraulic radius (Rh) Channel length (l) Roughness (e) Open Conduits: Dimensional Analysis f , ,Re, p h h l C r R R e æ ö = ç ÷ è ø F ,M,W V Fr yg = No!
  • 9. Sensitivity: LNT Construction Internal Use Pressure Coefficient for Open Channel Flow? 2 2 C V p p  D   2 2 C V ghl hl  2 2 C f f S gS l V = l f h S l = l h p   D  Pressure Coefficient Head loss coefficient Friction slope coefficient (Energy Loss Coefficient) Friction slope Slope of EGL
  • 10. Sensitivity: LNT Construction Internal Use Dimensional Analysis f , ,Re f S h h l C R R e æ ö = ç ÷ è ø f h S R C l l = 2 2 f h gS l R V l l = 2 f h gS R V l = 2 f h g V S R l = f ,Re f S h h l C R R e æ ö = ç ÷ è ø Head loss  length of channel f ,Re f h S h R C l R e l æ ö = = ç ÷ è ø 2 2 f f S gS l C V = (like f in Darcy-Weisbach)
  • 11. Sensitivity: LNT Construction Internal Use Chezy equation (1768)  Introduced by the French engineer Antoine Chezy in 1768 while designing a canal for the water-supply system of Paris h f V C R S = 150 < C < 60 s m s m where C = Chezy coefficient where 60 is for rough and 150 is for smooth also a function of R (like f in Darcy-Weisbach) 2 f h g V S R l = compare
  • 12. Sensitivity: LNT Construction Internal Use Darcy-Weisbach equation (1840) where d84 = rock size larger than 84% of the rocks in a random sample For rock-bedded streams f = Darcy-Weisbach friction factor 2 84 1 1.2 2.03log h f R d = æ ö é ù + ê ú ç ÷ è ø ë û 4 4 P 2 d d d A Rh              2 2 l l V h f d g = 2 4 2 l h l V h f R g = 2 4 2 f h l V S l f R g = 2 8 f h V S R f g = 8 f h g V S R f =
  • 13. Sensitivity: LNT Construction Internal Use Manning Equation (1891)  Most popular in U.S. for open channels (English system) 1/2 o 2/3 h S R 1 n V  1/2 o 2/3 h S R 49 . 1 n V  VA Q  2 / 1 3 / 2 1 o h S AR n Q  very sensitive to n Dimensions of n? Is n only a function of roughness? (MKS units!) NO! T /L1/3 Bottom slope
  • 14. Sensitivity: LNT Construction Internal Use Values of Manning n Lined Canals n Cement plaster 0.011 Untreated gunite 0.016 Wood, planed 0.012 Wood, unplaned 0.013 Concrete, trowled 0.012 Concrete, wood forms, unfinished 0.015 Rubble in cement 0.020 Asphalt, smooth 0.013 Asphalt, rough 0.016 Natural Channels Gravel beds, straight 0.025 Gravel beds plus large boulders 0.040 Earth, straight, with some grass 0.026 Earth, winding, no vegetation 0.030 Earth , winding with vegetation 0.050 d = median size of bed material n = f(surface roughness, channel irregularity, stage...) 6 / 1 038 . 0 d n  6 / 1 031 . 0 d n  d in ft d in m
  • 15. Sensitivity: LNT Construction Internal Use Trapezoidal Channel  Derive P = f(y) and A = f(y) for a trapezoidal channel  How would you obtain y = f(Q)? z 1 b y z y yb A 2       b yz y P    2 / 1 2 2 2   b z y P    2 / 1 2 1 2 2 / 1 3 / 2 1 o h S AR n Q  Use Solver!
