P a g e |1 NAME:-____________________ CLASS/SEC:- __________
MR.Munawer
CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17)
FORMULAS CHAPTER:-10
CLASS:-XI
EXERCISE:-10.1
1:- α+β+ 𝛾 =1800
2:- 900
-α =β
3:- 900
-β =α
NOTE:- At 90° AND 270° THE TRIGONOMETRIC FUNCTIONS ARE CHANGED INTO THEIR
CO-FUNCTIONS:
i.e:- Cosθ Sinθ
also:- Tanθ Cotθ
and:- Secθ Cosecθ
WHILE:- AT 180° AND 360° THE TRIGONOMETRIC FUNCTIONS REMAINS SAME.
EXERCISE:-10.2
4:- Sin(α+β)= sin(α)cos(β) + cos(α)sin(β)
5:- Sin(α-β)= sin (α)cos(β) – cos(α)sin(β)
6:- Cos(α+β)= cos(α)cos(β) – sin(α)sin(β)
7:- Cos(α-β)= cos(α)cos(β) + sin(α)sin(β)
8:- Tan(α+β)=
tan 𝛼+tan⁡𝛽
1−tan 𝛼⁡tan⁡𝛽
9:- Tan(α-β)=⁡
tan 𝛼−tan⁡𝛽
1+tan 𝛼⁡tan⁡𝛽
10:- Cot(α+β)=⁡
cot 𝛼 cot 𝛽−1
cot 𝛼+cot⁡𝛽
11:- Cot(α-β)=⁡
cot 𝛼 cot 𝛽+1
cot 𝛼−cot⁡𝛽
EXERCISE:-10.3
P a g e |2
MR.Munawer
CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17)
12:- Sin2α =2SinαCosα
13:- Cos2α = Cos2
α-Sin2
α or :- 2cos2
α -1 or :- 1-2sin2
α
14:- Tan2α =⁡
2tan⁡α
1−tan2 𝛼
15:- Sin
α
2
= √
1−𝑐𝑜𝑠𝛼
2
16:- Cos
α
2
= √
1+𝑐𝑜𝑠𝛼
2
17:- Tan
α
2
=√
1−𝑐𝑜𝑠𝛼
1+𝑐𝑜𝑠𝛼
18:- Sin3α = 3Sinα-4Sin3
α
19:- Cos3α = 4Cos3
α-3Cosα
20:- Tan3α =⁡
3𝑡𝑎𝑛𝛼−tan3 𝛼
1−3 tan2 𝛼
21:-Cos2Ø =⁡
1−tan2 Ø
1+tan2 Ø
22:-Sin2Ø =⁡
2 𝑡𝑎𝑛 Ø
1+tan2 Ø
EXERCISE:-10.4
PRODUCT TO SUM
23:- 2SinαCosβ =Sin(α+β)+Sin(α-β)
24:- 2CosαSinβ = Sin(α+β)-Sin(α-β)
25:- 2CosαCosβ =Cos(α+β)+Cos(α-β)
26:- -2SinαSinβ =Cos(α+β)-Cos(α-β)
SUM TOPRODUCT
27:- Sin(P)+Sin(Q) =2Sin(
𝑃+𝑄
2
) Cos(
𝑃−𝑄
2
)
28:- Sin(P)-Sin(Q) =2Cos(
𝑃+𝑄
2
) Sin(
𝑃−𝑄
2
)
29:-Cos(P)+Cos(Q) =2Cos(
𝑃+𝑄
2
) Cos(
𝑃−𝑄
2
)
30:- Cos(P)-Cos(Q) = -2Sin(
𝑃+𝑄
2
) Sin(
𝑃−𝑄
2
)
P a g e |3
MR.Munawer
CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17)
FORMULAS CHAPTER:-11
CLASS:-XI
-:FOR DOMAIN AND RANGE OF TRIGNOMETRICFUNCTIONS:-
-:PERIODS OF TRIGONOMETRIC FUNCTIONS:-
1:- 2πis the period of Cosθ.
2:- 2πis the period of Sinθ.
3:- 2πis the period of Cosecθ.
4:- 2πis the period of Secθ.
5:- πis the period of Tanθ.
6:- πis the period of Cotθ.
NOTE: [ πIS THE ONLY PERIODS OF Tanθ AND Cotθ. WHILE 2πIS THE PERIODS
OF ALL REMAINING TRIGONOMETRIC FUNCTIONS.]
