SlideShare a Scribd company logo
1 of 46
www.PinoyBIX.org
Presents:
Fluids
credit: Giancoli Physics
Chapter 10
Fluids
Units of Chapter 10
•Phases of Matter
•Density and Specific Gravity
•Pressure in Fluids
•Atmospheric Pressure and Gauge Pressure
•Pascal’s Principle
•Measurement of Pressure; Gauges and the
Barometer
•Buoyancy and Archimedes’ Principle
Units of Chapter 10
•Fluids in Motion; Flow Rate and the Equation of
Continuity
•Bernoulli’s Equation
•Applications of Bernoulli’s Principle: from
Torricelli to Airplanes, Baseballs, and TIA
•Viscosity
•Flow in Tubes: Poiseuille’s Equation, Blood Flow
•Surface Tension and Capillarity
•Pumps, and the Heart
10-1 Phases of Matter
The three common phases of matter are solid,
liquid, and gas.
A solid has a definite shape and size.
A liquid has a fixed volume but can be any
shape.
A gas can be any shape and also can be easily
compressed.
Liquids and gases both flow, and are called
fluids.
10-2 Density and Specific Gravity
The density ρ of an object is its mass per unit
volume:
The SI unit for density is kg/m3. Density is also
sometimes given in g/cm3; to convert g/cm3 to
kg/m3, multiply by 1000.
Water at 4°C has a density of 1 g/cm3 = 1000 kg/m3.
The specific gravity of a substance is the ratio of
its density to that of water.
(10-1)
10-3 Pressure in Fluids
Pressure is defined as the force per unit area.
Pressure is a scalar; the units of pressure in the
SI system are pascals:
1 Pa = 1 N/m2
Pressure is the same in every
direction in a fluid at a given
depth; if it were not, the fluid
would flow.
10-3 Pressure in Fluids
Also for a fluid at rest, there is no
component of force parallel to any
solid surface – once again, if there
were the fluid would flow.
10-3 Pressure in Fluids
The pressure at a depth h below the surface of
the liquid is due to the weight of the liquid above
it. We can quickly calculate:
This relation is valid
for any liquid whose
density does not
change with depth.
(10-3)
10-4 Atmospheric Pressure and Gauge
Pressure
At sea level the atmospheric pressure is about
; this is called one
atmosphere (atm).
Another unit of pressure is the bar:
Standard atmospheric pressure is just over 1 bar.
This pressure does not crush us, as our cells
maintain an internal pressure that balances it.
10-4 Atmospheric Pressure and Gauge
Pressure
Most pressure gauges measure the pressure
above the atmospheric pressure – this is called
the gauge pressure.
The absolute pressure is the sum of the
atmospheric pressure and the gauge pressure.
10-5 Pascal’s Principle
If an external pressure is applied to a confined
fluid, the pressure at every point within the fluid
increases by that amount.
This principle is used, for example, in hydraulic
lifts and hydraulic brakes.
10-6 Measurement of Pressure; Gauges and
the Barometer
There are a number of different types of
pressure gauges. This one is an open-
tube manometer. The pressure in the
open end is atmospheric pressure; the
pressure being measured will cause
the fluid to rise until
the pressures on both
sides at the same
height are equal.
10-6 Measurement of Pressure; Gauges and
the Barometer
Here are two more devices for
measuring pressure: the
aneroid gauge and the tire
pressure gauge.
10-6 Measurement of Pressure; Gauges and
the Barometer
This is a mercury barometer,
developed by Torricelli to
measure atmospheric pressure.
The height of the column of
mercury is such that the pressure
in the tube at the surface level is 1
atm.
Therefore, pressure is often
quoted in millimeters (or inches)
of mercury.
10-6 Measurement of Pressure; Gauges and
the Barometer
Any liquid can serve in a
Torricelli-style barometer,
but the most dense ones
are the most convenient.
This barometer uses water.
10-7 Buoyancy and Archimedes’ Principle
This is an object submerged in a fluid. There is a
net force on the object because the pressures at
the top and bottom of it are different.
The buoyant force is
found to be the upward
force on the same volume
of water:
10-7 Buoyancy and Archimedes’ Principle
The net force on the object is then the difference
between the buoyant force and the gravitational
force.
10-7 Buoyancy and Archimedes’ Principle
If the object’s density is less than that of water,
there will be an upward net force on it, and it will
rise until it is partially out of the water.
10-7 Buoyancy and Archimedes’ Principle
For a floating object, the fraction that is
submerged is given by the ratio of the object’s
density to that of the fluid.
10-7 Buoyancy and Archimedes’ Principle
This principle also works in
the air; this is why hot-air and
helium balloons rise.
10-8 Fluids in Motion; Flow Rate and the
Equation of Continuity
If the flow of a fluid is smooth, it is called streamline or
laminar flow (a).
Above a certain speed, the flow becomes turbulent (b).
Turbulent flow has eddies; the viscosity of the fluid is much
greater when eddies are present.
We will deal with laminar flow.
The mass flow rate is the mass that passes a
given point per unit time. The flow rates at any
two points must be equal, as long as no fluid is
being added or taken away.
This gives us the equation of continuity:
10-8 Fluids in Motion; Flow Rate and the
Equation of Continuity
(10-4a)
