SlideShare a Scribd company logo
1 of 31
Download to read offline
Exception-enriched Rule
Learning from Knowledge
Graphs
Mohamed Gad-Elrab1, Daria Stepanova1, Jacopo Urbani 2, Gerhard Weikum1
1Max-Planck-Institut fΓΌr Informatik, Saarland Informatics Campus, Germany
2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
21st October 2016
Knowledge Graphs (KGs)
2
β€’ Huge collection of < 𝑠𝑒𝑏𝑗𝑒𝑐𝑑, π‘π‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘‘π‘’, π‘œπ‘π‘—π‘’π‘π‘‘ > triples
β€’ Positive facts under Open World Assumption (OWA)
β€’ Possibly incomplete and/or inaccurate
Mining Rules from KGs
3
Amsterdam
isMarriedToJohn Kate
Chicago
isMarriedToBrad Anna
Berlin
hasBrother
isMarriedToDave ClaraisMarriedToBob Alice
Researcher
Berlin Football
Mining Rules from KGs
4
π‘Ÿ: 𝑙𝑖𝑣𝑒𝑠𝐼𝑛 𝑋, 𝑍 ← π‘–π‘ π‘€π‘Žπ‘Ÿπ‘Ÿπ‘–π‘’π‘‘π‘‡π‘œ 𝑋, π‘Œ , 𝑙𝑖𝑣𝑒𝑠𝐼𝑛(π‘Œ, 𝑍)
Amsterdam
isMarriedToJohn Kate
Chicago
isMarriedToBrad Anna
Berlin
hasBrother
isMarriedToDave ClaraisMarriedToBob Alice
Researcher
Berlin Football
[GalΓ‘rraga et al., 2015]
Mining Rules from KGs
5
π‘Ÿ: 𝑙𝑖𝑣𝑒𝑠𝐼𝑛 𝑋, 𝑍 ← π‘–π‘ π‘€π‘Žπ‘Ÿπ‘Ÿπ‘–π‘’π‘‘π‘‡π‘œ 𝑋, π‘Œ , 𝑙𝑖𝑣𝑒𝑠𝐼𝑛(π‘Œ, 𝑍)
Amsterdam
isMarriedToJohn Kate
Chicago
isMarriedToBrad Anna
Berlin
hasBrother
isMarriedToDave ClaraisMarriedToBob Alice
Researcher
Berlin Football
1 2
Our Goal
6
π‘Ÿ: 𝑙𝑖𝑣𝑒𝑠𝐼𝑛 𝑋, 𝑍 ← π‘–π‘ π‘€π‘Žπ‘Ÿπ‘Ÿπ‘–π‘’π‘‘π‘‡π‘œ 𝑋, π‘Œ , 𝑙𝑖𝑣𝑒𝑠𝐼𝑛 π‘Œ, 𝑍 , π‘›π‘œπ‘‘ 𝑖𝑠𝐴(𝑋, π‘Ÿπ‘’π‘ )
Amsterdam
isMarriedToJohn Kate
Chicago
isMarriedToBrad Anna
Berlin
hasBrother
isMarriedToDave ClaraisMarriedToBob Alice
Researcher
Berlin Football
1 2
Problem Statement
β€’ Quality-based theory revision problem
β€’ Given
β€’ Knowledge graph 𝐾𝐺
β€’ Set of Horn rules 𝑅 𝐻
β€’ Find the nonmonotonic revision 𝑅 𝑁𝑀 of 𝑅 𝐻
β€’ Maximize top-k avg. confidence
β€’ Minimize conflicting prediction
7
Problem Statement
β€’ Quality-based theory revision problem
β€’ Given
β€’ Knowledge graph 𝐾𝐺
β€’ Set of Horn rules 𝑅 𝐻
β€’ Find the nonmonotonic revision 𝑅 𝑁𝑀 of 𝑅 𝐻
β€’ Maximize top-k avg. confidence
β€’ Minimize conflicting prediction
8
Unknown
Problem Statement: Conflicting Predictions
β€’ Defining conflicts
β€’ Measuring conflicts (auxiliary rules)
9
π‘Ÿ2: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘›π‘œπ‘‘ π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋)
π‘Ÿ2
π‘Žπ‘’π‘₯
: π‘›π‘œπ‘‘_π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋)
𝑅 =
π‘Ÿ1: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← π‘–π‘ πΊπ‘Žπ‘šπ‘’ 𝑋 , π‘–π‘ π΅π‘Žπ‘ π‘’π‘‘π‘‚π‘›π½π‘ƒπ΄π‘›π‘–π‘šπ‘’ (𝑋)
π‘Ÿ2: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘›π‘œπ‘‘ π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋)
{π‘–π‘ πΊπ‘Žπ‘šπ‘’ π‘Ž , π‘–π‘ π΅π‘Žπ‘ π‘’π‘‘π‘‚π‘›π½π‘ƒπ΄π‘›π‘–π‘šπ‘’ π‘Ž , β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ π‘Ž , π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄ π‘Ž }
Output: {(π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ π‘Ž , π‘Ÿ2: π‘›π‘œπ‘‘ π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ π‘Ž )}
π‘Ž =
Problem Statement: Conflicting Predictions
β€’ Defining conflicts
β€’ Measuring conflicts (auxiliary rules)
10
π‘Ÿ2: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘›π‘œπ‘‘ π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋)
π‘Ÿ2
π‘Žπ‘’π‘₯
: π‘›π‘œπ‘‘_π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋)
𝑅 =
π‘Ÿ1: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← π‘–π‘ πΊπ‘Žπ‘šπ‘’ 𝑋 , π‘–π‘ π΅π‘Žπ‘ π‘’π‘‘π‘‚π‘›π½π‘ƒπ΄π‘›π‘–π‘šπ‘’ (𝑋)
π‘Ÿ2: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘›π‘œπ‘‘ π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋)
{π‘–π‘ πΊπ‘Žπ‘šπ‘’ π‘Ž , π‘–π‘ π΅π‘Žπ‘ π‘’π‘‘π‘‚π‘›π½π‘ƒπ΄π‘›π‘–π‘šπ‘’ π‘Ž , β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ π‘Ž , π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄ π‘Ž }
Output: {(π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ π‘Ž , π‘Ÿ2: π‘›π‘œπ‘‘ π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ π‘Ž )}
π‘Ž =
Problem Statement: Conflicting Predictions
β€’ Defining conflicts
β€’ Measuring conflicts (auxiliary rules)
11
π‘Ÿ2: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘›π‘œπ‘‘ π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋)
π‘Ÿ2
π‘Žπ‘’π‘₯
: π‘›π‘œπ‘‘_π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋)