P a g e |4
MR.Munawer
CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17)
FORMULAS CHAPTER:-12
CLASS:-XI
EXERCISE 12.4
LAW OF SINES:- USED WHEN 2 ANGLES & ONE SIDE OR 2 SIDES & 1 ANGLE ARE GIVEN:
1.
𝑎
𝑆𝑖𝑛𝛼
=
𝑏
𝑆𝑖𝑛𝛽
2.⁡
𝑏
𝑆𝑖𝑛𝛽
=
𝑐
𝑆𝑖𝑛𝛾
3.⁡
𝑎
𝑆𝑖𝑛𝛼
=
𝑐
𝑆𝑖𝑛𝛾
4.
𝑎
𝑆𝑖𝑛𝛼
=
𝑏
𝑆𝑖𝑛𝛽
=
𝑐
𝑆𝑖𝑛𝛾
EXERCISE 12.5
LAW OF COSINE:- USED WHEN 2 SIDES AND 1 ANGLE ARE GIVEN:
5. a2
= b2
+c2
-2bc cosα
6. b2
= c2
+a2
-2ca cosβ
7. c2
= a2
+b2
-2ab cos 𝛾
8. Cosα =
𝑏2+𝑐2−𝑎2
2𝑏𝑐
9. Cosβ =⁡
𝑐2+𝑎2−𝑏2
2𝑐𝑎
10. Cos 𝛾 =⁡
𝑎2+𝑏2
−𝑐2
2𝑎𝑏
LAW OF TANGENTS:- USED WHEN 2 SIDES & 2 ANGLES ARE GIVEN:
11.
𝑎−𝑏
𝑎+𝑏
=
𝑡𝑎𝑛⁡
𝛼−𝛽
2
𝑡𝑎𝑛
𝛼+𝛽
2
12.
𝑏−𝑐
𝑏+𝑐
=
𝑡𝑎𝑛⁡
𝛽−𝛾
2
𝑡𝑎𝑛
𝛽+𝛾
2
13.
𝑐−𝑎
𝑐+𝑎
=
𝑡𝑎𝑛⁡
𝛾−𝛼
2
𝑡𝑎𝑛
𝛾+𝛼
2
P a g e |5
MR.Munawer
CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17)
EXERCISE 12.6
HALF ANGLE FORMULAS
NOTE:- IN ALL THESE HALF ANGLE FORMULAS: 2s = a+b+c
33.⁡𝑆𝑖𝑛
𝛼
2
=⁡√
(𝑠−𝑏)(𝑠−𝑐)
𝑏𝑐
34.⁡𝑆𝑖𝑛
𝛽
2
=⁡√
(𝑠−𝑐)(𝑠−𝑎)
𝑎𝑐
35.⁡𝑆𝑖𝑛
𝛾
2
=⁡√
(𝑠−𝑎)(𝑠−𝑏)
𝑎𝑏
36.⁡𝐶𝑜𝑠
𝛼
2
=⁡√
𝑠(𝑠−𝑎)
𝑏𝑐
37.⁡𝐶𝑜𝑠
𝛽
2
=⁡√
𝑠(𝑠−𝑏)
𝑐𝑎
38.⁡𝐶𝑜𝑠
𝛾
2
=⁡√
𝑠(𝑠−𝑐)
𝑎𝑏
39.⁡𝑇𝑎𝑛
𝛼
2
=⁡√
(𝑠−𝑏)(𝑠−𝑐)
𝑠(𝑠−𝑎)
40.𝑇𝑎𝑛
𝛽
2
=⁡√
(𝑠−𝑐)(𝑠−𝑎)
𝑠(𝑠−𝑏)
41.𝑇𝑎𝑛
𝛾
2
=⁡√
(𝑠−𝑎)(𝑠−𝑏)
𝑠(𝑠−𝑐)
EXERCISE 12.7
TO FIND THE AREA OF TRIANGLES
Let area of the triangle is :-⁡𝚫
CASE 1:- IF TWO SIDES AND ONE ANGLE ARE GIVEN:
23:- Δ =⁡
1
2
𝑏𝑐⁡𝑆𝑖𝑛𝛼=
1
2
𝑐𝑎⁡𝑆𝑖𝑛𝛽=
1
2
𝑎𝑏⁡𝑆𝑖𝑛𝛾
CASE 2:- IF ONE SIDE AND TWO ANGLES ARE GIVEN:
24:-⁡Δ =
𝑎2⁡𝑆𝑖𝑛𝛽⁡𝑆𝑖𝑛𝛾
2𝑆𝑖𝑛𝛼
25:-⁡Δ =
𝑏2⁡𝑆𝑖𝑛𝛼⁡𝑆𝑖𝑛𝛾
2𝑆𝑖𝑛𝛽
P a g e |6
MR.Munawer
CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17)