10-8 Fluids in Motion; Flow Rate and the
Equation of Continuity
If the density doesn’t change – typical for
liquids – this simplifies to .
Where the pipe is wider, the flow is slower.
10-9 Bernoulli’s Equation
A fluid can also change its
height. By looking at the
work done as it moves, we
find:
This is Bernoulli’s
equation. One thing it
tells us is that as the
speed goes up, the
pressure goes down.
10-10 Applications of Bernoulli’s
Principle: from Torricelli to Airplanes,
Baseballs, and TIA
Using Bernoulli’s principle, we find that the speed
of fluid coming from a spigot on an open tank is:
This is called
Torricelli’s theorem.
(10-6)
10-10 Applications of Bernoulli’s
Principle: from Torricelli to Airplanes,
Baseballs, and TIA
Lift on an airplane wing is due to the different
air speeds and pressures on the two surfaces
of the wing.
10-10 Applications of Bernoulli’s
Principle: from Torricelli to Airplanes,
Baseballs, and TIA
A sailboat can move against
the wind, using the pressure
differences on each side of
the sail, and using the keel to
keep from going sideways.
10-10 Applications of Bernoulli’s
Principle: from Torricelli to Airplanes,
Baseballs, and TIA
A ball’s path will curve due to its
spin, which results in the air
speeds on the two sides of the
ball not being equal.
10-10 Applications of Bernoulli’s
Principle: from Torricelli to Airplanes,
Baseballs, and TIA
A person with constricted
arteries will find that they
may experience a
temporary lack of blood to
the brain (TIA) as blood
speeds up to get past the
constriction, thereby
reducing the pressure.
10-10 Applications of Bernoulli’s
Principle: from Torricelli to Airplanes,
Baseballs, and TIA
A venturi meter can be used to measure fluid
flow by measuring pressure differences.
10-10 Applications of Bernoulli’s
Principle: from Torricelli to Airplanes,
Baseballs, and TIA
Air flow across the top helps smoke go up a
chimney, and air flow over multiple openings can
provide the needed circulation in underground
burrows.
10-11 Viscosity
Real fluids have some internal friction, called
viscosity.
The viscosity can be measured; it is found from
the relation
where η is the coefficient of viscosity.
(10-8)
10-12 Flow in Tubes; Poiseuille’s
Equation, Blood Flow
The rate of flow in a fluid in a round tube
depends on the viscosity of the fluid, the
pressure difference, and the dimensions of the
tube.
The volume flow rate is proportional to the
pressure difference, inversely proportional to
the length of the tube and to the pressure
difference, and proportional to the fourth power
of the radius of the tube.
This has consequences for blood flow – if the
radius of the artery is half what it should be, the
pressure has to increase by a factor of 16 to
keep the same flow.
Usually the heart cannot work that hard, but
blood pressure goes up as it tries.
10-12 Flow in Tubes; Poiseuille’s
Equation, Blood Flow
10-13 Surface Tension and Capillarity
The surface of a liquid at rest is not perfectly flat;
it curves either up or down at the walls of the
container. This is the result of surface tension,
which makes the surface behave somewhat
elastically.
10-13 Surface Tension and Capillarity
Soap and detergents lower the surface tension
of water. This allows the water to penetrate
materials more easily.
Water molecules are
more strongly
attracted to glass than
they are to each other;
just the opposite is
true for mercury.
10-13 Surface Tension and Capillarity
If a narrow tube is placed in a fluid, the fluid will
exhibit capillarity.
10-14 Pumps, and the Heart
This is a simple reciprocating pump. If it is to be
used as a vacuum pump, the vessel is connected
to the intake; if it is to be used as a pressure
pump, the vessel is connected to the outlet.
10-14 Pumps, and the Heart
(a) is a centrifugal pump; (b) a rotary oil-seal pump;
(c) a diffusion pump
10-14 Pumps, and the Heart
The heart of a human, or any other animal, also
operates as a pump.
10-14 Pumps, and the Heart
In order to measure blood pressure, a cuff is
inflated until blood flow stops. The cuff is then
deflated slowly until blood begins to flow
while the heart is pumping, and then
deflated some more until the blood
flows freely.
Summary of Chapter 10
• Phases of matter: solid, liquid, gas.
• Liquids and gases are called fluids.
• Density is mass per unit volume.
• Specific gravity is the ratio of the density of the
material to that of water.
• Pressure is force per unit area.
• Pressure at a depth h is ρgh.
• External pressure applied to a confined fluid is
transmitted throughout the fluid.
Summary of Chapter 10
• Atmospheric pressure is measured with a
barometer.
• Gauge pressure is the total pressure minus the
atmospheric pressure.
• An object submerged partly or wholly in a fluid
is buoyed up by a force equal to the weight of
the fluid it displaces.
• Fluid flow can be laminar or turbulent.
• The product of the cross-sectional area and the
speed is constant for horizontal flow.
Summary of Chapter 10
• Where the velocity of a fluid is high, the
pressure is low, and vice versa.
• Viscosity is an internal frictional force within
fluids.
• Liquid surfaces hold together as if under
tension.
Online Notes and Presentations
www.PinoyBIX.org
Visit:

