This document summarizes research on deep learning approaches for face recognition. It describes the DeepFace model from Facebook, which used a deep convolutional network trained on 4.4 million faces to achieve state-of-the-art accuracy on the Labeled Faces in the Wild (LFW) dataset. It also summarizes the DeepID2 and DeepID3 models from Chinese University of Hong Kong, which employed joint identification-verification training of convolutional networks and achieved performance comparable or superior to DeepFace on LFW. Evaluation metrics for face verification and identification tasks are also outlined.