26:-⁡Δ =
𝑐2⁡𝑆𝑖𝑛𝛼⁡𝑆𝑖𝑛𝛽
2𝑆𝑖𝑛𝛾
CASE 3:- IF ONLY THREE SIDES ARE GIVEN:
27:- Δ = √ 𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)⁡ .`. (Hero`s formula)
EXERCISE 12.8
28:- R =
𝑎𝑏𝑐
4Δ
29:- r =
Δ
𝑠
30:- r1 =
Δ
𝑠−𝑎
31:- r2 =
Δ
𝑠−𝑏
32:- r3=
Δ
𝑠−𝑐
HALF ANGLE FORMULAS
NOTE:- IN ALL THESE HALF ANGLE FORMULAS: 2s = a+b+c
33.⁡𝑆𝑖𝑛
𝛼
2
=⁡√
(𝑠−𝑏)(𝑠−𝑐)
𝑏𝑐
34.⁡𝑆𝑖𝑛
𝛽
2
=⁡√
(𝑠−𝑐)(𝑠−𝑎)
𝑎𝑐
35.⁡𝑆𝑖𝑛
𝛾
2
=⁡√
(𝑠−𝑎)(𝑠−𝑏)
𝑎𝑏
36.⁡𝐶𝑜𝑠
𝛼
2
=⁡√
𝑠(𝑠−𝑎)
𝑏𝑐
37.⁡𝐶𝑜𝑠
𝛽
2
=⁡√
𝑠(𝑠−𝑏)
𝑐𝑎
38.⁡𝐶𝑜𝑠
𝛾
2
=⁡√
𝑠(𝑠−𝑐)
𝑎𝑏
39.⁡𝑇𝑎𝑛
𝛼
2
=⁡√
(𝑠−𝑏)(𝑠−𝑐)
𝑠(𝑠−𝑎)
40. 𝑇𝑎𝑛
𝛽
2
=⁡√
(𝑠−𝑐)(𝑠−𝑎)
𝑠(𝑠−𝑏)
P a g e |7
MR.Munawer
CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17)
41. 𝑇𝑎𝑛
𝛾
2
=⁡√
(𝑠−𝑎)(𝑠−𝑏)
𝑠(𝑠−𝑐)
FORMULAS CHAPTER:-13
CLASS:-XI
1. Sin-1
A + Sin-1
B = Sin-1
(A√1 − 𝐵2 + B√1 − 𝐴2)
2. Sin-1
A - Sin-1
B = Sin-1
(A√1 − 𝐵2 - B√1 − 𝐴2)
3. Cos-1
A +Cos-1
B = Cos-1
(AB-√1 − 𝐴2 √1 − 𝐵2)
4. Cos-1
A - Cos-1
B = Cos-1
(AB+√1 − 𝐴2 √1 − 𝐵2)
5. Tan-1
A + Tan-1
B = Tan−1
(
𝐴+𝐵
1−𝐴𝐵
)
6. Tan-1
A - Tan-1
B = ⁡Tan−1
(
𝐴−𝐵
1+𝐴𝐵
)
7. 2Tan-1
A – Tan-1
B = Tan-1
⁡(
2𝐴
1−𝐴2)
8. 2 Cos-1
A = Cos-1
(A2
– 1)
P a g e |8
MR.Munawer
CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17)
FORMULAS CHAPTER:-6
CLASS:-XI
EXERCISE:- 6.2
1. an = a1 + (n-1)d .`. USED TO FIND NTH
TERM OF THE ARITHMETIC
PROGRATION. [A.P]
EXERCISE:- 6.3
2. A.M =
𝐴+𝐵
2
3. an = a1 + (n-1)d
EXERCISE:- 6.4
4. Sn =
𝑛
2
(a1 + an )
5. Sn =
𝑛
2
[2a1 + (n-1)d] .`. USED TO SUM THE TERMS OF THE ARITHMETIC SERIES.
EXERCISE:- 6.5
NOT FOR LAHORE BOARD.