  • 16. Sensitivity: LNT Construction Internal Use Flow in Round Conduits           r y r arccos       cos sin 2   r A  sin 2r T   y T A r  r P 2  radians Maximum discharge when y = ______ 0.938d ( )( ) sin cos r r q q =
  • 17. Sensitivity: LNT Construction Internal Use Open Channel Flow: Energy Relations 2g V2 1 1  2g V2 2 2  x SoD 2 y 1 y x D L f h S x = D energy grade line hydraulic grade line velocity head Bottom slope (So) not necessarily equal to surface slope (Sf) water surface
  • 18. Sensitivity: LNT Construction Internal Use Energy relationships 2 2 1 1 2 2 1 1 2 2 2 2 L p V p V z z h g g a a g g + + = + + + 2 2 1 2 1 2 2 2 o f V V y S x y S x g g + D + = + + D Turbulent flow (  1) z - measured from horizontal datum y - depth of flow Pipe flow Energy Equation for Open Channel Flow 2 2 1 2 1 2 2 2 o f V V y S x y S x g g + + D = + + D From diagram on previous slide...
  • 19. Sensitivity: LNT Construction Internal Use Specific Energy  The sum of the depth of flow and the velocity head is the specific energy: g V y E 2 2   If channel bottom is horizontal and no head loss 2 1 E E  y - potential energy g V 2 2 - kinetic energy For a change in bottom elevation 1 2 E y E - D = x S E x S E o D   D  f 2 1 y
  • 20. Sensitivity: LNT Construction Internal Use Specific Energy In a channel with constant discharge, Q 2 2 1 1 V A V A Q   2 2 2gA Q y E   g V y E 2 2   where A=f(y) Consider rectangular channel (A=By) and Q=qB 2 2 2gy q y E   A B y 3 roots (one is negative) q is the discharge per unit width of channel
  • 21. Sensitivity: LNT Construction Internal Use 0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10 E y Specific Energy: Sluice Gate 2 2 2gy q y E   1 2 2 1 E E  sluice gate y1 y2 EGL y1 and y2 are ___________ depths (same specific energy) Why not use momentum conservation to find y1? q = 5.5 m2/s y2 = 0.45 m V2 = 12.2 m/s E2 = 8 m alternate Given downstream depth and discharge, find upstream depth.
  • 22. Sensitivity: LNT Construction Internal Use 0 1 2 3 4 0 1 2 3 4 E y Specific Energy: Raise the Sluice Gate 2 2 2gy q y E   1 2 E1  E2 sluice gate y1 y2 EGL as sluice gate is raised y1 approaches y2 and E is minimized: Maximum discharge for given energy.
  • 23. Sensitivity: LNT Construction Internal Use 0 1 2 3 4 0 1 2 3 4 E y Specific Energy: Step Up Short, smooth step with rise Dy in channel Dy 1 2 E E y = + D Given upstream depth and discharge find y2 0 1 2 3 4 0 1 2 3 4 E y Increase step height?
  • 24. Sensitivity: LNT Construction Internal Use P A Critical Flow T dy y T=surface width Find critical depth, yc 2 2 2gA Q y E   0  dy dE Tdy dA  0 dE dy = = 3 2 1 c c gA T Q  Arbitrary cross-section A=f(y) 2 3 2 Fr gA T Q  2 2 Fr gA T V  dA A D T = Hydraulic Depth 2 3 1 Q dA gA dy - 0 1 2 3 4 0 1 2 3 4 E y yc
  • 25. Sensitivity: LNT Construction Internal Use Critical Flow: Rectangular channel yc T Ac 3 2 1 c c gA T Q  qT Q  T y A c c  3 2 3 3 3 2 1 c c gy q T gy T q   3 / 1 2          g q yc 3 c gy q  Only for rectangular channels! c T T  Given the depth we can find the flow!