More Related Content

What's hot

Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1guest7b51c7
 
Chapter1 fm-introduction to fluid mechanics-converted
Chapter1  fm-introduction to fluid mechanics-convertedChapter1  fm-introduction to fluid mechanics-converted
Chapter1 fm-introduction to fluid mechanics-convertedSatishkumarP9
 
Fluid machinery ppt
Fluid machinery pptFluid machinery ppt
Fluid machinery pptmahesh kumar
 
Fluid mech. lec midterm coverage
Fluid mech. lec   midterm coverageFluid mech. lec   midterm coverage
Fluid mech. lec midterm coverageShobbbe
 
Dimensionless analysis & Similarities
Dimensionless analysis & Similarities Dimensionless analysis & Similarities
Dimensionless analysis & Similarities sajan gohel
 
fluid mechanics- pressure measurement
fluid mechanics- pressure measurementfluid mechanics- pressure measurement
fluid mechanics- pressure measurementAnkitendran Mishra
 
Fluid mechanics notes
Fluid mechanics notesFluid mechanics notes
Fluid mechanics notesshone john
 

What's hot (20)

Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1
 
Fluid properties
Fluid propertiesFluid properties
Fluid properties
 
Chapter1 fm-introduction to fluid mechanics-converted
Chapter1  fm-introduction to fluid mechanics-convertedChapter1  fm-introduction to fluid mechanics-converted
Chapter1 fm-introduction to fluid mechanics-converted
 
Types of fluid flow
Types of fluid flowTypes of fluid flow
Types of fluid flow
 
Fluid machinery ppt
Fluid machinery pptFluid machinery ppt
Fluid machinery ppt
 
Properties of the fluids
Properties of the fluidsProperties of the fluids
Properties of the fluids
 
fluid-mechanics
fluid-mechanicsfluid-mechanics
fluid-mechanics
 
laminar and Turbulent flow
laminar and Turbulent flowlaminar and Turbulent flow
laminar and Turbulent flow
 
Fluid Mechanics - Fluid Properties
Fluid Mechanics - Fluid PropertiesFluid Mechanics - Fluid Properties
Fluid Mechanics - Fluid Properties
 