EXERCISE:- 6.6
6. an = a1 rn-1
.`. USED TO FIND NTH
TERM OF THE GEOMETRIC
PROGRATION. [G.P]
EXERCISE:- 6.7
7. G.P = √ 𝐴. 𝐵 or, [A1/2
. B1/2
]
8. an = a1 rn-1
EXERCISE:- 6.8
9. Sn =
𝑎1
1−𝑟
.`. USED TO SUM THE TERMS OF THE GEOMETRIC SERIES TO
INFINITY.
10. Sn =
𝑎1⁡[1⁡−⁡𝑟 𝑛]
1⁡−⁡𝑟
.`. USED TO SUM THE TERMS OF THE GEOMETRIC SERIES TO
“n” TERM WHEN “r” IS LESS THEN “1”.
P a g e |9
MR.Munawer
CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17)
11. Sn =
𝑎1⁡[𝑟 𝑛−1]
𝑟−1
.`. USED TO SUM THE TERMS OF THE GEOMETRIC SERIES TO
“n” TERM WHEN “r” IS GREATER THEN “1”.
EXERCISE:- 6.9
NOT FOR LAHORE BOARD.
EXERCISE:- 6.10
12. H.P =
2⁡𝐴.𝐵
𝐴⁡+⁡𝐵
13. an = a1 + (n-1)d
EXERCISE:- 6.11
14.⁡∑ ⁡1⁡𝑛
𝑘=1 = n .’. (n is put in the place of simple“1”)
15. ∑ ⁡k⁡𝑛
𝑘=1 = Tk =
𝑛(𝑛+1)
2
16. ∑ ⁡K2𝑛
𝑘=1 = Tk2
=
𝑛(𝑛+1)(2𝑛+1)
6
17. ∑ ⁡k3
⁡𝑛
𝑘=1 ⁡= Tk3
= [
𝑛( 𝑛+1)
2
]
2
NOTE:- IN THESE FORMULAS,
n = nth
term.
d = difference between two arithmetic terms.
R = ratio between two geometric terms.
Sn = Sum to “n” terms.
Tk = TOTAL “k”
IMPORTANT NOTES:-
G2
= AH
A < G < H

Formulas , formulae for class xi math

  • 1.
    P a ge |1 NAME:-____________________ CLASS/SEC:- __________ MR.Munawer CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17) FORMULAS CHAPTER:-10 CLASS:-XI EXERCISE:-10.1 1:- α+β+ 𝛾 =1800 2:- 900 -α =β 3:- 900 -β =α NOTE:- At 90° AND 270° THE TRIGONOMETRIC FUNCTIONS ARE CHANGED INTO THEIR CO-FUNCTIONS: i.e:- Cosθ Sinθ also:- Tanθ Cotθ and:- Secθ Cosecθ WHILE:- AT 180° AND 360° THE TRIGONOMETRIC FUNCTIONS REMAINS SAME. EXERCISE:-10.2 4:- Sin(α+β)= sin(α)cos(β) + cos(α)sin(β) 5:- Sin(α-β)= sin (α)cos(β) – cos(α)sin(β) 6:- Cos(α+β)= cos(α)cos(β) – sin(α)sin(β) 7:- Cos(α-β)= cos(α)cos(β) + sin(α)sin(β) 8:- Tan(α+β)= tan 𝛼+tan⁡𝛽 1−tan 𝛼⁡tan⁡𝛽 9:- Tan(α-β)=⁡ tan 𝛼−tan⁡𝛽 1+tan 𝛼⁡tan⁡𝛽 10:- Cot(α+β)=⁡ cot 𝛼 cot 𝛽−1 cot 𝛼+cot⁡𝛽 11:- Cot(α-β)=⁡ cot 𝛼 cot 𝛽+1 cot 𝛼−cot⁡𝛽 EXERCISE:-10.3
  • 2.