  • 26. Sensitivity: LNT Construction Internal Use Critical Flow Relationships: Rectangular Channels 3 / 1 2          g q yc c c y V q           g y V y c c c 2 2 3 g V y c c 2  1  g y V c c Froude number velocity head = because g V y c c 2 2 2  2 c c y y E   E yc 3 2  force gravity force inertial 0.5 (depth) g V y E 2 2   Kinetic energy Potential energy
  • 27. Sensitivity: LNT Construction Internal Use Critical Flow  Characteristics  Unstable surface  Series of standing waves  Occurrence  Broad crested weir (and other weirs)  Channel Controls (rapid changes in cross-section)  Over falls  Changes in channel slope from mild to steep  Used for flow measurements  ___________________________________________ Unique relationship between depth and discharge Difficult to measure depth 0 1 2 3 4 0 1 2 3 4 E y
  • 28. Sensitivity: LNT Construction Internal Use Broad-crested Weir H P yc E 3 c gy q  3 c Q b gy = E yc 3 2  3/ 2 3/ 2 2 3 Q b g E æ ö = è ø Cd corrects for using H rather than E. 3 / 1 2          g q yc Broad-crested weir E measured from top of weir 3/ 2 2 3 d Q C b g H æ ö = è ø Hard to measure yc
  • 29. Sensitivity: LNT Construction Internal Use Broad-crested Weir: Example  Calculate the flow and the depth upstream. The channel is 3 m wide. Is H approximately equal to E? 0.5 yc E Broad-crested weir yc=0.3 m Solution How do you find flow?____________________ How do you find H?______________________ Critical flow relation Energy equation
  • 30. Sensitivity: LNT Construction Internal Use Hydraulic Jump  Used for energy dissipation  Occurs when flow transitions from supercritical to subcritical  base of spillway  We would like to know depth of water downstream from jump as well as the location of the jump  Which equation, Energy or Momentum?
  • 31. Sensitivity: LNT Construction Internal Use Hydraulic Jump!
  • 32. Sensitivity: LNT Construction Internal Use Hydraulic Jump y1 y2 L EGL hL Conservation of Momentum 2 2 1 1 2 1 A p A p QV QV       2 gy p   A Q V  2 2 2 2 1 1 2 2 1 2 A gy A gy A Q A Q     x x p p x x F F M M 2 1 2 1    1 2 1 1 A V M x    2 2 2 2 A V M x   ss p p F F F W M M      2 1 2 1
  • 33. Sensitivity: LNT Construction Internal Use Hydraulic Jump: Conjugate Depths Much algebra For a rectangular channel make the following substitutions By A  1 1V By Q  1 1 1 V Fr gy = Froude number   2 1 1 2 8 1 1 2 Fr y y     valid for slopes < 0.02
  • 34. Sensitivity: LNT Construction Internal Use Hydraulic Jump: Energy Loss and Length No general theoretical solution Experiments show 2 6y L  20 4 1   Fr •Length of jump •Energy Loss 2 2 2gy q y E   L h E E   2 1 significant energy loss (to turbulence) in jump   2 1 3 1 2 4 y y y y hL   algebra for
  • 35. Sensitivity: LNT Construction Internal Use Gradually Varied Flow 2 2 1 2 1 2 2 2 o f V V y S x y S x g g + + D = + + D Energy equation for non- uniform, steady flow 1 2 y y dy   2 2 f o V dy d S dx S dx g æ ö + + = ç ÷ è ø P A T dy y dy dx S dy dx S g V dy d dy dy o f            2 2 ( ) 2 2 2 1 2 1 2 2 o f V V S dx y y S dx g g æ ö = - + - + ç ÷ è ø
  • 36. Sensitivity: LNT Construction Internal Use Gradually Varied Flow 2 3 2 3 2 2 2 2 2 2 2 2 Fr gA T Q dy dA gA Q gA Q dy d g V dy d                                           f o S S Fr dx dy    2 1 dy dx S dy dx S g V dy d dy dy o f            2 2 dy dx S dy dx S Fr o f    2 1 Change in KE Change in PE We are holding Q constant! 2 1 Fr S S dx dy f o   
  • 37. Sensitivity: LNT Construction Internal Use Gradually Varied Flow 2 1 Fr S S dx dy f o    Governing equation for gradually varied flow  Gives change of water depth with distance along channel  Note  So and Sf are positive when sloping down in direction of flow  y is measured from channel bottom  dy/dx =0 means water depth is constant yn is when o f S S =
  • 38. Sensitivity: LNT Construction Internal Use Surface Profiles  Mild slope (yn>yc)  in a long channel subcritical flow will occur  Steep slope (yn<yc)  in a long channel supercritical flow will occur  Critical slope (yn=yc)  in a long channel unstable flow will occur  Horizontal slope (So=0)  yn undefined  Adverse slope (So<0)  yn undefined Note: These slopes are f(Q)!