Fluid mech. lec midterm coverage
Fluid mech. lec   midterm coverageFluid mech. lec   midterm coverage
Fluid mech. lec midterm coverage
 
Fluid Kinematics
Fluid KinematicsFluid Kinematics
Fluid Kinematics
 
Fluid kinematics
Fluid kinematics Fluid kinematics
Fluid kinematics
 
Source & sink flow
Source & sink flowSource & sink flow
Source & sink flow
 
Dimensionless analysis & Similarities
Dimensionless analysis & Similarities Dimensionless analysis & Similarities
Dimensionless analysis & Similarities
 
Flow through pipes ppt
Flow through pipes pptFlow through pipes ppt
Flow through pipes ppt
 
Boundary layer theory
Boundary layer theoryBoundary layer theory
Boundary layer theory
 
fluid mechanics- pressure measurement
fluid mechanics- pressure measurementfluid mechanics- pressure measurement
fluid mechanics- pressure measurement
 
Fluid mechanics
Fluid mechanicsFluid mechanics
Fluid mechanics
 
Types of fluid flow best ppt
Types of fluid flow best pptTypes of fluid flow best ppt
Types of fluid flow best ppt
 
Fluid mechanics notes
Fluid mechanics notesFluid mechanics notes
Fluid mechanics notes
 

Similar to Fluids Lecture

Ppa6 Lecture Ch 10
Ppa6 Lecture Ch 10Ppa6 Lecture Ch 10
Ppa6 Lecture Ch 10josoborned
 
Fluid-Mechanics.pptx
Fluid-Mechanics.pptxFluid-Mechanics.pptx
Fluid-Mechanics.pptxReymonBatling
 
Electronic Measurement Flow Measurement
Electronic Measurement Flow MeasurementElectronic Measurement Flow Measurement
Electronic Measurement Flow MeasurementBurdwan University
 
Chapter 11 Powerpoint
Chapter 11 PowerpointChapter 11 Powerpoint
Chapter 11 PowerpointMrreynon
 
Lecture Ch 10
Lecture Ch 10Lecture Ch 10
Lecture Ch 10rtrujill
 
Fluid mechanics pdf
Fluid mechanics pdfFluid mechanics pdf
Fluid mechanics pdfSaqib Imran
 
Aerodynamics basics
Aerodynamics basicsAerodynamics basics
Aerodynamics basicsaeroalex
 
2 Pergerakan fluida fisika aplikasi yagesyaaaa
2 Pergerakan fluida fisika aplikasi yagesyaaaa2 Pergerakan fluida fisika aplikasi yagesyaaaa
2 Pergerakan fluida fisika aplikasi yagesyaaaabgjeenet
 
Engineering Physics chapter 14 ch14-10e.pptx
Engineering Physics chapter 14 ch14-10e.pptxEngineering Physics chapter 14 ch14-10e.pptx
Engineering Physics chapter 14 ch14-10e.pptxEngrNoumanMemon
 
Fluid Mechanics. Chapter 1. Introduction to Fluid Mechanics
Fluid Mechanics. Chapter 1. Introduction to Fluid MechanicsFluid Mechanics. Chapter 1. Introduction to Fluid Mechanics
Fluid Mechanics. Chapter 1. Introduction to Fluid MechanicsAddisu Dagne Zegeye
 
New microsoft office power point presentation
New microsoft office power point presentationNew microsoft office power point presentation
New microsoft office power point presentationGokul R
 
Fluid flow and measurement
Fluid flow and measurementFluid flow and measurement
Fluid flow and measurementAdeyinka Samuel
 

Similar to Fluids Lecture (20)

Ppa6 Lecture Ch 10
Ppa6 Lecture Ch 10Ppa6 Lecture Ch 10
Ppa6 Lecture Ch 10
 
Fluid-Mechanics.pptx
Fluid-Mechanics.pptxFluid-Mechanics.pptx
Fluid-Mechanics.pptx
 
DYNAMICS OF FLOW.ppt
DYNAMICS OF FLOW.pptDYNAMICS OF FLOW.ppt
DYNAMICS OF FLOW.ppt
 
Fluids e
Fluids eFluids e
Fluids e
 
Electronic Measurement Flow Measurement
Electronic Measurement Flow MeasurementElectronic Measurement Flow Measurement
Electronic Measurement Flow Measurement
 