    P a ge |2 MR.Munawer CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17) 12:- Sin2α =2SinαCosα 13:- Cos2α = Cos2 α-Sin2 α or :- 2cos2 α -1 or :- 1-2sin2 α 14:- Tan2α =⁡ 2tan⁡α 1−tan2 𝛼 15:- Sin α 2 = √ 1−𝑐𝑜𝑠𝛼 2 16:- Cos α 2 = √ 1+𝑐𝑜𝑠𝛼 2 17:- Tan α 2 =√ 1−𝑐𝑜𝑠𝛼 1+𝑐𝑜𝑠𝛼 18:- Sin3α = 3Sinα-4Sin3 α 19:- Cos3α = 4Cos3 α-3Cosα 20:- Tan3α =⁡ 3𝑡𝑎𝑛𝛼−tan3 𝛼 1−3 tan2 𝛼 21:-Cos2Ø =⁡ 1−tan2 Ø 1+tan2 Ø 22:-Sin2Ø =⁡ 2 𝑡𝑎𝑛 Ø 1+tan2 Ø EXERCISE:-10.4 PRODUCT TO SUM 23:- 2SinαCosβ =Sin(α+β)+Sin(α-β) 24:- 2CosαSinβ = Sin(α+β)-Sin(α-β) 25:- 2CosαCosβ =Cos(α+β)+Cos(α-β) 26:- -2SinαSinβ =Cos(α+β)-Cos(α-β) SUM TOPRODUCT 27:- Sin(P)+Sin(Q) =2Sin( 𝑃+𝑄 2 ) Cos( 𝑃−𝑄 2 ) 28:- Sin(P)-Sin(Q) =2Cos( 𝑃+𝑄 2 ) Sin( 𝑃−𝑄 2 ) 29:-Cos(P)+Cos(Q) =2Cos( 𝑃+𝑄 2 ) Cos( 𝑃−𝑄 2 ) 30:- Cos(P)-Cos(Q) = -2Sin( 𝑃+𝑄 2 ) Sin( 𝑃−𝑄 2 )
  • 3.
    P a ge |3 MR.Munawer CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17) FORMULAS CHAPTER:-11 CLASS:-XI -:FOR DOMAIN AND RANGE OF TRIGNOMETRICFUNCTIONS:- -:PERIODS OF TRIGONOMETRIC FUNCTIONS:- 1:- 2πis the period of Cosθ. 2:- 2πis the period of Sinθ. 3:- 2πis the period of Cosecθ. 4:- 2πis the period of Secθ. 5:- πis the period of Tanθ. 6:- πis the period of Cotθ. NOTE: [ πIS THE ONLY PERIODS OF Tanθ AND Cotθ. WHILE 2πIS THE PERIODS OF ALL REMAINING TRIGONOMETRIC FUNCTIONS.]
  • 4.
    P a ge |4 MR.Munawer CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17) FORMULAS CHAPTER:-12 CLASS:-XI EXERCISE 12.4 LAW OF SINES:- USED WHEN 2 ANGLES & ONE SIDE OR 2 SIDES & 1 ANGLE ARE GIVEN: 1. 𝑎 𝑆𝑖𝑛𝛼 = 𝑏 𝑆𝑖𝑛𝛽 2.⁡ 𝑏 𝑆𝑖𝑛𝛽 = 𝑐 𝑆𝑖𝑛𝛾 3.⁡ 𝑎 𝑆𝑖𝑛𝛼 = 𝑐 𝑆𝑖𝑛𝛾 4. 𝑎 𝑆𝑖𝑛𝛼 = 𝑏 𝑆𝑖𝑛𝛽 = 𝑐 𝑆𝑖𝑛𝛾 EXERCISE 12.5 LAW OF COSINE:- USED WHEN 2 SIDES AND 1 ANGLE ARE GIVEN: 5. a2 = b2 +c2 -2bc cosα 6. b2 = c2 +a2 -2ca cosβ 7. c2 = a2 +b2 -2ab cos 𝛾 8. Cosα = 𝑏2+𝑐2−𝑎2 2𝑏𝑐 9. Cosβ =⁡ 𝑐2+𝑎2−𝑏2 2𝑐𝑎 10. Cos 𝛾 =⁡ 𝑎2+𝑏2 −𝑐2 2𝑎𝑏 LAW OF TANGENTS:- USED WHEN 2 SIDES & 2 ANGLES ARE GIVEN: 11. 𝑎−𝑏 𝑎+𝑏 = 𝑡𝑎𝑛⁡ 𝛼−𝛽 2 𝑡𝑎𝑛 𝛼+𝛽 2 12. 𝑏−𝑐 𝑏+𝑐 = 𝑡𝑎𝑛⁡ 𝛽−𝛾 2 𝑡𝑎𝑛 𝛽+𝛾 2 13. 𝑐−𝑎 𝑐+𝑎 = 𝑡𝑎𝑛⁡ 𝛾−𝛼 2 𝑡𝑎𝑛 𝛾+𝛼 2
  • 5.
    P a ge |5 MR.Munawer CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17) EXERCISE 12.6 HALF ANGLE FORMULAS NOTE:- IN ALL THESE HALF ANGLE FORMULAS: 2s = a+b+c 33.⁡𝑆𝑖𝑛 𝛼 2 =⁡√ (𝑠−𝑏)(𝑠−𝑐) 𝑏𝑐 34.⁡𝑆𝑖𝑛 𝛽 2 =⁡√ (𝑠−𝑐)(𝑠−𝑎) 𝑎𝑐 35.⁡𝑆𝑖𝑛 𝛾 2 =⁡√ (𝑠−𝑎)(𝑠−𝑏) 𝑎𝑏 36.⁡𝐶𝑜𝑠 𝛼 2 =⁡√ 𝑠(𝑠−𝑎) 𝑏𝑐 37.⁡𝐶𝑜𝑠 𝛽 2 =⁡√ 𝑠(𝑠−𝑏) 𝑐𝑎 38.⁡𝐶𝑜𝑠 𝛾 2 =⁡√ 𝑠(𝑠−𝑐) 𝑎𝑏 39.⁡𝑇𝑎𝑛 𝛼 2 =⁡√ (𝑠−𝑏)(𝑠−𝑐) 𝑠(𝑠−𝑎) 40.𝑇𝑎𝑛 𝛽 2 =⁡√ (𝑠−𝑐)(𝑠−𝑎) 𝑠(𝑠−𝑏) 41.𝑇𝑎𝑛 𝛾 2 =⁡√ (𝑠−𝑎)(𝑠−𝑏) 𝑠(𝑠−𝑐) EXERCISE 12.7 TO FIND THE AREA OF TRIANGLES Let area of the triangle is :-⁡𝚫 CASE 1:- IF TWO SIDES AND ONE ANGLE ARE GIVEN: 23:- Δ =⁡ 1 2 𝑏𝑐⁡𝑆𝑖𝑛𝛼= 1 2 𝑐𝑎⁡𝑆𝑖𝑛𝛽= 1 2 𝑎𝑏⁡𝑆𝑖𝑛𝛾 CASE 2:- IF ONE SIDE AND TWO ANGLES ARE GIVEN: 24:-⁡Δ = 𝑎2⁡𝑆𝑖𝑛𝛽⁡𝑆𝑖𝑛𝛾 2𝑆𝑖𝑛𝛼 25:-⁡Δ = 𝑏2⁡𝑆𝑖𝑛𝛼⁡𝑆𝑖𝑛𝛾 2𝑆𝑖𝑛𝛽
  • 6.
    P a ge |6 MR.Munawer CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17) 26:-⁡Δ = 𝑐2⁡𝑆𝑖𝑛𝛼⁡𝑆𝑖𝑛𝛽 2𝑆𝑖𝑛𝛾 CASE 3:- IF ONLY THREE SIDES ARE GIVEN: 27:- Δ = √ 𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)⁡ .`. (Hero`s formula) EXERCISE 12.8 28:- R = 𝑎𝑏𝑐 4Δ 29:- r = Δ 𝑠 30:- r1 = Δ 𝑠−𝑎 31:- r2 = Δ 𝑠−𝑏 32:- r3= Δ 𝑠−𝑐 HALF ANGLE FORMULAS NOTE:- IN ALL THESE HALF ANGLE FORMULAS: 2s = a+b+c 33.⁡𝑆𝑖𝑛 𝛼 2 =⁡√ (𝑠−𝑏)(𝑠−𝑐) 𝑏𝑐 34.⁡𝑆𝑖𝑛 𝛽 2 =⁡√ (𝑠−𝑐)(𝑠−𝑎) 𝑎𝑐 35.⁡𝑆𝑖𝑛 𝛾 2 =⁡√ (𝑠−𝑎)(𝑠−𝑏) 𝑎𝑏 36.⁡𝐶𝑜𝑠 𝛼 2 =⁡√ 𝑠(𝑠−𝑎) 𝑏𝑐 37.⁡𝐶𝑜𝑠 𝛽 2 =⁡√ 𝑠(𝑠−𝑏) 𝑐𝑎 38.⁡𝐶𝑜𝑠 𝛾 2 =⁡√ 𝑠(𝑠−𝑐) 𝑎𝑏 39.⁡𝑇𝑎𝑛 𝛼 2 =⁡√ (𝑠−𝑏)(𝑠−𝑐) 𝑠(𝑠−𝑎) 40. 𝑇𝑎𝑛 𝛽 2 =⁡√ (𝑠−𝑐)(𝑠−𝑎) 𝑠(𝑠−𝑏)
  • 7.