  • 39. Sensitivity: LNT Construction Internal Use Normal depth Steep slope (S2) Hydraulic Jump Sluice gate Steep slope Obstruction Surface Profiles 2 1 Fr S S dx dy f o    S0 - Sf 1 - Fr2 dy/dx + + + - + - - - + 0 1 2 3 4 0 1 2 3 4 E y yn yc
  • 40. Sensitivity: LNT Construction Internal Use More Surface Profiles S0 - Sf 1 - Fr2 dy/dx 1 + + + 2 + - - 3 - - + 0 1 2 3 4 0 1 2 3 4 E y yn yc 2 1 Fr S S dx dy f o   
  • 41. Sensitivity: LNT Construction Internal Use Direct Step Method x S g V y x S g V y f o D    D   2 2 2 2 2 2 1 1 o f S S g V g V y y x      D 2 2 2 2 2 1 2 1 energy equation solve for Dx 1 1 y q V  2 2 y q V  2 2 A Q V  1 1 A Q V  rectangular channel prismatic channel
  • 42. Sensitivity: LNT Construction Internal Use Direct Step Method Friction Slope 2 2 4/3 f h n V S R = 2 2 4/3 2.22 f h n V S R = 2 8 f h fV S gR = Manning Darcy-Weisbach SI units English units
  • 43. Sensitivity: LNT Construction Internal Use Direct Step  Limitation: channel must be _________ (so that velocity is a function of depth only and not a function of x)  Method  identify type of profile (determines whether Dy is + or -)  choose Dy and thus yn+1  calculate hydraulic radius and velocity at yn and yn+1  calculate friction slope yn and yn+1  calculate average friction slope  calculate Dx prismatic
  • 44. Sensitivity: LNT Construction Internal Use Direct Step Method =(G16-G15)/((F15+F16)/2-So) A B C D E F G H I J K L M y A P Rh V Sf E Dx x T Fr bottom surface 0.900 1.799 4.223 0.426 0.139 0.00004 0.901 0 3.799 0.065 0.000 0.900 0.870 1.687 4.089 0.412 0.148 0.00005 0.871 0.498 0.5 3.679 0.070 0.030 0.900 =y*b+y^2*z =2*y*(1+z^2)^0.5 +b =A/P =Q/A =(n*V)^2/Rh^(4/3) =y+(V^2)/(2*g) o f S S g V g V y y x      D 2 2 2 2 2 1 2 1
  • 45. Sensitivity: LNT Construction Internal Use Standard Step  Given a depth at one location, determine the depth at a second location  Step size (Dx) must be small enough so that changes in water depth aren’t very large. Otherwise estimates of the friction slope and the velocity head are inaccurate  Can solve in upstream or downstream direction  upstream for subcritical  downstream for supercritical  Find a depth that satisfies the energy equation x S g V y x S g V y f o D    D   2 2 2 2 2 2 1 1
  • 46. Sensitivity: LNT Construction Internal Use What curves are available? S1 S3 Is there a curve between yc and yn that decreases in depth in the upstream direction? 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 5 10 15 20 distance upstream (m) elevation (m) bottom surface yc yn
  • 47. Sensitivity: LNT Construction Internal Use Wave Celerity 2 1 2 1 gy F    2 2 2 1 y y g F         2 2 2 1 2 1 y y y g F F Fr        F1 y+y V+V V Vw unsteady flow y y y+y V+V-Vw V-Vw steady flow V+V-Vw V-Vw F2
  • 48. Sensitivity: LNT Construction Internal Use Wave Celerity: Momentum Conservation         w w w r V V V V V V V y F           V V V y F w r           V V V y y y y g w         2 2 2 1     V V V y y y g w      2 2 1   V V V y g w      y y+y V+V-Vw V-Vw steady flow 1 2 M M Fr     y V V M w 2 1     Per unit width
  • 49. Sensitivity: LNT Construction Internal Use Wave Celerity      w w V V V y y V V y        w w w yV yV V y V y yV yV yV yV               y y V V V w        V V V y g w        y y V V y g w   2    2 w V V gy   w V V c   gy c  Mass conservation y y+y V+V-Vw V-Vw steady flow Momentum c V Fr yg V  
  • 50. Sensitivity: LNT Construction Internal Use Wave Propagation  Supercritical flow  c<V  waves only propagate downstream  water doesn’t “know” what is happening downstream  _________ control  Critical flow  c=V  Subcritical flow  c>V  waves propagate both upstream and downstream upstream
  • 51. Sensitivity: LNT Construction Internal Use Most Efficient Hydraulic Sections  A section that gives maximum discharge for a specified flow area  Minimum perimeter per area  No frictional losses on the free surface  Analogy to pipe flow  Best shapes  best  best with 2 sides  best with 3 sides
  • 52. Sensitivity: LNT Construction Internal Use Why isn’t the most efficient hydraulic section the best design? Minimum area = least excavation only if top of channel is at grade Cost of liner Complexity of form work Erosion constraint - stability of side walls
  • 53. Sensitivity: LNT Construction Internal Use Open Channel Flow Discharge Measurements  Discharge  Weir  broad crested  sharp crested  triangular  Venturi Flume  Spillways  Sluice gates  Velocity-Area-Integration
  • 54. Sensitivity: LNT Construction Internal Use Discharge Measurements Sharp-Crested Weir Triangular Weir Broad-Crested Weir Sluice Gate 5/ 2 8 2 tan 15 2 d Q C g H q æ ö = è ø 3/ 2 2 3 d Q C b g H æ ö = è ø 3/ 2 2 2 3 d Q C b gH = 1 2 d g Q C by gy = Explain the exponents of H!
  • 55. Sensitivity: LNT Construction Internal Use Summary  All the complications of pipe flow plus additional parameter... _________________  Various descriptions of head loss term  Chezy, Manning, Darcy-Weisbach  Importance of Froude Number  Fr>1 decrease in E gives increase in y  Fr<1 decrease in E gives decrease in y  Fr=1 standing waves (also min E given Q)  Methods of calculating location of free surface free surface location 0 1 2 3 4 0 1 2 3 4 E y
  • 56. Sensitivity: LNT Construction Internal Use Broad-crested Weir: Solution 0.5 yc E Broad-crested weir yc=0.3 m 3 c gy q   3 2 3 . 0 ) / 8 . 9 ( m s m q  s m q / 5144 . 0 2  s m qL Q / 54 . 1 3   E yc 3 2  m y E c 45 . 0 2 3 2   1 2 0.95 E E y m = + D = 2 1 2 1 1 2gy q y E   435 . 0 5 . 0 1 1    m y H 935 . 0 1  y 2 1 1 2 1 2 q E y gE - @
  • 57. Sensitivity: LNT Construction Internal Use Sluice Gate 2 m 10 cm Sluice gate reservoir
  • 58. Sensitivity: LNT Construction Internal Use Summary/Overview Energy losses Dimensional Analysis Empirical 8 f h g V S R f = 1/2 o 2/3 h S R 1 n V 
  • 59. Sensitivity: LNT Construction Internal Use Energy Equation Specific Energy Two depths with same energy! How do we know which depth is the right one? Is the path to the new depth possible? 2 2 1 2 1 2 2 2 o f V V y S x y S x g g + + D = + + D 2 2 2 q y gy = + g V y E 2 2   2 2 2 Q y gA = + 0 1 2 3 4 0 1 2 3 4 E y
  • 60. Sensitivity: LNT Construction Internal Use 0 1 2 3 4 0 1 2 3 4 E y Specific Energy: Step Up Short, smooth step with rise Dy in channel Dy 1 2 E E y = + D Given upstream depth and discharge find y2 0 1 2 3 4 0 1 2 3 4 E y Increase step height?
  • 61. Sensitivity: LNT Construction Internal Use Critical Depth Minimum energy for q When When kinetic = potential! Fr=1 Fr>1 = Supercritical Fr<1 = Subcritical 0  dy dE 0 1 2 3 4 0 1 2 3 4 E y g V y c c 2 2 2  3 T Q gA = 3 c q gy = c c V Fr y g =
  • 62. Sensitivity: LNT Construction Internal Use What next?  Water surface profiles  Rapidly varied flow  A way to move from supercritical to subcritical flow (Hydraulic Jump)  Gradually varied flow equations  Surface profiles  Direct step  Standard step