Lesson 4 bernoulli's theorem
Lesson 4  bernoulli's theoremLesson 4  bernoulli's theorem
Lesson 4 bernoulli's theorem
 
Flowmeter - Brief
Flowmeter   - BriefFlowmeter   - Brief
Flowmeter - Brief
 
Chapter 11 Powerpoint
Chapter 11 PowerpointChapter 11 Powerpoint
Chapter 11 Powerpoint
 
Lecture Ch 10
Lecture Ch 10Lecture Ch 10
Lecture Ch 10
 
Fluid mechanics pdf
Fluid mechanics pdfFluid mechanics pdf
Fluid mechanics pdf
 
Flow of fluids
Flow of fluidsFlow of fluids
Flow of fluids
 
Aerodynamics basics
Aerodynamics basicsAerodynamics basics
Aerodynamics basics
 
2 Pergerakan fluida fisika aplikasi yagesyaaaa
2 Pergerakan fluida fisika aplikasi yagesyaaaa2 Pergerakan fluida fisika aplikasi yagesyaaaa
2 Pergerakan fluida fisika aplikasi yagesyaaaa
 
Engineering Physics chapter 14 ch14-10e.pptx
Engineering Physics chapter 14 ch14-10e.pptxEngineering Physics chapter 14 ch14-10e.pptx
Engineering Physics chapter 14 ch14-10e.pptx
 
CE-6451-Fluid_Mechanics.GVK
CE-6451-Fluid_Mechanics.GVKCE-6451-Fluid_Mechanics.GVK
CE-6451-Fluid_Mechanics.GVK
 
Fluid Mechanics. Chapter 1. Introduction to Fluid Mechanics
Fluid Mechanics. Chapter 1. Introduction to Fluid MechanicsFluid Mechanics. Chapter 1. Introduction to Fluid Mechanics
Fluid Mechanics. Chapter 1. Introduction to Fluid Mechanics
 
Imegate4u
Imegate4uImegate4u
Imegate4u
 
New microsoft office power point presentation
New microsoft office power point presentationNew microsoft office power point presentation
New microsoft office power point presentation
 
Fluidization
FluidizationFluidization
Fluidization
 
Fluid flow and measurement
Fluid flow and measurementFluid flow and measurement
Fluid flow and measurement
 

Recently uploaded

A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 

Recently uploaded (20)

