This document summarizes a doctoral dissertation on geometric and viscosity solutions to first order Cauchy problems. It introduces two types of solutions - viscosity solutions and minimax solutions - which are generally different. The aim is to show that iterating the minimax procedure over shorter time intervals approaches the viscosity solution. This extends previous work relating geometric and viscosity solutions in the symplectic case. The document outlines characteristics methods, generating families, Clarke calculus tools, and a proof constructing generating families to relate iterated minimax solutions to viscosity solutions.