𝑅 =
π‘Ÿ1: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← π‘–π‘ πΊπ‘Žπ‘šπ‘’ 𝑋 , π‘–π‘ π΅π‘Žπ‘ π‘’π‘‘π‘‚π‘›π½π‘ƒπ΄π‘›π‘–π‘šπ‘’ (𝑋)
π‘Ÿ2: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘›π‘œπ‘‘ π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋)
{π‘–π‘ πΊπ‘Žπ‘šπ‘’ π‘Ž , π‘–π‘ π΅π‘Žπ‘ π‘’π‘‘π‘‚π‘›π½π‘ƒπ΄π‘›π‘–π‘šπ‘’ π‘Ž , β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ π‘Ž , π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄ π‘Ž }
(π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ π‘Ž , π‘›π‘œπ‘‘_π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ π‘Ž )
π‘Ž =
Approach Overview
Step 1
β€’ Mining Horn Rules
Step 2
β€’ Extracting Exception Witness Set (EWS)
Step 3
β€’ Constructing Candidate Revisions
Step 4
β€’ Selecting the Best Revision
12
bornInUSA livesInUSA stateless emigrant singer poet
p1 βœ“ βœ“
p2 βœ“ βœ“
p3 βœ“ βœ“
p4 βœ“ βœ“ βœ“
p5 βœ“ βœ“ βœ“
p6 βœ“ βœ“
p7 βœ“ βœ“
p8 βœ“ βœ“ βœ“ βœ“
p9 βœ“ βœ“ βœ“
p10 βœ“ βœ“ βœ“ βœ“
p11 βœ“ βœ“ βœ“
Step 1: Mining Horn Rules
13
π’“π’Š: π’π’Šπ’—π’†π’”π‘°π’π‘Όπ‘Ίπ‘¨ 𝑿 ← 𝒃𝒐𝒓𝒏𝑰𝒏𝑼𝑺𝑨(𝑿)
NormalAb-normal
bornInUSA livesInUSA stateless emigrant singer poet
p1 βœ“ βœ“
p2 βœ“ βœ“
p3 βœ“ βœ“
p4 βœ“ βœ“ βœ“
p5 βœ“ βœ“ βœ“
p6 βœ“ βœ“
p7 βœ“ βœ“
p8 βœ“ βœ“ βœ“ βœ“
p9 βœ“ βœ“ βœ“
p10 βœ“ βœ“ βœ“ βœ“
p11 βœ“ βœ“ βœ“
π’“π’Š: π’π’Šπ’—π’†π’”π‘°π’π‘Όπ‘Ίπ‘¨ 𝑿 ← 𝒃𝒐𝒓𝒏𝑰𝒏𝑼𝑺𝑨(𝑿)
NormalAb-normalStep 2: Extracting Exception Witness Set (EWS)
14
πΈπ‘Šπ‘†π‘– = {π‘’π‘šπ‘–π‘”π‘Ÿπ‘Žπ‘›π‘‘ 𝑋 , π‘π‘œπ‘’π‘‘ 𝑋 }
Step 3: Constructing Candidate Revisions
β€’ Horn rules
β€’ Rule revisions
15
π‘Ÿ1: π‘™π‘–π‘£π‘’π‘ πΌπ‘›π‘ˆπ‘†π΄ 𝑋 ← π‘π‘œπ‘Ÿπ‘›πΌπ‘›π‘ˆπ‘†π΄ 𝑋 , π‘›π‘œπ‘‘ π‘π‘œπ‘’π‘‘ 𝑋
π‘Ÿ1: π‘™π‘–π‘£π‘’π‘ πΌπ‘›π‘ˆπ‘†π΄ 𝑋 ← π‘π‘œπ‘Ÿπ‘›πΌπ‘›π‘ˆπ‘†π΄ 𝑋 , π‘›π‘œπ‘‘ π‘’π‘šπ‘–π‘”π‘Ÿπ‘Žπ‘›π‘‘ 𝑋
…
𝑅 =
π‘Ÿ1: π‘™π‘–π‘£π‘’π‘ πΌπ‘›π‘ˆπ‘†π΄ 𝑋 ← π‘π‘œπ‘Ÿπ‘›πΌπ‘›π‘ˆπ‘†π΄(𝑋)
π‘Ÿ2: π‘’π‘šπ‘–π‘”π‘Ÿπ‘Žπ‘›π‘‘ 𝑋 ← π‘ π‘‘π‘Žπ‘‘π‘’π‘™π‘’π‘ π‘ (𝑋)
πΈπ‘Šπ‘† = {π‘π‘œπ‘’π‘‘ 𝑋 , π‘’π‘šπ‘–π‘”π‘Ÿπ‘Žπ‘›π‘‘ 𝑋 , … }
πΈπ‘Šπ‘† = {𝑒1 𝑋 , 𝑒2(𝑋), … }
Step 4: Selecting the Best Revision
Finding globally best revision is expensive!
β€’ NaΓ―ve ranker
β€’ For each rule, pick the revision that maximizes confidence
β€’ Works in isolation from other rules
β€’ Partial materialization ranker
β€’ 𝐾𝐺s are incomplete!
β€’ Augment the original 𝐾𝐺 with predictions of other rules
β€’ Rank revisions on avg. confidence of the rule and its auxiliary.
16
β€’ Partial materialization
Ranking Rule’s Revisions
17
bornInUSA livesInUSA stateless emigrant singer poet
p1 βœ“ βœ“
p2 βœ“ βœ“
p3 βœ“ βœ“
p4 βœ“ βœ“ βœ“
p5 βœ“ βœ“ βœ“
p6 βœ“ βœ“
p7 βœ“ βœ“
p8 βœ“ βœ“ βœ“ βœ“
p9 βœ“ βœ“ βœ“
p10 βœ“ βœ“ βœ“ βœ“
p11 βœ“ βœ“ βœ“
π’“π’Š: π’π’Šπ’—π’†π’”π‘°π’π‘Όπ‘Ίπ‘¨ 𝑿 ← 𝒃𝒐𝒓𝒏𝑰𝒏𝑼𝑺𝑨(𝑿)
NormalAb-normal
β€’ Partial materialization
bornInUSA livesInUSA stateless emigrant singer poet
p1 βœ“ βœ“
p2 βœ“ βœ“
p3 βœ“ βœ“
p4 βœ“ βœ“ βœ“ βœ“
p5 βœ“ βœ“ βœ“ βœ“
p6 βœ“ βœ“ βœ“
p7 βœ“ βœ“ βœ“
p8 βœ“ βœ“ βœ“ βœ“
p9 βœ“ βœ“ βœ“ βœ“ βœ“
p10 βœ“ βœ“ βœ“ βœ“
p11 βœ“ βœ“ βœ“ βœ“
π’“π’Š: π’π’Šπ’—π’†π’”π‘°π’π‘Όπ‘Ίπ‘¨ 𝑿 ← 𝒃𝒐𝒓𝒏𝑰𝒏𝑼𝑺𝑨(𝑿)
NormalAb-normalRanking Rule’s Revisions
18
Ranking Rule’s Revisions
β€’ Ordered partial materialization ranker
β€’ Only rules with higher quality
β€’ Ordered weighted partial materialization ranker
β€’ KG fact weight = 1
β€’ Predicted facts inherit their weights from the rules
19
Experiments
β€’ Ruleset quality
20
*Higher is better
0.60
0.65
0.70
0.75
0.80
20 40 60 80 100
Avg.Confidence
Top-K (%) Rules
YAGO3
Horn Naive Ordered & Weighted PM
0.8
0.82
0.84
0.86
0.88
0.9
0.92
0.94
20 40 60 80 100Avg.Confidence
Top-K (%) Rules
IMDB
Horn Naive Ordered & Weighted PM
Facts 10M 2M
Rules 10K 25K
Experiments
β€’ Predictions consistency
21*Lower is better
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
200 400 600 800 1000
ConflictRatio
Top-K Rules
YAGO3
Naive Ordered & Weighted PM
0
0.1
0.2
0.3
0.4
0.5
200 400 600 800 1000ConflictRatio
Top-K Rules
IMDB
Naive Ordered & Weighted PM
Experiments
β€’ Examples
22
π‘–π‘ π‘€π‘œπ‘’π‘›π‘‘π‘Žπ‘–π‘›(𝑋) ← π‘–π‘ πΌπ‘›π΄π‘’π‘ π‘‘π‘Ÿπ‘–π‘Ž(𝑋), π‘–π‘ πΌπ‘›πΌπ‘‘π‘Žπ‘™π‘¦ 𝑋 , π‘›π‘œπ‘‘ π‘–π‘ π‘…π‘–π‘£π‘’π‘Ÿ (𝑋)
π‘–π‘ π‘ƒπ‘œπ‘™π‘–π‘‘π‘‚π‘“π‘ˆπ‘†π΄ 𝑋 ← π‘π‘œπ‘Ÿπ‘›πΌπ‘›π‘ˆπ‘†π΄ 𝑋 , π‘–π‘ πΊπ‘œπ‘£ 𝑋 , π‘›π‘œπ‘‘ π‘–π‘ π‘ƒπ‘œπ‘™π‘–π‘‘π‘ƒπ‘’π‘’π‘Ÿπ‘‘π‘œπ‘…π‘–π‘π‘œ(𝑋)