    P a ge |7 MR.Munawer CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17) 41. 𝑇𝑎𝑛 𝛾 2 =⁡√ (𝑠−𝑎)(𝑠−𝑏) 𝑠(𝑠−𝑐) FORMULAS CHAPTER:-13 CLASS:-XI 1. Sin-1 A + Sin-1 B = Sin-1 (A√1 − 𝐵2 + B√1 − 𝐴2) 2. Sin-1 A - Sin-1 B = Sin-1 (A√1 − 𝐵2 - B√1 − 𝐴2) 3. Cos-1 A +Cos-1 B = Cos-1 (AB-√1 − 𝐴2 √1 − 𝐵2) 4. Cos-1 A - Cos-1 B = Cos-1 (AB+√1 − 𝐴2 √1 − 𝐵2) 5. Tan-1 A + Tan-1 B = Tan−1 ( 𝐴+𝐵 1−𝐴𝐵 ) 6. Tan-1 A - Tan-1 B = ⁡Tan−1 ( 𝐴−𝐵 1+𝐴𝐵 ) 7. 2Tan-1 A – Tan-1 B = Tan-1 ⁡( 2𝐴 1−𝐴2) 8. 2 Cos-1 A = Cos-1 (A2 – 1)
  • 8.
    P a ge |8 MR.Munawer CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17) FORMULAS CHAPTER:-6 CLASS:-XI EXERCISE:- 6.2 1. an = a1 + (n-1)d .`. USED TO FIND NTH TERM OF THE ARITHMETIC PROGRATION. [A.P] EXERCISE:- 6.3 2. A.M = 𝐴+𝐵 2 3. an = a1 + (n-1)d EXERCISE:- 6.4 4. Sn = 𝑛 2 (a1 + an ) 5. Sn = 𝑛 2 [2a1 + (n-1)d] .`. USED TO SUM THE TERMS OF THE ARITHMETIC SERIES. EXERCISE:- 6.5 NOT FOR LAHORE BOARD. EXERCISE:- 6.6 6. an = a1 rn-1 .`. USED TO FIND NTH TERM OF THE GEOMETRIC PROGRATION. [G.P] EXERCISE:- 6.7 7. G.P = √ 𝐴. 𝐵 or, [A1/2 . B1/2 ] 8. an = a1 rn-1 EXERCISE:- 6.8 9. Sn = 𝑎1 1−𝑟 .`. USED TO SUM THE TERMS OF THE GEOMETRIC SERIES TO INFINITY. 10. Sn = 𝑎1⁡[1⁡−⁡𝑟 𝑛] 1⁡−⁡𝑟 .`. USED TO SUM THE TERMS OF THE GEOMETRIC SERIES TO “n” TERM WHEN “r” IS LESS THEN “1”.
  • 9.
    P a ge |9 MR.Munawer CLASS:- XIST-YEAR F Fazaia Inter college Lahore (session 2016-17) 11. Sn = 𝑎1⁡[𝑟 𝑛−1] 𝑟−1 .`. USED TO SUM THE TERMS OF THE GEOMETRIC SERIES TO “n” TERM WHEN “r” IS GREATER THEN “1”. EXERCISE:- 6.9 NOT FOR LAHORE BOARD. EXERCISE:- 6.10 12. H.P = 2⁡𝐴.𝐵 𝐴⁡+⁡𝐵 13. an = a1 + (n-1)d EXERCISE:- 6.11 14.⁡∑ ⁡1⁡𝑛 𝑘=1 = n .’. (n is put in the place of simple“1”) 15. ∑ ⁡k⁡𝑛 𝑘=1 = Tk = 𝑛(𝑛+1) 2 16. ∑ ⁡K2𝑛 𝑘=1 = Tk2 = 𝑛(𝑛+1)(2𝑛+1) 6 17. ∑ ⁡k3 ⁡𝑛 𝑘=1 ⁡= Tk3 = [ 𝑛( 𝑛+1) 2 ] 2 NOTE:- IN THESE FORMULAS, n = nth term. d = difference between two arithmetic terms. R = ratio between two geometric terms. Sn = Sum to “n” terms. Tk = TOTAL “k” IMPORTANT NOTES:- G2 = AH A < G < H