A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
 
Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 

Fluids Lecture

  • 3. Units of Chapter 10 •Phases of Matter •Density and Specific Gravity •Pressure in Fluids •Atmospheric Pressure and Gauge Pressure •Pascal’s Principle •Measurement of Pressure; Gauges and the Barometer •Buoyancy and Archimedes’ Principle
  • 4. Units of Chapter 10 •Fluids in Motion; Flow Rate and the Equation of Continuity •Bernoulli’s Equation •Applications of Bernoulli’s Principle: from Torricelli to Airplanes, Baseballs, and TIA •Viscosity •Flow in Tubes: Poiseuille’s Equation, Blood Flow •Surface Tension and Capillarity •Pumps, and the Heart
  • 5. 10-1 Phases of Matter The three common phases of matter are solid, liquid, and gas. A solid has a definite shape and size. A liquid has a fixed volume but can be any shape. A gas can be any shape and also can be easily compressed. Liquids and gases both flow, and are called fluids.
  • 6. 10-2 Density and Specific Gravity The density ρ of an object is its mass per unit volume: The SI unit for density is kg/m3. Density is also sometimes given in g/cm3; to convert g/cm3 to kg/m3, multiply by 1000. Water at 4°C has a density of 1 g/cm3 = 1000 kg/m3. The specific gravity of a substance is the ratio of its density to that of water. (10-1)
  • 7. 10-3 Pressure in Fluids Pressure is defined as the force per unit area. Pressure is a scalar; the units of pressure in the SI system are pascals: 1 Pa = 1 N/m2 Pressure is the same in every direction in a fluid at a given depth; if it were not, the fluid would flow.
  • 8. 10-3 Pressure in Fluids Also for a fluid at rest, there is no component of force parallel to any solid surface – once again, if there were the fluid would flow.
  • 9. 10-3 Pressure in Fluids The pressure at a depth h below the surface of the liquid is due to the weight of the liquid above it. We can quickly calculate: This relation is valid for any liquid whose density does not change with depth. (10-3)
  • 10. 10-4 Atmospheric Pressure and Gauge Pressure At sea level the atmospheric pressure is about ; this is called one atmosphere (atm). Another unit of pressure is the bar: Standard atmospheric pressure is just over 1 bar. This pressure does not crush us, as our cells maintain an internal pressure that balances it.
  • 11. 10-4 Atmospheric Pressure and Gauge Pressure Most pressure gauges measure the pressure above the atmospheric pressure – this is called the gauge pressure. The absolute pressure is the sum of the atmospheric pressure and the gauge pressure.
  • 12. 10-5 Pascal’s Principle If an external pressure is applied to a confined fluid, the pressure at every point within the fluid increases by that amount. This principle is used, for example, in hydraulic lifts and hydraulic brakes.
  • 13. 10-6 Measurement of Pressure; Gauges and the Barometer There are a number of different types of pressure gauges. This one is an open- tube manometer. The pressure in the open end is atmospheric pressure; the pressure being measured will cause the fluid to rise until the pressures on both sides at the same height are equal.
  • 14. 10-6 Measurement of Pressure; Gauges and the Barometer Here are two more devices for measuring pressure: the aneroid gauge and the tire pressure gauge.
  • 15. 10-6 Measurement of Pressure; Gauges and the Barometer This is a mercury barometer, developed by Torricelli to measure atmospheric pressure. The height of the column of mercury is such that the pressure in the tube at the surface level is 1 atm. Therefore, pressure is often quoted in millimeters (or inches) of mercury.
  • 16. 10-6 Measurement of Pressure; Gauges and the Barometer Any liquid can serve in a Torricelli-style barometer, but the most dense ones are the most convenient. This barometer uses water.
  • 17. 10-7 Buoyancy and Archimedes’ Principle This is an object submerged in a fluid. There is a net force on the object because the pressures at the top and bottom of it are different. The buoyant force is found to be the upward force on the same volume of water:
  • 18. 10-7 Buoyancy and Archimedes’ Principle The net force on the object is then the difference between the buoyant force and the gravitational force.
  • 19. 10-7 Buoyancy and Archimedes’ Principle If the object’s density is less than that of water, there will be an upward net force on it, and it will rise until it is partially out of the water.
  • 20. 10-7 Buoyancy and Archimedes’ Principle For a floating object, the fraction that is submerged is given by the ratio of the object’s density to that of the fluid.
  • 21. 10-7 Buoyancy and Archimedes’ Principle This principle also works in the air; this is why hot-air and helium balloons rise.
  • 22. 10-8 Fluids in Motion; Flow Rate and the Equation of Continuity If the flow of a fluid is smooth, it is called streamline or laminar flow (a). Above a certain speed, the flow becomes turbulent (b). Turbulent flow has eddies; the viscosity of the fluid is much greater when eddies are present.
  • 23. We will deal with laminar flow. The mass flow rate is the mass that passes a given point per unit time. The flow rates at any two points must be equal, as long as no fluid is being added or taken away. This gives us the equation of continuity: 10-8 Fluids in Motion; Flow Rate and the Equation of Continuity (10-4a)