π‘π‘œπ‘Ÿπ‘›πΌπ‘›π‘ˆπ‘†π΄ 𝑋 ← π‘Žπ‘π‘‘π‘’π‘‘πΌπ‘›π‘€π‘œπ‘£π‘–π‘’ 𝑋 , π‘π‘Ÿπ‘’π‘Žπ‘‘π‘’π‘‘π‘€π‘œπ‘£π‘–π‘’ 𝑋 , π‘›π‘œπ‘‘ π‘€π‘œπ‘›πΉπ‘–π‘™π‘šπ‘“π‘Žπ‘Ÿπ‘’(𝑋)
Summary
β€’ Conclusion
β€’ Quality-based theory revision under OWA
β€’ Partial materialization for ranking revisions
β€’ Comparison of ranking methods on real life KGs
β€’ Outlook
β€’ Extending to higher arity predicates
β€’ Binary predicates [Tran et al., to appear ILP2016]
β€’ Evidence from text corpora
β€’ Exploiting partial completeness
23
References
β€’ [Angiulli and Fassetti, 2014] Fabrizio Angiulli and Fabio Fassetti. Exploiting domain knowledge to
detect outliers. Data Min. Knowl. Discov., 28(2):519–568, 2014.
β€’ [Dimopoulos and Kakas, 1995] Yannis Dimopoulos and Antonis C. Kakas. Learning non-monotonic
logic programs: Learning exceptions. In Machine Learning: ECML-95, 8th European Conference on
Machine Learning, Heraclion, Crete, Greece, April 25-27, 1995, Proceedings, pages 122–137, 1995.
β€’ [Galarraga et al., 2015] Luis Galarraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek.
Fast Rule Mining in Ontological Knowledge Bases with AMIE+. In VLDB Journal, 2015.
β€’ [Law et al., 2015] Mark Law, Alessandra Russo, and Krysia Broda. The ILASP system for learning
answer set programs, 2015.
β€’ [Leone et al., 2006] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob,
Simona Perri, and Francesco Scarcello. 2006. The DLV system for knowledge representation and
reasoning. ACM Trans. Comput. Logic 7, 3 (July 2006), 499-562.
β€’ [Suzuki, 2006] Einoshin Suzuki. Data mining methods for discovering interesting exceptions from
an unsupervised table. J. UCS, 12(6):627–653, 2006.
β€’ [Tran et al., 2016] Hai Dang Tran, Daria Stepanova, Mohamed H. Gad-Elrab, Francesca A. Lisi,
Gerhard Weikum. Towards Nonmonotonic Relational Learning from Knowledge Graphs. ILP2016,
London, UK, to appear.
β€’ [Katzouris et al., 2015] Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. Incremental
learning of event definitions with inductive logic programming. Machine Learning, 100(2-3):555–
585, 2015.
24
Related Work
β€’ Learning nonmonotonic programs
β€’ E.g., [Dimopoulos and Kakas, 1995], ILASP [Law et al., 2015],
ILED [Katzouris et al., 2015], etc.
β€’ Outlier detection in logic programs
β€’ E.g., [Angiulli and Fassetti, 2014], etc.
β€’ Mining exception rules
β€’ E.g., [Suzuki, 2006], etc.
25
Problem Statement: Ruleset Quality
β€’ Independent Rule Measure (π‘Ÿπ‘š)
β€’ Support: 𝑠𝑒𝑝𝑝 𝐻 ← 𝐡 = 𝑠𝑒𝑝𝑝(𝐻 βˆͺ 𝐡)
β€’ Coverage: cπ‘œπ‘£ 𝐻 ← 𝐡 = 𝑠𝑒𝑝𝑝(𝐡)
β€’ Confidence: cπ‘œπ‘›π‘“ 𝐻 ← 𝐡 =
𝑠𝑒𝑝𝑝(𝐻βˆͺ𝐡)
𝑠𝑒𝑝𝑝(𝐡)
β€’ Lift: 𝑙𝑖𝑓𝑑 𝐻 ← 𝐡 =
π‘π‘œπ‘›π‘“(𝐻←𝐡)
𝑠𝑒𝑝𝑝(𝐻)
β€’ …
β€’ Average Ruleset Quality
26
π‘ž π‘Ÿπ‘š 𝑅 𝑁𝑀, 𝐺 =
π‘Ÿ βˆˆπ‘… 𝑁𝑀
π‘Ÿπ‘š(π‘Ÿ, 𝐺)
𝑅 𝑁𝑀
Problem Statement: Conflicting Predictions
β€’ Measuring conflicts (auxiliary rules)
27
π‘Ÿ2: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘›π‘œπ‘‘ π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋)
π‘Ÿ2
π‘Žπ‘’π‘₯
: π‘›π‘œπ‘‘_π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋)
π‘ž π‘π‘œπ‘›π‘“π‘™π‘–π‘π‘‘ 𝑅 𝑁𝑀, 𝐺 =
|{(𝑝 π‘Ž , π‘›π‘œπ‘‘_𝑝 π‘Ž ), … }|
{π‘›π‘œπ‘‘_𝑝 π‘Ž , … }
Propositionalization
β€’ Unary predicates
28
Binary Predicates
β€’ hasType(enstein, scientist)
β€’ isMarriedTo(elsa, einstein)
β€’ bornIn(einstein, um)
Unary
β€’ isAScientist(einstein)
β€’ isMarriedToEinstein(elsa)
β€’ bornInUlm(einstein)
Abstraction
β€’ isAScientist(einstein)
β€’ isMarriedToScientist(elsa)
β€’ bornInGermany(einstein)
Experiments
β€’ Input
β€’ Experiment statistics
29
YAGO3 IMDB
Input Facts 10M 2M
Horn Rules 10K 25K
Revised Rules 6K 22K
General-purpose KG Domain-specific KG (Movies)
Experiments
β€’ Predictions assessment
β€’ Run DLV on YAGO and 𝑅 𝐻 then 𝑅 𝑁𝑀 seperately
β€’ Sample facts such that fact 𝑓 ∈ π‘Œπ΄πΊπ‘‚ π»π‘Œπ΄πΊπ‘‚ 𝑁𝑀
β€’ 73% of the sampled facts were found to be erroneous
30
checked
predictions
Ranking Rule’s Revisions
β€’ Partial materialization ranker
β€’ Augment the original 𝐾𝐺 with predictions of other rules
β€’ Rank revisions on Avg. confidence of the π‘Ÿ and π‘Ÿ π‘Žπ‘’π‘₯
31
π‘ π‘π‘œπ‘Ÿπ‘’ π‘Ÿπ‘’, πΎπΊβˆ— =
π‘π‘œπ‘›π‘“ π‘Ÿπ‘’, πΎπΊβˆ— + π‘π‘œπ‘›π‘“(π‘Ÿπ‘’
π‘Žπ‘’π‘₯, πΎπΊβˆ—)
2
where π‘Ÿπ‘’ is the rule π‘Ÿ with exception 𝑒 & πΎπΊβˆ—
is the augmented 𝐾𝐺.

More Related Content

Similar to Exception-enrcihed Rule Learning from Knowledge Graphs

Ph d sem_1@iitm
Ph d sem_1@iitmPh d sem_1@iitm
Ph d sem_1@iitm
Vinu Ev
Β 
04-Data-Analysis-Overview.pptx
04-Data-Analysis-Overview.pptx04-Data-Analysis-Overview.pptx
04-Data-Analysis-Overview.pptx
Shree Shree
Β 
Scheduling advertisements on a web page to maximize revenue
Scheduling advertisements on a web page to maximize revenueScheduling advertisements on a web page to maximize revenue
Scheduling advertisements on a web page to maximize revenue
Shu-Jeng Hsieh
Β 
NPS_TDA_forPDF_JPrendki
NPS_TDA_forPDF_JPrendkiNPS_TDA_forPDF_JPrendki
NPS_TDA_forPDF_JPrendki
Jennifer Prendki
Β 

Similar to Exception-enrcihed Rule Learning from Knowledge Graphs (20)

Mini datathon
Mini datathonMini datathon
Mini datathon
Β 
DeepLearning
DeepLearningDeepLearning
DeepLearning
Β 
Ph d sem_1@iitm
Ph d sem_1@iitmPh d sem_1@iitm
Ph d sem_1@iitm
Β 
Argumentation in Artificial Intelligence: From Theory to Practice (Practice)
Argumentation in Artificial Intelligence: From Theory to Practice (Practice)Argumentation in Artificial Intelligence: From Theory to Practice (Practice)
Argumentation in Artificial Intelligence: From Theory to Practice (Practice)
Β 
Investigations on Local Search based Hybrid Metaheuristics
Investigations on Local Search based Hybrid MetaheuristicsInvestigations on Local Search based Hybrid Metaheuristics
Investigations on Local Search based Hybrid Metaheuristics
Β 
04-Data-Analysis-Overview.pptx
04-Data-Analysis-Overview.pptx04-Data-Analysis-Overview.pptx
04-Data-Analysis-Overview.pptx
Β 
Big data
Big dataBig data
Big data
Β 
Big data
Big dataBig data
Big data
Β 
Big data
Big dataBig data
Big data
Β 
Hadoop PDF
Hadoop PDFHadoop PDF
Hadoop PDF
Β 
Scheduling advertisements on a web page to maximize revenue
Scheduling advertisements on a web page to maximize revenueScheduling advertisements on a web page to maximize revenue
Scheduling advertisements on a web page to maximize revenue
Β 
Performance OR Capacity #CMGimPACt2016
Performance OR Capacity #CMGimPACt2016 Performance OR Capacity #CMGimPACt2016
Performance OR Capacity #CMGimPACt2016
Β 
Unveiling the properties of structured grammatical evolution
Unveiling the properties of structured grammatical evolutionUnveiling the properties of structured grammatical evolution
Unveiling the properties of structured grammatical evolution
Β 
Monte Carlo Tree Search for the Super Mario Bros
Monte Carlo Tree Search for the Super Mario BrosMonte Carlo Tree Search for the Super Mario Bros
Monte Carlo Tree Search for the Super Mario Bros
Β 
Skillwise Big data
Skillwise Big dataSkillwise Big data
Skillwise Big data
Β 
The Power of Probabilistic Thinking (keynote talk at ASE 2016)
The Power of Probabilistic Thinking (keynote talk at ASE 2016)The Power of Probabilistic Thinking (keynote talk at ASE 2016)
The Power of Probabilistic Thinking (keynote talk at ASE 2016)
Β 
NPS_TDA_forPDF_JPrendki
NPS_TDA_forPDF_JPrendkiNPS_TDA_forPDF_JPrendki
NPS_TDA_forPDF_JPrendki
Β 
Self-supervised Learning Lecture Note
Self-supervised Learning Lecture NoteSelf-supervised Learning Lecture Note
Self-supervised Learning Lecture Note
Β 
Pontificating quantification
Pontificating quantificationPontificating quantification
Pontificating quantification
Β 
Stacked Ensembles in H2O
Stacked Ensembles in H2OStacked Ensembles in H2O
Stacked Ensembles in H2O
Β 

Recently uploaded

Team Transformation Tactics for Holistic Testing and Quality (NewCrafts Paris...
Team Transformation Tactics for Holistic Testing and Quality (NewCrafts Paris...Team Transformation Tactics for Holistic Testing and Quality (NewCrafts Paris...
Team Transformation Tactics for Holistic Testing and Quality (NewCrafts Paris...
Lisi Hocke
Β 

Recently uploaded (20)

Abortion Clinic In Springs ](+27832195400*)[ πŸ₯ Safe Abortion Pills in Springs...
Abortion Clinic In Springs ](+27832195400*)[ πŸ₯ Safe Abortion Pills in Springs...Abortion Clinic In Springs ](+27832195400*)[ πŸ₯ Safe Abortion Pills in Springs...
Abortion Clinic In Springs ](+27832195400*)[ πŸ₯ Safe Abortion Pills in Springs...
Β 
Abortion Pill Prices Mthatha (@](+27832195400*)[ πŸ₯ Women's Abortion Clinic In...
Abortion Pill Prices Mthatha (@](+27832195400*)[ πŸ₯ Women's Abortion Clinic In...Abortion Pill Prices Mthatha (@](+27832195400*)[ πŸ₯ Women's Abortion Clinic In...
Abortion Pill Prices Mthatha (@](+27832195400*)[ πŸ₯ Women's Abortion Clinic In...
Β 
Abortion Clinic In Pretoria ](+27832195400*)[ πŸ₯ Safe Abortion Pills in Pretor...
Abortion Clinic In Pretoria ](+27832195400*)[ πŸ₯ Safe Abortion Pills in Pretor...Abortion Clinic In Pretoria ](+27832195400*)[ πŸ₯ Safe Abortion Pills in Pretor...
Abortion Clinic In Pretoria ](+27832195400*)[ πŸ₯ Safe Abortion Pills in Pretor...
Β 
Anypoint Code Builder - Munich MuleSoft Meetup - 16th May 2024
Anypoint Code Builder - Munich MuleSoft Meetup - 16th May 2024Anypoint Code Builder - Munich MuleSoft Meetup - 16th May 2024
Anypoint Code Builder - Munich MuleSoft Meetup - 16th May 2024
Β 
From Theory to Practice: Utilizing SpiraPlan's REST API
From Theory to Practice: Utilizing SpiraPlan's REST APIFrom Theory to Practice: Utilizing SpiraPlan's REST API
From Theory to Practice: Utilizing SpiraPlan's REST API
Β 
Modern binary build systems - PyCon 2024
Modern binary build systems - PyCon 2024Modern binary build systems - PyCon 2024
Modern binary build systems - PyCon 2024
Β 
The mythical technical debt. (Brooke, please, forgive me)
The mythical technical debt. (Brooke, please, forgive me)The mythical technical debt. (Brooke, please, forgive me)
The mythical technical debt. (Brooke, please, forgive me)
Β 
GraphSummit Milan - Visione e roadmap del prodotto Neo4j
GraphSummit Milan - Visione e roadmap del prodotto Neo4jGraphSummit Milan - Visione e roadmap del prodotto Neo4j
GraphSummit Milan - Visione e roadmap del prodotto Neo4j
Β 
CERVED e Neo4j su una nuvola, migrazione ed evoluzione di un grafo mission cr...
CERVED e Neo4j su una nuvola, migrazione ed evoluzione di un grafo mission cr...CERVED e Neo4j su una nuvola, migrazione ed evoluzione di un grafo mission cr...
CERVED e Neo4j su una nuvola, migrazione ed evoluzione di un grafo mission cr...
Β 
Incident handling is a clearly defined set of procedures to manage and respon...
Incident handling is a clearly defined set of procedures to manage and respon...Incident handling is a clearly defined set of procedures to manage and respon...
Incident handling is a clearly defined set of procedures to manage and respon...
Β 
BusinessGPT - Security and Governance for Generative AI
BusinessGPT  - Security and Governance for Generative AIBusinessGPT  - Security and Governance for Generative AI
BusinessGPT - Security and Governance for Generative AI
Β 
Workshop - Architecting Innovative Graph Applications- GraphSummit Milan
Workshop -  Architecting Innovative Graph Applications- GraphSummit MilanWorkshop -  Architecting Innovative Graph Applications- GraphSummit Milan
Workshop - Architecting Innovative Graph Applications- GraphSummit Milan
Β 
GraphSummit Milan - Neo4j: The Art of the Possible with Graph
GraphSummit Milan - Neo4j: The Art of the Possible with GraphGraphSummit Milan - Neo4j: The Art of the Possible with Graph
GraphSummit Milan - Neo4j: The Art of the Possible with Graph
Β 
Team Transformation Tactics for Holistic Testing and Quality (NewCrafts Paris...
Team Transformation Tactics for Holistic Testing and Quality (NewCrafts Paris...Team Transformation Tactics for Holistic Testing and Quality (NewCrafts Paris...
Team Transformation Tactics for Holistic Testing and Quality (NewCrafts Paris...
Β 
Spring into AI presented by Dan Vega 5/14
Spring into AI presented by Dan Vega 5/14Spring into AI presented by Dan Vega 5/14
Spring into AI presented by Dan Vega 5/14
Β 
Weeding your micro service landscape.pdf
Weeding your micro service landscape.pdfWeeding your micro service landscape.pdf
Weeding your micro service landscape.pdf
Β 
COMPUTER AND ITS COMPONENTS PPT.by naitik sharma Class 9th A mittal internati...
COMPUTER AND ITS COMPONENTS PPT.by naitik sharma Class 9th A mittal internati...COMPUTER AND ITS COMPONENTS PPT.by naitik sharma Class 9th A mittal internati...
COMPUTER AND ITS COMPONENTS PPT.by naitik sharma Class 9th A mittal internati...
Β 
Abortion Pill Prices Germiston ](+27832195400*)[ πŸ₯ Women's Abortion Clinic in...
Abortion Pill Prices Germiston ](+27832195400*)[ πŸ₯ Women's Abortion Clinic in...Abortion Pill Prices Germiston ](+27832195400*)[ πŸ₯ Women's Abortion Clinic in...
Abortion Pill Prices Germiston ](+27832195400*)[ πŸ₯ Women's Abortion Clinic in...
Β 
Abortion Clinic In Johannesburg ](+27832195400*)[ πŸ₯ Safe Abortion Pills in Jo...
Abortion Clinic In Johannesburg ](+27832195400*)[ πŸ₯ Safe Abortion Pills in Jo...Abortion Clinic In Johannesburg ](+27832195400*)[ πŸ₯ Safe Abortion Pills in Jo...
Abortion Clinic In Johannesburg ](+27832195400*)[ πŸ₯ Safe Abortion Pills in Jo...
Β 
Transformer Neural Network Use Cases with Links
Transformer Neural Network Use Cases with LinksTransformer Neural Network Use Cases with Links
Transformer Neural Network Use Cases with Links
Β 

Exception-enrcihed Rule Learning from Knowledge Graphs

  • 1. Exception-enriched Rule Learning from Knowledge Graphs Mohamed Gad-Elrab1, Daria Stepanova1, Jacopo Urbani 2, Gerhard Weikum1 1Max-Planck-Institut fΓΌr Informatik, Saarland Informatics Campus, Germany 2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands 21st October 2016
  • 2. Knowledge Graphs (KGs) 2 β€’ Huge collection of < 𝑠𝑒𝑏𝑗𝑒𝑐𝑑, π‘π‘Ÿπ‘’π‘‘π‘–π‘π‘Žπ‘‘π‘’, π‘œπ‘π‘—π‘’π‘π‘‘ > triples β€’ Positive facts under Open World Assumption (OWA) β€’ Possibly incomplete and/or inaccurate
  • 3. Mining Rules from KGs 3 Amsterdam isMarriedToJohn Kate Chicago isMarriedToBrad Anna Berlin hasBrother isMarriedToDave ClaraisMarriedToBob Alice Researcher Berlin Football
  • 4. Mining Rules from KGs 4 π‘Ÿ: 𝑙𝑖𝑣𝑒𝑠𝐼𝑛 𝑋, 𝑍 ← π‘–π‘ π‘€π‘Žπ‘Ÿπ‘Ÿπ‘–π‘’π‘‘π‘‡π‘œ 𝑋, π‘Œ , 𝑙𝑖𝑣𝑒𝑠𝐼𝑛(π‘Œ, 𝑍) Amsterdam isMarriedToJohn Kate Chicago isMarriedToBrad Anna Berlin hasBrother isMarriedToDave ClaraisMarriedToBob Alice Researcher Berlin Football [GalΓ‘rraga et al., 2015]
  • 5. Mining Rules from KGs 5 π‘Ÿ: 𝑙𝑖𝑣𝑒𝑠𝐼𝑛 𝑋, 𝑍 ← π‘–π‘ π‘€π‘Žπ‘Ÿπ‘Ÿπ‘–π‘’π‘‘π‘‡π‘œ 𝑋, π‘Œ , 𝑙𝑖𝑣𝑒𝑠𝐼𝑛(π‘Œ, 𝑍) Amsterdam isMarriedToJohn Kate Chicago isMarriedToBrad Anna Berlin hasBrother isMarriedToDave ClaraisMarriedToBob Alice Researcher Berlin Football 1 2
  • 6. Our Goal 6 π‘Ÿ: 𝑙𝑖𝑣𝑒𝑠𝐼𝑛 𝑋, 𝑍 ← π‘–π‘ π‘€π‘Žπ‘Ÿπ‘Ÿπ‘–π‘’π‘‘π‘‡π‘œ 𝑋, π‘Œ , 𝑙𝑖𝑣𝑒𝑠𝐼𝑛 π‘Œ, 𝑍 , π‘›π‘œπ‘‘ 𝑖𝑠𝐴(𝑋, π‘Ÿπ‘’π‘ ) Amsterdam isMarriedToJohn Kate Chicago isMarriedToBrad Anna Berlin hasBrother isMarriedToDave ClaraisMarriedToBob Alice Researcher Berlin Football 1 2
  • 7. Problem Statement β€’ Quality-based theory revision problem β€’ Given β€’ Knowledge graph 𝐾𝐺 β€’ Set of Horn rules 𝑅 𝐻 β€’ Find the nonmonotonic revision 𝑅 𝑁𝑀 of 𝑅 𝐻 β€’ Maximize top-k avg. confidence β€’ Minimize conflicting prediction 7
  • 8. Problem Statement β€’ Quality-based theory revision problem β€’ Given β€’ Knowledge graph 𝐾𝐺 β€’ Set of Horn rules 𝑅 𝐻 β€’ Find the nonmonotonic revision 𝑅 𝑁𝑀 of 𝑅 𝐻 β€’ Maximize top-k avg. confidence β€’ Minimize conflicting prediction 8 Unknown
  • 9. Problem Statement: Conflicting Predictions β€’ Defining conflicts β€’ Measuring conflicts (auxiliary rules) 9 π‘Ÿ2: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘›π‘œπ‘‘ π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋) π‘Ÿ2 π‘Žπ‘’π‘₯ : π‘›π‘œπ‘‘_π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋) 𝑅 = π‘Ÿ1: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← π‘–π‘ πΊπ‘Žπ‘šπ‘’ 𝑋 , π‘–π‘ π΅π‘Žπ‘ π‘’π‘‘π‘‚π‘›π½π‘ƒπ΄π‘›π‘–π‘šπ‘’ (𝑋) π‘Ÿ2: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘›π‘œπ‘‘ π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋) {π‘–π‘ πΊπ‘Žπ‘šπ‘’ π‘Ž , π‘–π‘ π΅π‘Žπ‘ π‘’π‘‘π‘‚π‘›π½π‘ƒπ΄π‘›π‘–π‘šπ‘’ π‘Ž , β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ π‘Ž , π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄ π‘Ž } Output: {(π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ π‘Ž , π‘Ÿ2: π‘›π‘œπ‘‘ π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ π‘Ž )} π‘Ž =
  • 10. Problem Statement: Conflicting Predictions β€’ Defining conflicts β€’ Measuring conflicts (auxiliary rules) 10 π‘Ÿ2: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘›π‘œπ‘‘ π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋) π‘Ÿ2 π‘Žπ‘’π‘₯ : π‘›π‘œπ‘‘_π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋) 𝑅 = π‘Ÿ1: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← π‘–π‘ πΊπ‘Žπ‘šπ‘’ 𝑋 , π‘–π‘ π΅π‘Žπ‘ π‘’π‘‘π‘‚π‘›π½π‘ƒπ΄π‘›π‘–π‘šπ‘’ (𝑋) π‘Ÿ2: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘›π‘œπ‘‘ π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋) {π‘–π‘ πΊπ‘Žπ‘šπ‘’ π‘Ž , π‘–π‘ π΅π‘Žπ‘ π‘’π‘‘π‘‚π‘›π½π‘ƒπ΄π‘›π‘–π‘šπ‘’ π‘Ž , β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ π‘Ž , π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄ π‘Ž } Output: {(π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ π‘Ž , π‘Ÿ2: π‘›π‘œπ‘‘ π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ π‘Ž )} π‘Ž =
  • 11. Problem Statement: Conflicting Predictions β€’ Defining conflicts β€’ Measuring conflicts (auxiliary rules) 11 π‘Ÿ2: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘›π‘œπ‘‘ π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋) π‘Ÿ2 π‘Žπ‘’π‘₯ : π‘›π‘œπ‘‘_π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋) 𝑅 = π‘Ÿ1: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← π‘–π‘ πΊπ‘Žπ‘šπ‘’ 𝑋 , π‘–π‘ π΅π‘Žπ‘ π‘’π‘‘π‘‚π‘›π½π‘ƒπ΄π‘›π‘–π‘šπ‘’ (𝑋) π‘Ÿ2: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘›π‘œπ‘‘ π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋) {π‘–π‘ πΊπ‘Žπ‘šπ‘’ π‘Ž , π‘–π‘ π΅π‘Žπ‘ π‘’π‘‘π‘‚π‘›π½π‘ƒπ΄π‘›π‘–π‘šπ‘’ π‘Ž , β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ π‘Ž , π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄ π‘Ž } (π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ π‘Ž , π‘›π‘œπ‘‘_π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ π‘Ž ) π‘Ž =
  • 12. Approach Overview Step 1 β€’ Mining Horn Rules Step 2 β€’ Extracting Exception Witness Set (EWS) Step 3 β€’ Constructing Candidate Revisions Step 4 β€’ Selecting the Best Revision 12
  • 13. bornInUSA livesInUSA stateless emigrant singer poet p1 βœ“ βœ“ p2 βœ“ βœ“ p3 βœ“ βœ“ p4 βœ“ βœ“ βœ“ p5 βœ“ βœ“ βœ“ p6 βœ“ βœ“ p7 βœ“ βœ“ p8 βœ“ βœ“ βœ“ βœ“ p9 βœ“ βœ“ βœ“ p10 βœ“ βœ“ βœ“ βœ“ p11 βœ“ βœ“ βœ“ Step 1: Mining Horn Rules 13 π’“π’Š: π’π’Šπ’—π’†π’”π‘°π’π‘Όπ‘Ίπ‘¨ 𝑿 ← 𝒃𝒐𝒓𝒏𝑰𝒏𝑼𝑺𝑨(𝑿) NormalAb-normal
  • 14. bornInUSA livesInUSA stateless emigrant singer poet p1 βœ“ βœ“ p2 βœ“ βœ“ p3 βœ“ βœ“ p4 βœ“ βœ“ βœ“ p5 βœ“ βœ“ βœ“ p6 βœ“ βœ“ p7 βœ“ βœ“ p8 βœ“ βœ“ βœ“ βœ“ p9 βœ“ βœ“ βœ“ p10 βœ“ βœ“ βœ“ βœ“ p11 βœ“ βœ“ βœ“ π’“π’Š: π’π’Šπ’—π’†π’”π‘°π’π‘Όπ‘Ίπ‘¨ 𝑿 ← 𝒃𝒐𝒓𝒏𝑰𝒏𝑼𝑺𝑨(𝑿) NormalAb-normalStep 2: Extracting Exception Witness Set (EWS) 14 πΈπ‘Šπ‘†π‘– = {π‘’π‘šπ‘–π‘”π‘Ÿπ‘Žπ‘›π‘‘ 𝑋 , π‘π‘œπ‘’π‘‘ 𝑋 }
  • 15. Step 3: Constructing Candidate Revisions β€’ Horn rules β€’ Rule revisions 15 π‘Ÿ1: π‘™π‘–π‘£π‘’π‘ πΌπ‘›π‘ˆπ‘†π΄ 𝑋 ← π‘π‘œπ‘Ÿπ‘›πΌπ‘›π‘ˆπ‘†π΄ 𝑋 , π‘›π‘œπ‘‘ π‘π‘œπ‘’π‘‘ 𝑋 π‘Ÿ1: π‘™π‘–π‘£π‘’π‘ πΌπ‘›π‘ˆπ‘†π΄ 𝑋 ← π‘π‘œπ‘Ÿπ‘›πΌπ‘›π‘ˆπ‘†π΄ 𝑋 , π‘›π‘œπ‘‘ π‘’π‘šπ‘–π‘”π‘Ÿπ‘Žπ‘›π‘‘ 𝑋 … 𝑅 = π‘Ÿ1: π‘™π‘–π‘£π‘’π‘ πΌπ‘›π‘ˆπ‘†π΄ 𝑋 ← π‘π‘œπ‘Ÿπ‘›πΌπ‘›π‘ˆπ‘†π΄(𝑋) π‘Ÿ2: π‘’π‘šπ‘–π‘”π‘Ÿπ‘Žπ‘›π‘‘ 𝑋 ← π‘ π‘‘π‘Žπ‘‘π‘’π‘™π‘’π‘ π‘ (𝑋) πΈπ‘Šπ‘† = {π‘π‘œπ‘’π‘‘ 𝑋 , π‘’π‘šπ‘–π‘”π‘Ÿπ‘Žπ‘›π‘‘ 𝑋 , … } πΈπ‘Šπ‘† = {𝑒1 𝑋 , 𝑒2(𝑋), … }
  • 16. Step 4: Selecting the Best Revision Finding globally best revision is expensive! β€’ NaΓ―ve ranker β€’ For each rule, pick the revision that maximizes confidence β€’ Works in isolation from other rules β€’ Partial materialization ranker β€’ 𝐾𝐺s are incomplete! β€’ Augment the original 𝐾𝐺 with predictions of other rules β€’ Rank revisions on avg. confidence of the rule and its auxiliary. 16
  • 17. β€’ Partial materialization Ranking Rule’s Revisions 17 bornInUSA livesInUSA stateless emigrant singer poet p1 βœ“ βœ“ p2 βœ“ βœ“ p3 βœ“ βœ“ p4 βœ“ βœ“ βœ“ p5 βœ“ βœ“ βœ“ p6 βœ“ βœ“ p7 βœ“ βœ“ p8 βœ“ βœ“ βœ“ βœ“ p9 βœ“ βœ“ βœ“ p10 βœ“ βœ“ βœ“ βœ“ p11 βœ“ βœ“ βœ“ π’“π’Š: π’π’Šπ’—π’†π’”π‘°π’π‘Όπ‘Ίπ‘¨ 𝑿 ← 𝒃𝒐𝒓𝒏𝑰𝒏𝑼𝑺𝑨(𝑿) NormalAb-normal
  • 18. β€’ Partial materialization bornInUSA livesInUSA stateless emigrant singer poet p1 βœ“ βœ“ p2 βœ“ βœ“ p3 βœ“ βœ“ p4 βœ“ βœ“ βœ“ βœ“ p5 βœ“ βœ“ βœ“ βœ“ p6 βœ“ βœ“ βœ“ p7 βœ“ βœ“ βœ“ p8 βœ“ βœ“ βœ“ βœ“ p9 βœ“ βœ“ βœ“ βœ“ βœ“ p10 βœ“ βœ“ βœ“ βœ“ p11 βœ“ βœ“ βœ“ βœ“ π’“π’Š: π’π’Šπ’—π’†π’”π‘°π’π‘Όπ‘Ίπ‘¨ 𝑿 ← 𝒃𝒐𝒓𝒏𝑰𝒏𝑼𝑺𝑨(𝑿) NormalAb-normalRanking Rule’s Revisions 18
  • 19. Ranking Rule’s Revisions β€’ Ordered partial materialization ranker β€’ Only rules with higher quality β€’ Ordered weighted partial materialization ranker β€’ KG fact weight = 1 β€’ Predicted facts inherit their weights from the rules 19
  • 20. Experiments β€’ Ruleset quality 20 *Higher is better 0.60 0.65 0.70 0.75 0.80 20 40 60 80 100 Avg.Confidence Top-K (%) Rules YAGO3 Horn Naive Ordered & Weighted PM 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 20 40 60 80 100Avg.Confidence Top-K (%) Rules IMDB Horn Naive Ordered & Weighted PM Facts 10M 2M Rules 10K 25K
  • 21. Experiments β€’ Predictions consistency 21*Lower is better 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 200 400 600 800 1000 ConflictRatio Top-K Rules YAGO3 Naive Ordered & Weighted PM 0 0.1 0.2 0.3 0.4 0.5 200 400 600 800 1000ConflictRatio Top-K Rules IMDB Naive Ordered & Weighted PM
  • 22. Experiments β€’ Examples 22 π‘–π‘ π‘€π‘œπ‘’π‘›π‘‘π‘Žπ‘–π‘›(𝑋) ← π‘–π‘ πΌπ‘›π΄π‘’π‘ π‘‘π‘Ÿπ‘–π‘Ž(𝑋), π‘–π‘ πΌπ‘›πΌπ‘‘π‘Žπ‘™π‘¦ 𝑋 , π‘›π‘œπ‘‘ π‘–π‘ π‘…π‘–π‘£π‘’π‘Ÿ (𝑋) π‘–π‘ π‘ƒπ‘œπ‘™π‘–π‘‘π‘‚π‘“π‘ˆπ‘†π΄ 𝑋 ← π‘π‘œπ‘Ÿπ‘›πΌπ‘›π‘ˆπ‘†π΄ 𝑋 , π‘–π‘ πΊπ‘œπ‘£ 𝑋 , π‘›π‘œπ‘‘ π‘–π‘ π‘ƒπ‘œπ‘™π‘–π‘‘π‘ƒπ‘’π‘’π‘Ÿπ‘‘π‘œπ‘…π‘–π‘π‘œ(𝑋) π‘π‘œπ‘Ÿπ‘›πΌπ‘›π‘ˆπ‘†π΄ 𝑋 ← π‘Žπ‘π‘‘π‘’π‘‘πΌπ‘›π‘€π‘œπ‘£π‘–π‘’ 𝑋 , π‘π‘Ÿπ‘’π‘Žπ‘‘π‘’π‘‘π‘€π‘œπ‘£π‘–π‘’ 𝑋 , π‘›π‘œπ‘‘ π‘€π‘œπ‘›πΉπ‘–π‘™π‘šπ‘“π‘Žπ‘Ÿπ‘’(𝑋)
  • 23. Summary β€’ Conclusion β€’ Quality-based theory revision under OWA β€’ Partial materialization for ranking revisions β€’ Comparison of ranking methods on real life KGs β€’ Outlook β€’ Extending to higher arity predicates β€’ Binary predicates [Tran et al., to appear ILP2016] β€’ Evidence from text corpora β€’ Exploiting partial completeness 23
  • 24. References β€’ [Angiulli and Fassetti, 2014] Fabrizio Angiulli and Fabio Fassetti. Exploiting domain knowledge to detect outliers. Data Min. Knowl. Discov., 28(2):519–568, 2014. β€’ [Dimopoulos and Kakas, 1995] Yannis Dimopoulos and Antonis C. Kakas. Learning non-monotonic logic programs: Learning exceptions. In Machine Learning: ECML-95, 8th European Conference on Machine Learning, Heraclion, Crete, Greece, April 25-27, 1995, Proceedings, pages 122–137, 1995. β€’ [Galarraga et al., 2015] Luis Galarraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek. Fast Rule Mining in Ontological Knowledge Bases with AMIE+. In VLDB Journal, 2015. β€’ [Law et al., 2015] Mark Law, Alessandra Russo, and Krysia Broda. The ILASP system for learning answer set programs, 2015. β€’ [Leone et al., 2006] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and Francesco Scarcello. 2006. The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic 7, 3 (July 2006), 499-562. β€’ [Suzuki, 2006] Einoshin Suzuki. Data mining methods for discovering interesting exceptions from an unsupervised table. J. UCS, 12(6):627–653, 2006. β€’ [Tran et al., 2016] Hai Dang Tran, Daria Stepanova, Mohamed H. Gad-Elrab, Francesca A. Lisi, Gerhard Weikum. Towards Nonmonotonic Relational Learning from Knowledge Graphs. ILP2016, London, UK, to appear. β€’ [Katzouris et al., 2015] Nikos Katzouris, Alexander Artikis, and Georgios Paliouras. Incremental learning of event definitions with inductive logic programming. Machine Learning, 100(2-3):555– 585, 2015. 24
  • 25. Related Work β€’ Learning nonmonotonic programs β€’ E.g., [Dimopoulos and Kakas, 1995], ILASP [Law et al., 2015], ILED [Katzouris et al., 2015], etc. β€’ Outlier detection in logic programs β€’ E.g., [Angiulli and Fassetti, 2014], etc. β€’ Mining exception rules β€’ E.g., [Suzuki, 2006], etc. 25
  • 26. Problem Statement: Ruleset Quality β€’ Independent Rule Measure (π‘Ÿπ‘š) β€’ Support: 𝑠𝑒𝑝𝑝 𝐻 ← 𝐡 = 𝑠𝑒𝑝𝑝(𝐻 βˆͺ 𝐡) β€’ Coverage: cπ‘œπ‘£ 𝐻 ← 𝐡 = 𝑠𝑒𝑝𝑝(𝐡) β€’ Confidence: cπ‘œπ‘›π‘“ 𝐻 ← 𝐡 = 𝑠𝑒𝑝𝑝(𝐻βˆͺ𝐡) 𝑠𝑒𝑝𝑝(𝐡) β€’ Lift: 𝑙𝑖𝑓𝑑 𝐻 ← 𝐡 = π‘π‘œπ‘›π‘“(𝐻←𝐡) 𝑠𝑒𝑝𝑝(𝐻) β€’ … β€’ Average Ruleset Quality 26 π‘ž π‘Ÿπ‘š 𝑅 𝑁𝑀, 𝐺 = π‘Ÿ βˆˆπ‘… 𝑁𝑀 π‘Ÿπ‘š(π‘Ÿ, 𝐺) 𝑅 𝑁𝑀
  • 27. Problem Statement: Conflicting Predictions β€’ Measuring conflicts (auxiliary rules) 27 π‘Ÿ2: π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘›π‘œπ‘‘ π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋) π‘Ÿ2 π‘Žπ‘’π‘₯ : π‘›π‘œπ‘‘_π‘Ÿπ‘’π‘™π‘’π‘Žπ‘ π‘’π‘‘πΌπ‘›π½π‘ƒ 𝑋 ← β„Žπ‘Žπ‘ π½π‘ƒπΆπ‘œπ‘šπ‘π‘œπ‘ π‘’π‘Ÿ 𝑋 , π‘π‘’π‘π‘™π‘–π‘ β„Žπ‘’π‘Ÿπ‘ˆπ‘†π΄(𝑋) π‘ž π‘π‘œπ‘›π‘“π‘™π‘–π‘π‘‘ 𝑅 𝑁𝑀, 𝐺 = |{(𝑝 π‘Ž , π‘›π‘œπ‘‘_𝑝 π‘Ž ), … }| {π‘›π‘œπ‘‘_𝑝 π‘Ž , … }
  • 28. Propositionalization β€’ Unary predicates 28 Binary Predicates β€’ hasType(enstein, scientist) β€’ isMarriedTo(elsa, einstein) β€’ bornIn(einstein, um) Unary β€’ isAScientist(einstein) β€’ isMarriedToEinstein(elsa) β€’ bornInUlm(einstein) Abstraction β€’ isAScientist(einstein) β€’ isMarriedToScientist(elsa) β€’ bornInGermany(einstein)
  • 29. Experiments β€’ Input β€’ Experiment statistics 29 YAGO3 IMDB Input Facts 10M 2M Horn Rules 10K 25K Revised Rules 6K 22K General-purpose KG Domain-specific KG (Movies)
  • 30. Experiments β€’ Predictions assessment β€’ Run DLV on YAGO and 𝑅 𝐻 then 𝑅 𝑁𝑀 seperately β€’ Sample facts such that fact 𝑓 ∈ π‘Œπ΄πΊπ‘‚ π»π‘Œπ΄πΊπ‘‚ 𝑁𝑀 β€’ 73% of the sampled facts were found to be erroneous 30 checked predictions
  • 31. Ranking Rule’s Revisions β€’ Partial materialization ranker β€’ Augment the original 𝐾𝐺 with predictions of other rules β€’ Rank revisions on Avg. confidence of the π‘Ÿ and π‘Ÿ π‘Žπ‘’π‘₯ 31 π‘ π‘π‘œπ‘Ÿπ‘’ π‘Ÿπ‘’, πΎπΊβˆ— = π‘π‘œπ‘›π‘“ π‘Ÿπ‘’, πΎπΊβˆ— + π‘π‘œπ‘›π‘“(π‘Ÿπ‘’ π‘Žπ‘’π‘₯, πΎπΊβˆ—) 2 where π‘Ÿπ‘’ is the rule π‘Ÿ with exception 𝑒 & πΎπΊβˆ— is the augmented 𝐾𝐺.