  • 24. 10-8 Fluids in Motion; Flow Rate and the Equation of Continuity If the density doesn’t change – typical for liquids – this simplifies to . Where the pipe is wider, the flow is slower.
  • 25. 10-9 Bernoulli’s Equation A fluid can also change its height. By looking at the work done as it moves, we find: This is Bernoulli’s equation. One thing it tells us is that as the speed goes up, the pressure goes down.
  • 26. 10-10 Applications of Bernoulli’s Principle: from Torricelli to Airplanes, Baseballs, and TIA Using Bernoulli’s principle, we find that the speed of fluid coming from a spigot on an open tank is: This is called Torricelli’s theorem. (10-6)
  • 27. 10-10 Applications of Bernoulli’s Principle: from Torricelli to Airplanes, Baseballs, and TIA Lift on an airplane wing is due to the different air speeds and pressures on the two surfaces of the wing.
  • 28. 10-10 Applications of Bernoulli’s Principle: from Torricelli to Airplanes, Baseballs, and TIA A sailboat can move against the wind, using the pressure differences on each side of the sail, and using the keel to keep from going sideways.
  • 29. 10-10 Applications of Bernoulli’s Principle: from Torricelli to Airplanes, Baseballs, and TIA A ball’s path will curve due to its spin, which results in the air speeds on the two sides of the ball not being equal.
  • 30. 10-10 Applications of Bernoulli’s Principle: from Torricelli to Airplanes, Baseballs, and TIA A person with constricted arteries will find that they may experience a temporary lack of blood to the brain (TIA) as blood speeds up to get past the constriction, thereby reducing the pressure.
  • 31. 10-10 Applications of Bernoulli’s Principle: from Torricelli to Airplanes, Baseballs, and TIA A venturi meter can be used to measure fluid flow by measuring pressure differences.
  • 32. 10-10 Applications of Bernoulli’s Principle: from Torricelli to Airplanes, Baseballs, and TIA Air flow across the top helps smoke go up a chimney, and air flow over multiple openings can provide the needed circulation in underground burrows.
  • 33. 10-11 Viscosity Real fluids have some internal friction, called viscosity. The viscosity can be measured; it is found from the relation where η is the coefficient of viscosity. (10-8)
  • 34. 10-12 Flow in Tubes; Poiseuille’s Equation, Blood Flow The rate of flow in a fluid in a round tube depends on the viscosity of the fluid, the pressure difference, and the dimensions of the tube. The volume flow rate is proportional to the pressure difference, inversely proportional to the length of the tube and to the pressure difference, and proportional to the fourth power of the radius of the tube.
  • 35. This has consequences for blood flow – if the radius of the artery is half what it should be, the pressure has to increase by a factor of 16 to keep the same flow. Usually the heart cannot work that hard, but blood pressure goes up as it tries. 10-12 Flow in Tubes; Poiseuille’s Equation, Blood Flow
  • 36. 10-13 Surface Tension and Capillarity The surface of a liquid at rest is not perfectly flat; it curves either up or down at the walls of the container. This is the result of surface tension, which makes the surface behave somewhat elastically.
  • 37. 10-13 Surface Tension and Capillarity Soap and detergents lower the surface tension of water. This allows the water to penetrate materials more easily. Water molecules are more strongly attracted to glass than they are to each other; just the opposite is true for mercury.
  • 38. 10-13 Surface Tension and Capillarity If a narrow tube is placed in a fluid, the fluid will exhibit capillarity.
  • 39. 10-14 Pumps, and the Heart This is a simple reciprocating pump. If it is to be used as a vacuum pump, the vessel is connected to the intake; if it is to be used as a pressure pump, the vessel is connected to the outlet.
  • 40. 10-14 Pumps, and the Heart (a) is a centrifugal pump; (b) a rotary oil-seal pump; (c) a diffusion pump
  • 41. 10-14 Pumps, and the Heart The heart of a human, or any other animal, also operates as a pump.
  • 42. 10-14 Pumps, and the Heart In order to measure blood pressure, a cuff is inflated until blood flow stops. The cuff is then deflated slowly until blood begins to flow while the heart is pumping, and then deflated some more until the blood flows freely.
  • 43. Summary of Chapter 10 • Phases of matter: solid, liquid, gas. • Liquids and gases are called fluids. • Density is mass per unit volume. • Specific gravity is the ratio of the density of the material to that of water. • Pressure is force per unit area. • Pressure at a depth h is ρgh. • External pressure applied to a confined fluid is transmitted throughout the fluid.
  • 44. Summary of Chapter 10 • Atmospheric pressure is measured with a barometer. • Gauge pressure is the total pressure minus the atmospheric pressure. • An object submerged partly or wholly in a fluid is buoyed up by a force equal to the weight of the fluid it displaces. • Fluid flow can be laminar or turbulent. • The product of the cross-sectional area and the speed is constant for horizontal flow.
  • 45. Summary of Chapter 10 • Where the velocity of a fluid is high, the pressure is low, and vice versa. • Viscosity is an internal frictional force within fluids. • Liquid surfaces hold together as if under tension.
  • 46. Online Notes and Presentations www.PinoyBIX.org Visit: