SlideShare a Scribd company logo
V2008 R2 - 1
Sponsor Peter Zhou
Champion XXXXXX
Leader XXXXXX
Team
Member
XXXX
XXXX
XXXX
XXXX
Front Cover Inlet Deformation Issue Improvement
July, 2009
V2008 R2 - 2
Zhaoqing Power - Chrysler AM I CD
XXX Power
Accessories Co., Ltd.
Production of Aluminum
Casting Front Cover –
Timing Chain Case
Chrysler Mack Engine
Plant
Annual Volume:
200,000 units
V2008 R2 - 3
Big Y Drill Down
Reduce the Overall Process
Defect Rate (25%) for Chrysler Products
Casting
(70%)
Heat Treatment
(20%)
Others
(Deburring & Machining)
(10%)
Poor
Fluidity
15%
Inlet
Deforming
45%
2) Identify / quantify
the inputs
1) Start with business goal
3) Drill down again
Others
(10%)
Inlet
Deforming
(90%)
Porosity
30%
Others
10%
AM I CD
V2008 R2 - 4
CTQ & CTP Chart
CTQ CCR Customer
Issues
VOC
Reduced external
defect rate of Inlet
Deforming
No quality issue of
inlet deforming in
Chrysler plant.
The quality issue of
inlet deforming will
case production line
problem in Chrysler
Engine Plant.
Chrysler is not
satisfied with the
current quality issue
of inlet deforming.
Improvement should
be made to reduce
defect rate.
VOB Business
Issues
CBR CTP
The process internal
scrap rate is too high,
customer is not
happy with our
performance and the
profit is lossing.
Low output rate with
high scrap cost
Substantially reduce the
defect rate of inlet
deforming, ideally “0”
Reduce the defect
rate of inlet
deforming with cost
saved.
Remark
1. Voice of customer and voice of business to be prioritized to those which are related to project objective
2. Use VOB or VOC or both depending on the project objectives
AM I CD
V2008 R2 - 5
Process Flow
Insert sand core
Close mold and hold
pressure (parameter
set)
Take out parts &
appearance Check
Dimension Inspection
by sampling
Degating &
Deburring
Set parts ready in fixture
and Heat treating process
Shot blasting Dimension Inspection
by sampling
Shipping good parts
to machining
Inlet Deforming Related Process
AM I CD
V2008 R2 - 6
Quick Win Analysis
f
i
Process
No.
Quick Win Opportunity
Fast to
Implement
()
Easy to
Implement
()
Cheap to
Implemen
t ()
Within
the
Team’s
Control
()
Easily
Reversible
()
Impleme
nt
(Yes/No)
Adjust the casting parameters No No Yes Yes Yes No
Adjust the heat treatment
settings
No No Yes Yes Yes No
Add heating insert to help
heating around mold inlet
section
Yes Yes Yes Yes Yes Yes
Add injection pin around mold
inlet section for even distribution
of force
Yes Yes Yes Yes Yes Yes
Adjust the chemical composition
of Sr Yes Yes Yes Yes Yes Yes
Remark
QW Opportunity Sources from Process Analysis, Brainstorming, Process walk through…
AM I CD
V2008 R2 - 7
Quick Win Analysis
f
i
 Add heating insert to help heating around mold inlet area.
 Add injection pin around mold inlet area for even distribution of force.
 Adjust the chemical content of Sr to the lower limit of Chrysler specification.
Heating Insert Injection Pin
Defect rate reduced from 12% to 10% by implementing the
above 3 Quick Wins.
AM I CD
V2008 R2 - 8
Inlet Position Output Indicator
Input / Process Indicator Correlation between Input & Output Priority
Insufficient Training 1 1
Insufficient Experience 1 1
Poor Accountability 1 1
Incorrect Tooling Design 1 1
Inlet Cooling too quick 9 9
Injection Pin Location 9 9
Insufficient Oil Pressure 1 1
High Content of Strontium 3 3
Material Impurity 1 1
Hardness not even 1 1
Setting of Melting Aluminum Temperature 9 9
Setting of Pressure 9 9
Part Placement Orientation during HT 9 9
No Standard W.I. 1 1
No Quick Inspection Gage 1 1
Noise 1 1
Insufficient Lighting 1 1
Floor Temperature Change 1 1
Environment
Operator
Machine
Material
Process
Fishbone Diagram
5 high affected inputs and 1 medium affected inputs to Inlet
Position have been identified by Cause & Effect Matrix.
AM I CD
V2008 R2 - 9
Data Collection Plan - 1
Key Indicator Operation Definition
Sl. No. Performance Indicator (Y) Operational definition
Y Inlet Deforming Inlet Position Misalignment Measured by CMM (+/- 1.25 mm)
AM I CD
Performance
measure (Y)
Operationa
l definition
Data source
and
location
Sampl
e
size
Who will
collect the
data
When will
data be
collected
How will
data be
collected
Other data that
should be
collected at the
same time
Inlet
Deforming
Inlet Position
Misalignment
Measured by
CMM (+/- 1.25
mm)
CMM Tester 60 QA/ Zhu Jie 10 pcs
each lot
CMM
V2008 R2 - 10
Data Collection Plan - 2
Remarks:
Other data refers to additional information from stratification perspective.
We will collect the Inlet Position Data under current process setting of identified key
inputs (Melting aluminum temperature, Filling pressure phase I, Filling pressure phase
II, Filling pressure phase III).
The current settings are:
Melting aluminum temperature (T): 695 °C
Filling pressure phase I (P1): 0.14 MPa
Filling pressure phase II (P2): 0.20 MPa
Filling pressure phase III (P3): 0.29 MPa P1 P3
充
型
充
满
升
液
箱
充
满
升
液
管
保压
加压曲线及说明
时间P2
AM I CD
V2008 R2 - 11
MSA Plan
尺寸
连续型
特性
Y1:Inlet Deforming
測試人員
3 persons
測試設備
CMM 三坐标
進行方法 編號1~10給3位進行 判定,循環3次
判定方法 共取得90個資料, 依Gage R&R計算之數值判定
Sampling
Mesurement
Methods
GR&R Plan
AM I CD
V2008 R2 - 12
MSA Data
评价人: 3 零件数: 10
试验次数: 3 1 2 3 4 5 6 7 8 9 10 平均值
评价人1 试验人1 -0.16 -0.41 -0.36 -0.19 -0.32 -0.14 -0.09 -0.26 -0.36 0.45 -0.1845
试验人2 -0.17 -0.41 -0.36 -0.17 -0.32 -0.16 -0.10 -0.26 -0.36 0.46 -0.1849
试验人3 -0.17 -0.41 -0.37 -0.18 -0.32 -0.13 -0.10 -0.28 -0.37 0.45 -0.1868
平均值 -0.16567 -0.40833 -0.36067 -0.18033 -0.319 -0.14367 -0.09533 -0.27033 -0.36333333 0.452666667 -0.1854
极差 0.011 0.004 0.009 0.025 0.007 0.027 0.009 0.019 0.006 0.014 0.0131
评价人2 试验人1 -0.13 -0.41 -0.36 -0.18 -0.29 -0.13 -0.08 -0.26 -0.36 0.43 -0.1767
试验人2 -0.13 -0.40 -0.35 -0.19 -0.30 -0.13 -0.08 -0.26 -0.35 0.43 -0.1759
试验人3 -0.13 -0.40 -0.35 -0.19 -0.32 -0.15 -0.08 -0.26 -0.35 0.46 -0.178
平均值 -0.131 -0.406 -0.35367 -0.18633 -0.30333 -0.13767 -0.082 -0.26033 -0.35033333 0.442 -0.176866667
极差 0.003 0.014 0.01 0.012 0.029 0.025 0.004 0.005 0.015 0.031 0.0148
评价人3 试验人1 -0.13 -0.41 -0.35 -0.17 -0.31 -0.14 -0.09 -0.25 -0.33 0.45 -0.1721
试验人2 -0.13 -0.39 -0.36 -0.17 -0.30 -0.13 -0.10 -0.26 -0.33 0.45 -0.1726
试验人3 -0.13 -0.40 -0.35 -0.16 -0.31 -0.14 -0.06 -0.24 -0.35 0.45 -0.1678
平均值 -0.13067 -0.40067 -0.35 -0.16667 -0.307 -0.13533 -0.08333 -0.248 -0.33666667 0.45 -0.170833333
极差 0.007 0.017 0.009 0.007 0.007 0.004 0.038 0.018 0.014 0.007 0.0128
量具重复性和再现性数据收集表
零件
AM I CD
V2008 R2 - 13
MSA ResultsPercent
Part-to-PartReprodRepeatGage R&R
100
50
0
% Contribution
%?Study?Var
SampleRange
0.04
0.02
0.00
_
R=0.01267
UCL=0.03261
LCL=0
A B C
SampleMean
0.5
0.0
-0.5
__
X=-0.178UCL=-0.165LCL=-0.191
A B C
Part
10987654321
0.5
0.0
-0.5
Operator
CBA
0.5
0.0
-0.5
Part
Average
10987654321
0.5
0.0
-0.5
Operator
A
B
C
Gage name:
Date of study:
Reported by:
Tolerance:
Misc:
Components of Variation
R Chart by Operator
Xbar Chart by Operator
Y by Part
Y by Operator
Operator * Part Interaction
Gage R&R (ANOVA) for Y
1
1
2
3
4
2
3
4
Biggest variance is from Part-to-Part.
Repeatability is acceptable.
Reproducibility is acceptable.
No Interaction between operator and
part.
AM I CD
V2008 R2 - 14
MSA Results
Total Gauge R&R% =
5.16% < 10%
GR&R% is Acceptable.
AM I CD
V2008 R2 - 15
Capability Analysis
Y Y Y Y Y Y
1 -1.16 11 -1.23 21 -1.13 31 -1.24 41 -1.14 51 -1.05
2 -1.22 12 -0.89 22 -1.15 32 -1.17 42 -1.45 52 -0.94
3 -1.19 13 -1.38 23 -1.48 33 -0.95 43 -1.14 53 -1.10
4 -0.82 14 -0.99 24 -1.24 34 -1.17 44 -1.25 54 -1.06
5 -1.16 15 -1.23 25 -1.04 35 -1.19 45 -1.19 55 -0.99
6 -1.20 16 -1.45 26 -1.23 36 -1.07 46 -0.89 56 -1.24
7 -1.25 17 -1.18 27 -1.02 37 -1.23 47 -1.23 57 -1.11
8 -1.18 18 -1.31 28 -1.14 38 -0.97 48 -1.09 58 -1.00
9 -1.35 19 -1.18 29 -1.19 39 -1.00 49 -1.09 59 -0.98
10 -1.25 20 -0.84 30 -1.16 40 -0.92 50 -1.11 60 -0.95
Using the CMM tester to collect the Inlet Position data.
The settings are:
Melting aluminum temperature (T): 695 °C
Filling pressure phase I (P1): 0.14 MPa
Filling pressure phase II (P2): 0.20 MPa
Filling pressure phase III (P3): 0.29 MPa
AM I CD
V2008 R2 - 16
IndividualValue
60544842363024181261
-0.8
-1.2
-1.6
_
X=-1.1358
UCL=-0.7062
LCL=-1.5654
MovingRange
60544842363024181261
0.4
0.2
0.0
__
MR=0.1615
UCL=0.5277
LCL=0
Observation
Values
6055504540
-1.0
-1.2
-1.4
-0.80-0.96-1.12-1.28-1.44
-0.5-1.0-1.5
Within
Overall
Specs
Within
StDev 0.14320
C p 2.91
C pk 0.27
C C pk 2.91
O verall
StDev 0.14565
Pp 2.86
Ppk 0.26
C pm *
Process Capability Sixpack of Inlet Deforming
I Chart
Moving Range Chart
Last 25 Observations
Capability Histogram
Normal Prob Plot
A D: 0.612, P: 0.106
Capability Plot
Capability Analysis
Data Analysis result:
P value is greater than 0.05,
the data are normal distributed.
Cp = 2.91
Cpk = 0.27
AM I CD
V2008 R2 - 17
Capability Analysis
Output
indicator
Average Standard
deviation
Cp Cpk Sigma
Level
Y -1.14 0.14 2.91 0.27 2.3
Current Baseline Performance:
Mean: -1.14 Standard Deviation: s =0.14
Distribution Shape:Shift too much
Conclusion: variance is Ok but mean shifted, mean need to be improved
1.20.80.40.0-0.4-0.8-1.2
LSL USL
Process Data
Sample?N 60
StDev (Within) 0.14320
StDev (O v erall) 0.14565
LSL -1.25000
Target *
USL 1.25000
Sample Mean -1.13583
Potential (Within) C apability
C C pk 2.91
O v erall C apability
Pp 2.86
PPL 0.26
PPU 5.46
Ppk
C p
0.26
C pm *
2.91
C PL 0.27
C PU 5.55
C pk 0.27
O bserv ed Performance
PPM?<?LSL 100000.00
PPM?>?USL 0.00
PPM?Total 100000.00
Exp. Within Performance
PPM?<?LSL 212646.00
PPM?>?USL 0.00
PPM?Total 212646.00
Exp. O v erall Performance
PPM?<?LSL 216566.12
PPM?>?USL 0.00
PPM?Total 216566.12
Within
Overall
Process Capability of Inlet Deforming
AM I CD
V2008 R2 - 18
Station1 Measurement_Casting Station2 Measurement_Deburing Station3 Measurement_HT
Casting -1.16 Deburring -1.07 HT -1.58
Casting -1.20 Deburring -1.21 HT -1.47
Casting -1.19 Deburring -1.14 HT -1.58
Casting -1.16 Deburring -1.19 HT -1.67
Casting -1.20 Deburring -1.13 HT -1.32
Casting -1.22 Deburring -1.15 HT -1.51
Casting -1.18 Deburring -1.14 HT -1.57
Casting -1.26 Deburring -1.32 HT -1.42
Casting -1.35 Deburring -1.22 HT -1.73
Casting -1.20 Deburring -1.35 HT -1.56
Casting -1.23 Deburring -1.12 HT -1.43
Casting -1.21 Deburring -1.12 HT -1.39
Casting -1.38 Deburring -1.11 HT -1.47
Casting -1.18 Deburring -1.08 HT -1.63
Casting -1.31 Deburring -1.10 HT -1.75
Casting -1.18 Deburring -1.06 HT -1.54
Casting -1.09 Deburring -0.99 HT -1.56
Casting -1.29 Deburring -1.20 HT -1.49
Casting -1.36 Deburring -1.11 HT -1.57
Casting -1.32 Deburring -1.09 HT -1.64
Casting -1.04 Deburring -1.19 HT -1.49
Casting -1.23 Deburring -1.16 HT -1.53
Casting -1.02 Deburring -1.25 HT -1.43
Casting -1.14 Deburring -1.08 HT -1.37
Casting -1.19 Deburring -1.20 HT -1.55
Casting -1.16 Deburring -1.22 HT -1.66
Casting -1.22 Deburring -1.21 HT -1.70
Casting -1.17 Deburring -1.18 HT -1.69
Casting -1.03 Deburring -1.26 HT -1.45
Casting -1.17 Deburring -1.16 HT -1.62
-1.0-1.1-1.2-1.3
Median
Mean
-1.12-1.14-1.16-1.18-1.20
A nderson-Darling Normality Test
V ariance 0.0061
Skewness -0.370835
Kurtosis 0.478176
N 30
Minimum -1.3500
A -Squared
1st Q uartile -1.2100
Median -1.1550
3rd Q uartile -1.1075
Maximum -0.9900
95% C onfidence Interv al for Mean
-1.1894
0.25
-1.1313
95% C onfidence Interv al for Median
-1.1977 -1.1200
95% C onfidence Interv al for StDev
0.0620 0.1046
P-V alue 0.732
Mean -1.1603
StDev 0.0778
95% Confidence Intervals
Summary for Measurement_Deburing
AM I CD
-1.0-1.1-1.2-1.3-1.4
Median
Mean
-1.16-1.18-1.20-1.22-1.24
A nderson-Darling Normality Test
V ariance 0.0080
Skewness 0.010839
Kurtosis 0.212838
N 30
Minimum -1.3800
A -Squared
1st Q uartile -1.2375
Median -1.1950
3rd Q uartile -1.1600
Maximum -1.0200
95% C onfidence Interv al for Mean
-1.2347
0.69
-1.1679
95% C onfidence Interv al for Median
-1.2200 -1.1723
95% C onfidence Interv al for StDev
0.0712 0.1202
P-V alue 0.065
Mean -1.2013
StDev 0.0894
95% Confidence Intervals
Summary for Measurement_Casting
-1.3-1.4-1.5-1.6-1.7
Median
Mean
-1.50-1.52-1.54-1.56-1.58-1.60
A nderson-Darling Normality Test
V ariance 0.0122
Skewness 0.024626
Kurtosis -0.647635
N 30
Minimum -1.7500
A -Squared
1st Q uartile -1.6290
Median -1.5520
3rd Q uartile -1.4608
Maximum -1.3210
95% C onfidence Interv al for Mean
-1.5863
0.14
-1.5037
95% C onfidence Interv al for Median
-1.5828 -1.4872
95% C onfidence Interv al for StDev
0.0881 0.1487
P-V alue 0.967
Mean -1.5450
StDev 0.1106
95% Confidence Intervals
Summary for Measurement_HT
Observation
Measurement_Deburing
30282624222018161412108642
-1.0
-1.1
-1.2
-1.3
-1.4
Number of runs about median:
0.93142
12
Expected number of runs: 16.00000
Longest run about median: 7
Approx P-Value for Clustering: 0.06858
Approx P-Value for Mixtures:
Number of runs up or down:
0.02645
24
Expected number of runs: 19.66667
Longest run up or down: 2
Approx P-Value for Trends: 0.97355
Approx P-Value for Oscillation:
Run Chart of Measurement_Deburing
Observation
Measurement_Casting
30282624222018161412108642
-1.0
-1.1
-1.2
-1.3
-1.4
Number of runs about median:
0.64491
15
Expected number of runs: 16.00000
Longest run about median: 6
Approx P-Value for Clustering: 0.35509
Approx P-Value for Mixtures:
Number of runs up or down:
0.27571
21
Expected number of runs: 19.66667
Longest run up or down: 2
Approx P-Value for Trends: 0.72429
Approx P-Value for Oscillation:
Run Chart of Measurement_Casting
Observation
Measurement_HT
30282624222018161412108642
-1.3
-1.4
-1.5
-1.6
-1.7
-1.8
Number of runs about median:
0.35509
17
Expected number of runs: 16.00000
Longest run about median: 5
Approx P-Value for Clustering: 0.64491
Approx P-Value for Mixtures:
Number of runs up or down:
0.77172
18
Expected number of runs: 19.66667
Longest run up or down: 3
Approx P-Value for Trends: 0.22828
Approx P-Value for Oscillation:
Run Chart of Measurement_HT
ANOVA Analysis
30 Inlet Deforming data were collected for each process station from Casting
to Heat Treating, all data are independent and normal distributed (P>0.05).
V2008 R2 - 19
Stations
Measurements
HTDeburringCasting
-0.9
-1.0
-1.1
-1.2
-1.3
-1.4
-1.5
-1.6
-1.7
-1.8
Boxplot of Measurements by Stations
ANOVA Analysis AM I CD
No big difference observed between the measurement data after Deburring station
and data after Casting station. So the Degating/Deburring process Does Not Cause
Difference to the part inlet position.
The measurement data after Heat Treating station are obviously different with those
after Casting and Degating/Deburing station. The Heat Treating process Causes
Difference to the part inlet position.
V2008 R2 - 20
Data
VerticalHorizontal
0.50
0.25
0.00
-0.25
-0.50
Boxplot of Horizontal, Vertical
2 Sample T-Test AM I CD
Compared with the horizontal placement, the inlet position difference of
vertical placement is much better (mean 0.115 vs. mean -0.390), so we
will use this placement method, and the part fixture will be designed
accordingly.
V2008 R2 - 21
AM I CDSOV Analysis
Mold Mold 1 Mold 2
Machine Setting 1 2 1 2
SOV is conducted to verify which factor in the casting process to
cause the biggest variance.
In this study, 2 duplicated molds from 2 suppliers were used. 2
machine settings (different temperature, 3 pressures) were
applied to verify the largest variance.
V2008 R2 - 22
Mold
Measurement
21
-0.9
-1.0
-1.1
-1.2
-1.3
-1.4
-1.5
-1.6
Machine
Setting
1
2
Multi-Vari Chart for Measurement by Machine Setting - Mold
AM I CDSOV Analysis
In the Casting Process, The Largest Variance is
From the Machine Setting.
V2008 R2 - 23
Summary Table of Validated X’s
Y’s X’s X’s Identified from
FMEA / CE
Matrix/CE
Diagram/5 Why’s
X’s Validated from
Hypothesis
Test/Corr/Regression/
Plot/Chart
Conclusion Remarks
(attach
Minitab
output)
Inlet
Defor
mation
X1: Inlet
cooling too
quick
C&E Matrix
Fishbone Diagram
Quick Win
Implementation
Important (Defect rate lowered
2%)
X2: Injection
pin location
not even
C&E Matrix
Fishbone Diagram
Quick Win
Implementation
Important (Defect rate lowered
2%)
X3: High
content of
strontium
C&E Matrix
Fishbone Diagram
Quick Win
Implementation
Important (Defect rate lowered
2%)
X4: Part
placement
orientation in
HT furnace
C&E Matrix
Fishbone Diagram
ANOVA and 2 Sample
T-Test
Significant (P<0.05)
X5: Melting
aluminum
temperature
C&E Matrix
Fishbone Diagram
SOV Analysis Variance components
percentage 70%
X6: Casting
filling
pressures
C&E Matrix
Fishbone Diagram
SOV Analysis Variance components
percentage 70%
AM I CD
V2008 R2 - 24
Improve Phase Planning
Y Variable, X’s Improve Methods Status
Y: Inlet
Deformation
X1: Melting Aluminum
Temperature
DOE
On-goingX2: P1
X3: P2
X4: P3
AM I CD
V2008 R2 - 25
DOE Plan
Y Factors Defination Levels
X1: Temperature
Temperature of Melting
Aluminum Ready for Casting
2
X2: P1 Tube Pressure 2
X3: P2 Tank Pressure 2
X4: P3 Molding Pressure 2
Inlet Deformation
AM I CD
Factors Level 1 Level 2
Temperature 685 °C 705 °C
P1 0.1 Mpa 0.2 Mpa
P2 0.1 Mpa 0.22 Mpa
P3 0.23 Mpa 0.35 Mpa
V2008 R2 - 26
Step 1 View the Data – Graphical Summary
Data is normally distributed without outlier points
DOE Analysis AM I CD
-0.2-0.4-0.6-0.8-1.0-1.2-1.4
Median
Mean
-0.5-0.6-0.7-0.8-0.9
A nderson-Darling Normality Test
V ariance 0.10171
Skewness -0.574826
Kurtosis 0.008989
N 20
Minimum -1.42000
A -Squared
1st Q uartile -0.91500
Median -0.66000
3rd Q uartile -0.47500
Maximum -0.17000
95% C onfidence Interv al for Mean
-0.86276
0.31
-0.56424
95% C onfidence Interv al for Median
-0.81000 -0.49941
95% C onfidence Interv al for StDev
0.24253 0.46580
P-V alue 0.522
Mean -0.71350
StDev 0.31892
95% Confidence Intervals
Summary for Inlet Deformation
V2008 R2 - 27
DOE Analysis AM I CD
Step 2 Create the Model
– All terms are included in the initial model
V2008 R2 - 28
AM I CD
 Estimated effects and coefficients indicate that Temperature, P2, P3 and
interaction between Temperature*P3 are significant at a = 0.05.
 R-Sq = 99.22% R-Sq(adj) = 96.27%
 Curvature is not significant.
DOE Analysis
Step 3 Fit the Model – Effects Estimation
V2008 R2 - 29
Standardized Effect
Percent
1050-5-10-15
99
95
90
80
70
60
50
40
30
20
10
5
1
Factor
P3
Name
A Temperature
B P1
C P2
D
Effect Type
Not Significant
Significant
AD
D
C
A
Normal Probability Plot of the Standardized Effects
(response is Inlet Deformation, Alpha = .05)
AM I CDDOE Analysis
Step 3 Fit the Model – Probability Plot of Effects
 Normal Probability Plot of Effects also shows that Temperature, P2,
P3 and interaction between Temperature*P3 are significant at a = 0.05.
V2008 R2 - 30
AM I CDDOE Analysis
Term
Standardized Effect
ACD
BD
B
ABC
BCD
ABD
ABCD
AB
CD
BC
AC
AD
C
D
A
181614121086420
2.78
Factor
P3
Name
A Temperature
B P1
C P2
D
Pareto Chart of the Standardized Effects
(response is Inlet Deformation, Alpha = .05)
Step 3 Fit the Model – Pareto Plot of Effects
Pareto Plot of Effects shows the same result.
V2008 R2 - 31
AM I CD
Step 3 Fit the Model
- Main Effects and Interaction Effects Plots
 The significant effects can also be verified through the Main
Effect Plot and Interaction Effect Plot.
DOE Analysis
MeanofInletDeformation
705695685
-0.5
-0.6
-0.7
-0.8
-0.9
0.200.150.10
0.220.160.10
-0.5
-0.6
-0.7
-0.8
-0.9
0.350.290.23
Temperature P1
P2 P3
Point Type
Corner
Center
Main Effects Plot (data means) for Inlet Deformation
Temperature
0.200.150.10 0.220.160.10 0.350.290.23
-0.4
-0.8
-1.2
P1
-0.4
-0.8
-1.2
P2
-0.4
-0.8
-1.2
P3
Temperature
Center
705 Corner
Point Type
685 Corner
695
P1
Center
0.20 Corner
Point Type
0.10 Corner
0.15
P2
Center
0.22 Corner
Point Type
0.10 Corner
0.16
Interaction Plot (data means) for Inlet Deformation
V2008 R2 - 32
AM I CDDOE Analysis
Step 4 Perform Residual Diagnostics
 The residuals are not normally distributed.
 The residuals are not randomly centered around zero in the plot of
Residuals vs. Fitted Values.
 The residuals are not randomly centered around zero in the plot of
Residuals vs. Run Order.
Standardized Residual
Percent
3210-1
99
90
50
10
1
Fitted Value
StandardizedResidual
0.0-0.4-0.8-1.2-1.6
2
1
0
-1
-2
Standardized Residual
Frequency
1.51.00.50.0-0.5-1.0-1.5
16
12
8
4
0
Observation Order
StandardizedResidual
2018161412108642
2
1
0
-1
-2
Normal Probability Plot of the Residuals Residuals Versus the Fitted Values
Histogram of the Residuals Residuals Versus the Order of the Data
Residual Plots for Inlet Deformation
V2008 R2 - 33
AM I CDDOE Analysis
Step 4 Perform Residual Diagnostics
 The residuals show non-random pattern in the plots
of Residuals vs. each Input Factors.
Temperature
StandardizedResidual
705700695690685
2
1
0
-1
-2
P1
StandardizedResidual
0.2000.1750.1500.1250.100
2
1
0
-1
-2
P2
StandardizedResidual
0.200.150.10
2
1
0
-1
-2
P3
StandardizedResidual
0.350.300.25
2
1
0
-1
-2
Residuals Versus Temperature
(response is Inlet Deformation)
Residuals Versus P1
(response is Inlet Deformation)
Residuals Versus P2
(response is Inlet Deformation)
Residuals Versus P3
(response is Inlet Deformation)
V2008 R2 - 34
AM I CDDOE Analysis
Step 5 Check for Possible Transformation
 A Transformation is not necessary since the SSE for
Lambda=1 is below the 95% confidence line.
lambda
ResidualSumofSquares
210-1-2
1.00
0.10
0.01
0.020
Box-Cox Transformations
With approximate 95 % confidence interval for the transformation parameter
V2008 R2 - 35
AM I CDDOE Analysis
Step 6 Remove Non-significant Terms / Refit Reduced Model
- Non-significant terms are removed
V2008 R2 - 36
AM I CD
 All terms are significant.
 R-Sq = 94.21% R-Sq(adj) = 92.67%
 Curvature is not significant.
DOE Analysis
Step 6 Remove Non-significant Terms / Refit Reduced Model
V2008 R2 - 37
AM I CDDOE Analysis
Step 6 Remove Non-significant Terms / Refit Reduced Model
 Normal Probability Plot and Pareto Plot of Effects also show
that all terms are significant at a = 0.05.
V2008 R2 - 38
AM I CDDOE Analysis
Step 6 Remove Non-significant Terms / Refit Reduced Model
 The significant effects can also be verified through the Main
Effect Plot and Interaction Effect Plot.
MeanofInletDeformation
705695685
-0.5
-0.6
-0.7
-0.8
-0.9
0.220.160.10
0.350.290.23
-0.5
-0.6
-0.7
-0.8
-0.9
Temperature P2
P3
Point Type
Corner
Center
Main Effects Plot (data means) for Inlet Deformation
T emperature
0.220.160.10 0.350.290.23
-0.4
-0.8
-1.2
P2
-0.4
-0.8
-1.2
P3
Temperature
Center
705 Corner
Point Type
685 Corner
695
P2
Center
0.22 Corner
Point Type
0.10 Corner
0.16
Interaction Plot (data means) for Inlet Deformation
V2008 R2 - 39
AM I CDDOE Analysis
Step 6 Residual Diagnostics for Reduced Model
 The residuals are not normally distributed.
 The plot of Residuals vs. Fitted Values and Residuals vs.
Run Order do not show any non-random patterns.
Standardized Residual
Percent
210-1-2
99
90
50
10
1
Fitted Value
StandardizedResidual
-0.3-0.6-0.9-1.2
2
1
0
-1
-2
Standardized Residual
Frequency
2.01.51.00.50.0-0.5-1.0-1.5
4.8
3.6
2.4
1.2
0.0
Observation Order
StandardizedResidual
2018161412108642
2
1
0
-1
-2
Normal Probability Plot of the Residuals Residuals Versus the Fitted Values
Histogram of the Residuals Residuals Versus the Order of the Data
Residual Plots for Inlet Deformation
V2008 R2 - 40
AM I CD
 The residuals do not show any non-random pattern in the
plots of Residuals vs. each Input Factors.
DOE Analysis
Temperature
StandardizedResidual
705700695690685
2
1
0
-1
-2
P1
StandardizedResidual
0.2000.1750.1500.1250.100
2
1
0
-1
-2
P2
StandardizedResidual
0.200.150.10
2
1
0
-1
-2
P3
StandardizedResidual
0.350.300.25
2
1
0
-1
-2
Residuals Versus Temperature
(response is Inlet Deformation)
Residuals Versus P1
(response is Inlet Deformation)
Residuals Versus P2
(response is Inlet Deformation)
Residuals Versus P3
(response is Inlet Deformation)
V2008 R2 - 41
Y (Inlet Deformation) = -6.9454 + 0.0098 (Temperature) +
1.8524 (P2) + 80.9792 (P3) - 0.1208 (Temperature)*(P3)
AM I CDDOE Analysis
Step 7 Choose Improved Model & Predict Response
The reduced model is acceptable and thus
the chosen model is as below:
V2008 R2 - 42
AM I CDDOE Analysis
Step 7 Choose Improved Model & Predict Response
Predict Inlet Deformation at the following settings of factors:
 Temperature = 685 °C
 P2 = 0.22 MPa
 P3 = 0.23 MPa
V2008 R2 - 43
AM I CDDOE Analysis
Step 8 Interpret Chosen Model
The Contour Plot and Surface Plot show the basic
changing direction of factors to meet target Y.
Temperature
P3
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8
-0.9
-1.0
704702700698696694692690688686
0.34
0.32
0.30
0.28
0.26
0.24
Hold Values
P2 0.22
Contour Plot of Inlet Deformation vs P3, Temperature
0.35
Inlet Deformation
-1.2 0.30
-0.9
-0.6
P3
-0.3
684 0.25690 696
702
T emperature
Hold Values
P2 0.22
Surface Plot of Inlet Deformation vs P3, Temperature
V2008 R2 - 44
AM I CDDOE Analysis
Step 8 Interpret Chosen Model
V2008 R2 - 45
AM I CDDOE Analysis
Step 8 Interpret Chosen Model
Optimal Y value -0.2422 can be reached at the following
settings of Xs:
 Temperature = 685 °C
 P2 = 0.22 MPa
 P3 = 0.23 MPa
V2008 R2 - 46
AM I CDDOE Analysis
Step 9 Make Confirmation Runs
 Will conduct 10 confirmation runs at the optimal settings above.
 Calculate the confidence interval of prediction based on the number of
confirmation test run.
 10 confirmation runs conducted. The mean (-0.2387) of the 10 confirmation runs
falls within the calculated confidence interval.
 Thus we can finally draw the conclusion that the model is acceptable.
V2008 R2 - 47
AM I CDPilot Run
Data Analysis result:
P value is greater than 0.05, the data are normal distributed.
Cp=3.09, Cpk=2.17
IndividualValue
30272421181512963
0.00
-0.25
-0.50
_
X=-0.2970
UCL=0.0262
LCL=-0.6203
MovingRange
30272421181512963
0.4
0.2
0.0
__
MR=0.1216
UCL=0.3971
LCL=0
Observation
Values
3025201510
-0.15
-0.30
-0.45
-0.1-0.2-0.3-0.4-0.5
0.0-0.2-0.4-0.6
Within
Overall
Specs
Within
StDev 0.10776
C p 3.09
C pk 2.17
C C pk 3.09
O v erall
StDev 0.09132
Pp 3.65
Ppk 2.57
C pm *
Process Capability Sixpack of Inlet Deformation
I Chart
Moving Range Chart
Last 25 Observations
Capability Histogram
Normal Prob Plot
A D: 0.423, P: 0.300
Capability Plot
V2008 R2 - 48
AM I CDPilot Run
1.20.80.40.0-0.4-0.8-1.2
LSL USL
Process Data
Sample?N 60
StDev (Within) 0.14320
StDev (O v erall) 0.14565
LSL -1.25000
Target *
USL 1.25000
Sample Mean -1.13583
Potential (Within) C apability
C C pk 2.91
O v erall C apability
Pp 2.86
PPL 0.26
PPU 5.46
Ppk
C p
0.26
C pm *
2.91
C PL 0.27
C PU 5.55
C pk 0.27
O bserv ed Performance
PPM?<?LSL 100000.00
PPM?>?USL 0.00
PPM?Total 100000.00
Exp. Within Performance
PPM?<?LSL 212646.00
PPM?>?USL 0.00
PPM?Total 212646.00
Exp. O v erall Performance
PPM?<?LSL 216566.12
PPM?>?USL 0.00
PPM?Total 216566.12
Within
Overall
Process Capability of Inlet Deforming
Cp=2.91
Cpk=0.27
Cp=3.09
Cpk=2.17
Current Performance:
Mean: -0.29 Standard Deviation: s =0.10
Conclusion: variance is Ok and mean improved, successful improvement
0.90.60.30.0-0.3-0.6-0.9
LSL USL
Process Data
Sample?N 30
StDev (Within) 0.10776
StDev (O v erall) 0.09132
LSL -1.00000
Target *
USL 1.00000
Sample Mean -0.29703
Potential (Within) C apability
C C pk 3.09
O v erall C apability
Pp 3.65
PPL 2.57
PPU 4.73
Ppk
C p
2.57
C pm *
3.09
C PL 2.17
C PU 4.01
C pk 2.17
O bserv ed Performance
PPM?<?LSL 0.00
PPM?>?USL 0.00
PPM?Total 0.00
Exp. Within Performance
PPM?<?LSL 0.00
PPM?>?USL 0.00
PPM?Total 0.00
Exp. O v erall Performance
PPM?<?LSL 0.00
PPM?>?USL 0.00
PPM?Total 0.00
Within
Overall
Process Capability of Inlet Deformation
V2008 R2 - 49
AM I CDSolution Summary
X1: Cooling rate at
inlet position
Solution: Add heating insert
to help heating around mold
inlet area
X2: Injection pin location
Solution: Add injection pin
around mold inlet area for
even distribution of force
X3: Content of Strontium (Sr)
Solution: Lower the Strontium
content to the lower limit of
Chrysler specification
X4: Part placement
orientation HT in furnace
Solution: Vertical placement
in HT furnace
X5: Melting aluminum
temperature
Solution: Adjust the
temperature setting
X6: Casting filling 3
pressures
Solution: Adjust the 3
pressures setting
V2008 R2 - 50
Full Scale Implementation Plan
Tasks Activities Responsible
person
Start Date Due Date Status and
Actions
WI Definition Re-develop the new
working instruction for
affected process
XXX May 5 April 8 Closed
Staff Training Train related operators and
line supervisors
XXX May 5 May 8 Closed
Machine parameter
adjustment
Set the machine conditions XXX May 10 May 12 Closed
Data collection Collect the data on time, 5
pcs/shift
XXX May 15 June 15 On-going
Implementation
strategy
Define the WI and set the selected pressure/temperature in parallel
Then collect the data for 5 pcs per shift
Time line: May 15 ~ June 15
AM I CD
V2008 R2 - 51
AM I CDSPC Control Chart
Sample
SampleMean
60544842363024181261
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
-1.2
-1.4
-1.6
__
X=-0.268
UCL=-0.040
LCL=-0.496
Before After
Xbar Chart of Inlet Deformation by Stage
V2008 R2 - 52
Replication Standardization
Solution Focus Pilot Site Company-wide Similar process
Casting & HT
process
Yes
Exhaust
Manifold Line
Aluminum Workshop
Exhaust manifold
line and other lines
involving casting &
HT process
AM I CD
Replication Opportunity
Standardization and Documentation
V2008 R2 - 53
Financial Impact
Project Benefit: Initial estimate / COPQ: $264,000
Project Name Front Cover Inlet Deformation Issue Improvement
Project Leader Ling Hang
Financial Benefits 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter Total
Direct savings 48,000 48,000 48,000 48,000 $192,000
Cost avoidance (3CPR
avoidance)
35,000 $35,000
Total $0.00 $0.00 $0.00 $0.00 $227,000
Non-Financial
Benefits
Potential more business with Chrysler
Signature
Approvals MBB Name
Date
Champion Name
Date
Finance Name
Date
AM I CD

More Related Content

Viewers also liked

QPEX Introduction
QPEX IntroductionQPEX Introduction
QPEX IntroductionPeter Zhou
 
Sistema de información de una organización
Sistema de información de una organizaciónSistema de información de una organización
Sistema de información de una organización
Merlis Muñoz Rodriguez
 
Scorpion Motor Noise - JE BB (part)-1
Scorpion Motor Noise - JE BB (part)-1Scorpion Motor Noise - JE BB (part)-1
Scorpion Motor Noise - JE BB (part)-1Peter Zhou
 
8D Sample -JC 19inch Sidewall Crack
8D Sample -JC 19inch Sidewall Crack8D Sample -JC 19inch Sidewall Crack
8D Sample -JC 19inch Sidewall CrackPeter Zhou
 
Example-Project Brief
Example-Project BriefExample-Project Brief
Example-Project BriefPeter Zhou
 
Regional Office Presentation_China
Regional Office Presentation_ChinaRegional Office Presentation_China
Regional Office Presentation_ChinaPeter Zhou
 
Unique Organic Cat Litter
Unique Organic Cat LitterUnique Organic Cat Litter
Unique Organic Cat LitterArclay Catsens
 
Example-PSO SUMMARY REPORT
Example-PSO SUMMARY REPORTExample-PSO SUMMARY REPORT
Example-PSO SUMMARY REPORTPeter Zhou
 
Economia
EconomiaEconomia
SF3 CN Project Portfolio Management - Role and Responsibilities
SF3 CN Project Portfolio Management - Role and ResponsibilitiesSF3 CN Project Portfolio Management - Role and Responsibilities
SF3 CN Project Portfolio Management - Role and ResponsibilitiesPeter Zhou
 
Vestas QPEX Plan
Vestas QPEX PlanVestas QPEX Plan
Vestas QPEX PlanPeter Zhou
 
Example-Demand Management
Example-Demand ManagementExample-Demand Management
Example-Demand ManagementPeter Zhou
 
Development in infancy and childhood 1 (1)
Development in infancy and childhood 1 (1)Development in infancy and childhood 1 (1)
Development in infancy and childhood 1 (1)
Haseeb Tanveer
 
DMPEF Revision _2016 March _PEF
DMPEF Revision _2016 March _PEF  DMPEF Revision _2016 March _PEF
DMPEF Revision _2016 March _PEF Peter Zhou
 
Reliability GB Project
Reliability GB ProjectReliability GB Project
Reliability GB ProjectPeter Zhou
 
Example-BB Electronic
Example-BB ElectronicExample-BB Electronic
Example-BB ElectronicPeter Zhou
 
Example-Business Project Sponsor Meeting
Example-Business Project Sponsor MeetingExample-Business Project Sponsor Meeting
Example-Business Project Sponsor MeetingPeter Zhou
 

Viewers also liked (18)

QPEX Introduction
QPEX IntroductionQPEX Introduction
QPEX Introduction
 
Sistema de información de una organización
Sistema de información de una organizaciónSistema de información de una organización
Sistema de información de una organización
 
Scorpion Motor Noise - JE BB (part)-1
Scorpion Motor Noise - JE BB (part)-1Scorpion Motor Noise - JE BB (part)-1
Scorpion Motor Noise - JE BB (part)-1
 
COQ-Vestas
COQ-VestasCOQ-Vestas
COQ-Vestas
 
8D Sample -JC 19inch Sidewall Crack
8D Sample -JC 19inch Sidewall Crack8D Sample -JC 19inch Sidewall Crack
8D Sample -JC 19inch Sidewall Crack
 
Example-Project Brief
Example-Project BriefExample-Project Brief
Example-Project Brief
 
Regional Office Presentation_China
Regional Office Presentation_ChinaRegional Office Presentation_China
Regional Office Presentation_China
 
Unique Organic Cat Litter
Unique Organic Cat LitterUnique Organic Cat Litter
Unique Organic Cat Litter
 
Example-PSO SUMMARY REPORT
Example-PSO SUMMARY REPORTExample-PSO SUMMARY REPORT
Example-PSO SUMMARY REPORT
 
Economia
EconomiaEconomia
Economia
 
SF3 CN Project Portfolio Management - Role and Responsibilities
SF3 CN Project Portfolio Management - Role and ResponsibilitiesSF3 CN Project Portfolio Management - Role and Responsibilities
SF3 CN Project Portfolio Management - Role and Responsibilities
 
Vestas QPEX Plan
Vestas QPEX PlanVestas QPEX Plan
Vestas QPEX Plan
 
Example-Demand Management
Example-Demand ManagementExample-Demand Management
Example-Demand Management
 
Development in infancy and childhood 1 (1)
Development in infancy and childhood 1 (1)Development in infancy and childhood 1 (1)
Development in infancy and childhood 1 (1)
 
DMPEF Revision _2016 March _PEF
DMPEF Revision _2016 March _PEF  DMPEF Revision _2016 March _PEF
DMPEF Revision _2016 March _PEF
 
Reliability GB Project
Reliability GB ProjectReliability GB Project
Reliability GB Project
 
Example-BB Electronic
Example-BB ElectronicExample-BB Electronic
Example-BB Electronic
 
Example-Business Project Sponsor Meeting
Example-Business Project Sponsor MeetingExample-Business Project Sponsor Meeting
Example-Business Project Sponsor Meeting
 

Similar to Example -BB Powertrain

Vitaletti Leonardo, Elica Motors - Design for Six Sigma ed applicazioni minit...
Vitaletti Leonardo, Elica Motors - Design for Six Sigma ed applicazioni minit...Vitaletti Leonardo, Elica Motors - Design for Six Sigma ed applicazioni minit...
Vitaletti Leonardo, Elica Motors - Design for Six Sigma ed applicazioni minit...
GMSL S.r.l.
 
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 NewOriginal Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
AUTHELECTRONIC
 
Original NPN Transistor KRC106M C106 106 TO-92 New KEC
Original NPN Transistor KRC106M C106 106 TO-92 New KECOriginal NPN Transistor KRC106M C106 106 TO-92 New KEC
Original NPN Transistor KRC106M C106 106 TO-92 New KEC
AUTHELECTRONIC
 
Referencia practica mercedes clk 320 w208 1999
Referencia practica mercedes clk 320 w208 1999Referencia practica mercedes clk 320 w208 1999
Referencia practica mercedes clk 320 w208 1999
roger gustavo saravia aramayo
 
096500 0180 plano teste
096500 0180 plano teste096500 0180 plano teste
096500 0180 plano testeJunior Iung
 
Technical Data Additel 875 Dry Well Calibrator
Technical Data Additel 875 Dry Well CalibratorTechnical Data Additel 875 Dry Well Calibrator
Technical Data Additel 875 Dry Well Calibrator
PT. Siwali Swantika
 
Application of Design of Experiments (DOE) using Dr.Taguchi -Orthogonal Array...
Application of Design of Experiments (DOE) using Dr.Taguchi -Orthogonal Array...Application of Design of Experiments (DOE) using Dr.Taguchi -Orthogonal Array...
Application of Design of Experiments (DOE) using Dr.Taguchi -Orthogonal Array...
Karthikeyan Kannappan
 
Optimization for the fabrication of ternary halide perovskite solar cells via...
Optimization for the fabrication of ternary halide perovskite solar cells via...Optimization for the fabrication of ternary halide perovskite solar cells via...
Optimization for the fabrication of ternary halide perovskite solar cells via...
CHUN-HAO KUNG
 
Black belt Project -Process optimization DV Cyl Head.pptx
Black belt Project -Process optimization DV Cyl Head.pptxBlack belt Project -Process optimization DV Cyl Head.pptx
Black belt Project -Process optimization DV Cyl Head.pptx
vasant bhoknal
 
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...
AUTHELECTRONIC
 
Lg mg1 2900m ah
Lg mg1 2900m ahLg mg1 2900m ah
Lg mg1 2900m ah
成 刘
 
ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"
Atin Kumar
 
Flameproof High Range Pressure Switches FE Series
Flameproof High Range Pressure Switches FE SeriesFlameproof High Range Pressure Switches FE Series
Flameproof High Range Pressure Switches FE Series
NK Instruments Pvt. Ltd.
 
MMAE557 Consulting Project-Li He(A20358122),Xingye Dai(A20365915)
MMAE557 Consulting Project-Li He(A20358122),Xingye Dai(A20365915)MMAE557 Consulting Project-Li He(A20358122),Xingye Dai(A20365915)
MMAE557 Consulting Project-Li He(A20358122),Xingye Dai(A20365915)LI HE
 
six sigma DMAIC approach for reducing quality defects of camshaft binding pro...
six sigma DMAIC approach for reducing quality defects of camshaft binding pro...six sigma DMAIC approach for reducing quality defects of camshaft binding pro...
six sigma DMAIC approach for reducing quality defects of camshaft binding pro...
Niranjana B
 
Besi - TSV Summit 2015 - Handout
Besi - TSV Summit 2015 - HandoutBesi - TSV Summit 2015 - Handout
Besi - TSV Summit 2015 - HandoutHugo Pristauz
 
Weld Improvement Example in Offshore Oil & Gas
Weld Improvement Example in Offshore Oil & GasWeld Improvement Example in Offshore Oil & Gas
Weld Improvement Example in Offshore Oil & Gas
Imran Choudury
 
Harmonic rh dc_servo_specsheet
Harmonic rh dc_servo_specsheetHarmonic rh dc_servo_specsheet
Harmonic rh dc_servo_specsheet
Electromate
 
Quality analysis of hmc
Quality analysis of hmcQuality analysis of hmc
Quality analysis of hmc
Abu Bakar Siddique
 
Quality analysis of hmc
Quality analysis of hmcQuality analysis of hmc
Quality analysis of hmc
Abu Bakar Siddique
 

Similar to Example -BB Powertrain (20)

Vitaletti Leonardo, Elica Motors - Design for Six Sigma ed applicazioni minit...
Vitaletti Leonardo, Elica Motors - Design for Six Sigma ed applicazioni minit...Vitaletti Leonardo, Elica Motors - Design for Six Sigma ed applicazioni minit...
Vitaletti Leonardo, Elica Motors - Design for Six Sigma ed applicazioni minit...
 
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 NewOriginal Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
Original Digital Transistor KRC105 C105M C105 100mA 50V TO-92 New
 
Original NPN Transistor KRC106M C106 106 TO-92 New KEC
Original NPN Transistor KRC106M C106 106 TO-92 New KECOriginal NPN Transistor KRC106M C106 106 TO-92 New KEC
Original NPN Transistor KRC106M C106 106 TO-92 New KEC
 
Referencia practica mercedes clk 320 w208 1999
Referencia practica mercedes clk 320 w208 1999Referencia practica mercedes clk 320 w208 1999
Referencia practica mercedes clk 320 w208 1999
 
096500 0180 plano teste
096500 0180 plano teste096500 0180 plano teste
096500 0180 plano teste
 
Technical Data Additel 875 Dry Well Calibrator
Technical Data Additel 875 Dry Well CalibratorTechnical Data Additel 875 Dry Well Calibrator
Technical Data Additel 875 Dry Well Calibrator
 
Application of Design of Experiments (DOE) using Dr.Taguchi -Orthogonal Array...
Application of Design of Experiments (DOE) using Dr.Taguchi -Orthogonal Array...Application of Design of Experiments (DOE) using Dr.Taguchi -Orthogonal Array...
Application of Design of Experiments (DOE) using Dr.Taguchi -Orthogonal Array...
 
Optimization for the fabrication of ternary halide perovskite solar cells via...
Optimization for the fabrication of ternary halide perovskite solar cells via...Optimization for the fabrication of ternary halide perovskite solar cells via...
Optimization for the fabrication of ternary halide perovskite solar cells via...
 
Black belt Project -Process optimization DV Cyl Head.pptx
Black belt Project -Process optimization DV Cyl Head.pptxBlack belt Project -Process optimization DV Cyl Head.pptx
Black belt Project -Process optimization DV Cyl Head.pptx
 
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...
 
Lg mg1 2900m ah
Lg mg1 2900m ahLg mg1 2900m ah
Lg mg1 2900m ah
 
ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"ONERA M6 "Defence Presentation"
ONERA M6 "Defence Presentation"
 
Flameproof High Range Pressure Switches FE Series
Flameproof High Range Pressure Switches FE SeriesFlameproof High Range Pressure Switches FE Series
Flameproof High Range Pressure Switches FE Series
 
MMAE557 Consulting Project-Li He(A20358122),Xingye Dai(A20365915)
MMAE557 Consulting Project-Li He(A20358122),Xingye Dai(A20365915)MMAE557 Consulting Project-Li He(A20358122),Xingye Dai(A20365915)
MMAE557 Consulting Project-Li He(A20358122),Xingye Dai(A20365915)
 
six sigma DMAIC approach for reducing quality defects of camshaft binding pro...
six sigma DMAIC approach for reducing quality defects of camshaft binding pro...six sigma DMAIC approach for reducing quality defects of camshaft binding pro...
six sigma DMAIC approach for reducing quality defects of camshaft binding pro...
 
Besi - TSV Summit 2015 - Handout
Besi - TSV Summit 2015 - HandoutBesi - TSV Summit 2015 - Handout
Besi - TSV Summit 2015 - Handout
 
Weld Improvement Example in Offshore Oil & Gas
Weld Improvement Example in Offshore Oil & GasWeld Improvement Example in Offshore Oil & Gas
Weld Improvement Example in Offshore Oil & Gas
 
Harmonic rh dc_servo_specsheet
Harmonic rh dc_servo_specsheetHarmonic rh dc_servo_specsheet
Harmonic rh dc_servo_specsheet
 
Quality analysis of hmc
Quality analysis of hmcQuality analysis of hmc
Quality analysis of hmc
 
Quality analysis of hmc
Quality analysis of hmcQuality analysis of hmc
Quality analysis of hmc
 

Example -BB Powertrain

  • 1. V2008 R2 - 1 Sponsor Peter Zhou Champion XXXXXX Leader XXXXXX Team Member XXXX XXXX XXXX XXXX Front Cover Inlet Deformation Issue Improvement July, 2009
  • 2. V2008 R2 - 2 Zhaoqing Power - Chrysler AM I CD XXX Power Accessories Co., Ltd. Production of Aluminum Casting Front Cover – Timing Chain Case Chrysler Mack Engine Plant Annual Volume: 200,000 units
  • 3. V2008 R2 - 3 Big Y Drill Down Reduce the Overall Process Defect Rate (25%) for Chrysler Products Casting (70%) Heat Treatment (20%) Others (Deburring & Machining) (10%) Poor Fluidity 15% Inlet Deforming 45% 2) Identify / quantify the inputs 1) Start with business goal 3) Drill down again Others (10%) Inlet Deforming (90%) Porosity 30% Others 10% AM I CD
  • 4. V2008 R2 - 4 CTQ & CTP Chart CTQ CCR Customer Issues VOC Reduced external defect rate of Inlet Deforming No quality issue of inlet deforming in Chrysler plant. The quality issue of inlet deforming will case production line problem in Chrysler Engine Plant. Chrysler is not satisfied with the current quality issue of inlet deforming. Improvement should be made to reduce defect rate. VOB Business Issues CBR CTP The process internal scrap rate is too high, customer is not happy with our performance and the profit is lossing. Low output rate with high scrap cost Substantially reduce the defect rate of inlet deforming, ideally “0” Reduce the defect rate of inlet deforming with cost saved. Remark 1. Voice of customer and voice of business to be prioritized to those which are related to project objective 2. Use VOB or VOC or both depending on the project objectives AM I CD
  • 5. V2008 R2 - 5 Process Flow Insert sand core Close mold and hold pressure (parameter set) Take out parts & appearance Check Dimension Inspection by sampling Degating & Deburring Set parts ready in fixture and Heat treating process Shot blasting Dimension Inspection by sampling Shipping good parts to machining Inlet Deforming Related Process AM I CD
  • 6. V2008 R2 - 6 Quick Win Analysis f i Process No. Quick Win Opportunity Fast to Implement () Easy to Implement () Cheap to Implemen t () Within the Team’s Control () Easily Reversible () Impleme nt (Yes/No) Adjust the casting parameters No No Yes Yes Yes No Adjust the heat treatment settings No No Yes Yes Yes No Add heating insert to help heating around mold inlet section Yes Yes Yes Yes Yes Yes Add injection pin around mold inlet section for even distribution of force Yes Yes Yes Yes Yes Yes Adjust the chemical composition of Sr Yes Yes Yes Yes Yes Yes Remark QW Opportunity Sources from Process Analysis, Brainstorming, Process walk through… AM I CD
  • 7. V2008 R2 - 7 Quick Win Analysis f i  Add heating insert to help heating around mold inlet area.  Add injection pin around mold inlet area for even distribution of force.  Adjust the chemical content of Sr to the lower limit of Chrysler specification. Heating Insert Injection Pin Defect rate reduced from 12% to 10% by implementing the above 3 Quick Wins. AM I CD
  • 8. V2008 R2 - 8 Inlet Position Output Indicator Input / Process Indicator Correlation between Input & Output Priority Insufficient Training 1 1 Insufficient Experience 1 1 Poor Accountability 1 1 Incorrect Tooling Design 1 1 Inlet Cooling too quick 9 9 Injection Pin Location 9 9 Insufficient Oil Pressure 1 1 High Content of Strontium 3 3 Material Impurity 1 1 Hardness not even 1 1 Setting of Melting Aluminum Temperature 9 9 Setting of Pressure 9 9 Part Placement Orientation during HT 9 9 No Standard W.I. 1 1 No Quick Inspection Gage 1 1 Noise 1 1 Insufficient Lighting 1 1 Floor Temperature Change 1 1 Environment Operator Machine Material Process Fishbone Diagram 5 high affected inputs and 1 medium affected inputs to Inlet Position have been identified by Cause & Effect Matrix. AM I CD
  • 9. V2008 R2 - 9 Data Collection Plan - 1 Key Indicator Operation Definition Sl. No. Performance Indicator (Y) Operational definition Y Inlet Deforming Inlet Position Misalignment Measured by CMM (+/- 1.25 mm) AM I CD Performance measure (Y) Operationa l definition Data source and location Sampl e size Who will collect the data When will data be collected How will data be collected Other data that should be collected at the same time Inlet Deforming Inlet Position Misalignment Measured by CMM (+/- 1.25 mm) CMM Tester 60 QA/ Zhu Jie 10 pcs each lot CMM
  • 10. V2008 R2 - 10 Data Collection Plan - 2 Remarks: Other data refers to additional information from stratification perspective. We will collect the Inlet Position Data under current process setting of identified key inputs (Melting aluminum temperature, Filling pressure phase I, Filling pressure phase II, Filling pressure phase III). The current settings are: Melting aluminum temperature (T): 695 °C Filling pressure phase I (P1): 0.14 MPa Filling pressure phase II (P2): 0.20 MPa Filling pressure phase III (P3): 0.29 MPa P1 P3 充 型 充 满 升 液 箱 充 满 升 液 管 保压 加压曲线及说明 时间P2 AM I CD
  • 11. V2008 R2 - 11 MSA Plan 尺寸 连续型 特性 Y1:Inlet Deforming 測試人員 3 persons 測試設備 CMM 三坐标 進行方法 編號1~10給3位進行 判定,循環3次 判定方法 共取得90個資料, 依Gage R&R計算之數值判定 Sampling Mesurement Methods GR&R Plan AM I CD
  • 12. V2008 R2 - 12 MSA Data 评价人: 3 零件数: 10 试验次数: 3 1 2 3 4 5 6 7 8 9 10 平均值 评价人1 试验人1 -0.16 -0.41 -0.36 -0.19 -0.32 -0.14 -0.09 -0.26 -0.36 0.45 -0.1845 试验人2 -0.17 -0.41 -0.36 -0.17 -0.32 -0.16 -0.10 -0.26 -0.36 0.46 -0.1849 试验人3 -0.17 -0.41 -0.37 -0.18 -0.32 -0.13 -0.10 -0.28 -0.37 0.45 -0.1868 平均值 -0.16567 -0.40833 -0.36067 -0.18033 -0.319 -0.14367 -0.09533 -0.27033 -0.36333333 0.452666667 -0.1854 极差 0.011 0.004 0.009 0.025 0.007 0.027 0.009 0.019 0.006 0.014 0.0131 评价人2 试验人1 -0.13 -0.41 -0.36 -0.18 -0.29 -0.13 -0.08 -0.26 -0.36 0.43 -0.1767 试验人2 -0.13 -0.40 -0.35 -0.19 -0.30 -0.13 -0.08 -0.26 -0.35 0.43 -0.1759 试验人3 -0.13 -0.40 -0.35 -0.19 -0.32 -0.15 -0.08 -0.26 -0.35 0.46 -0.178 平均值 -0.131 -0.406 -0.35367 -0.18633 -0.30333 -0.13767 -0.082 -0.26033 -0.35033333 0.442 -0.176866667 极差 0.003 0.014 0.01 0.012 0.029 0.025 0.004 0.005 0.015 0.031 0.0148 评价人3 试验人1 -0.13 -0.41 -0.35 -0.17 -0.31 -0.14 -0.09 -0.25 -0.33 0.45 -0.1721 试验人2 -0.13 -0.39 -0.36 -0.17 -0.30 -0.13 -0.10 -0.26 -0.33 0.45 -0.1726 试验人3 -0.13 -0.40 -0.35 -0.16 -0.31 -0.14 -0.06 -0.24 -0.35 0.45 -0.1678 平均值 -0.13067 -0.40067 -0.35 -0.16667 -0.307 -0.13533 -0.08333 -0.248 -0.33666667 0.45 -0.170833333 极差 0.007 0.017 0.009 0.007 0.007 0.004 0.038 0.018 0.014 0.007 0.0128 量具重复性和再现性数据收集表 零件 AM I CD
  • 13. V2008 R2 - 13 MSA ResultsPercent Part-to-PartReprodRepeatGage R&R 100 50 0 % Contribution %?Study?Var SampleRange 0.04 0.02 0.00 _ R=0.01267 UCL=0.03261 LCL=0 A B C SampleMean 0.5 0.0 -0.5 __ X=-0.178UCL=-0.165LCL=-0.191 A B C Part 10987654321 0.5 0.0 -0.5 Operator CBA 0.5 0.0 -0.5 Part Average 10987654321 0.5 0.0 -0.5 Operator A B C Gage name: Date of study: Reported by: Tolerance: Misc: Components of Variation R Chart by Operator Xbar Chart by Operator Y by Part Y by Operator Operator * Part Interaction Gage R&R (ANOVA) for Y 1 1 2 3 4 2 3 4 Biggest variance is from Part-to-Part. Repeatability is acceptable. Reproducibility is acceptable. No Interaction between operator and part. AM I CD
  • 14. V2008 R2 - 14 MSA Results Total Gauge R&R% = 5.16% < 10% GR&R% is Acceptable. AM I CD
  • 15. V2008 R2 - 15 Capability Analysis Y Y Y Y Y Y 1 -1.16 11 -1.23 21 -1.13 31 -1.24 41 -1.14 51 -1.05 2 -1.22 12 -0.89 22 -1.15 32 -1.17 42 -1.45 52 -0.94 3 -1.19 13 -1.38 23 -1.48 33 -0.95 43 -1.14 53 -1.10 4 -0.82 14 -0.99 24 -1.24 34 -1.17 44 -1.25 54 -1.06 5 -1.16 15 -1.23 25 -1.04 35 -1.19 45 -1.19 55 -0.99 6 -1.20 16 -1.45 26 -1.23 36 -1.07 46 -0.89 56 -1.24 7 -1.25 17 -1.18 27 -1.02 37 -1.23 47 -1.23 57 -1.11 8 -1.18 18 -1.31 28 -1.14 38 -0.97 48 -1.09 58 -1.00 9 -1.35 19 -1.18 29 -1.19 39 -1.00 49 -1.09 59 -0.98 10 -1.25 20 -0.84 30 -1.16 40 -0.92 50 -1.11 60 -0.95 Using the CMM tester to collect the Inlet Position data. The settings are: Melting aluminum temperature (T): 695 °C Filling pressure phase I (P1): 0.14 MPa Filling pressure phase II (P2): 0.20 MPa Filling pressure phase III (P3): 0.29 MPa AM I CD
  • 16. V2008 R2 - 16 IndividualValue 60544842363024181261 -0.8 -1.2 -1.6 _ X=-1.1358 UCL=-0.7062 LCL=-1.5654 MovingRange 60544842363024181261 0.4 0.2 0.0 __ MR=0.1615 UCL=0.5277 LCL=0 Observation Values 6055504540 -1.0 -1.2 -1.4 -0.80-0.96-1.12-1.28-1.44 -0.5-1.0-1.5 Within Overall Specs Within StDev 0.14320 C p 2.91 C pk 0.27 C C pk 2.91 O verall StDev 0.14565 Pp 2.86 Ppk 0.26 C pm * Process Capability Sixpack of Inlet Deforming I Chart Moving Range Chart Last 25 Observations Capability Histogram Normal Prob Plot A D: 0.612, P: 0.106 Capability Plot Capability Analysis Data Analysis result: P value is greater than 0.05, the data are normal distributed. Cp = 2.91 Cpk = 0.27 AM I CD
  • 17. V2008 R2 - 17 Capability Analysis Output indicator Average Standard deviation Cp Cpk Sigma Level Y -1.14 0.14 2.91 0.27 2.3 Current Baseline Performance: Mean: -1.14 Standard Deviation: s =0.14 Distribution Shape:Shift too much Conclusion: variance is Ok but mean shifted, mean need to be improved 1.20.80.40.0-0.4-0.8-1.2 LSL USL Process Data Sample?N 60 StDev (Within) 0.14320 StDev (O v erall) 0.14565 LSL -1.25000 Target * USL 1.25000 Sample Mean -1.13583 Potential (Within) C apability C C pk 2.91 O v erall C apability Pp 2.86 PPL 0.26 PPU 5.46 Ppk C p 0.26 C pm * 2.91 C PL 0.27 C PU 5.55 C pk 0.27 O bserv ed Performance PPM?<?LSL 100000.00 PPM?>?USL 0.00 PPM?Total 100000.00 Exp. Within Performance PPM?<?LSL 212646.00 PPM?>?USL 0.00 PPM?Total 212646.00 Exp. O v erall Performance PPM?<?LSL 216566.12 PPM?>?USL 0.00 PPM?Total 216566.12 Within Overall Process Capability of Inlet Deforming AM I CD
  • 18. V2008 R2 - 18 Station1 Measurement_Casting Station2 Measurement_Deburing Station3 Measurement_HT Casting -1.16 Deburring -1.07 HT -1.58 Casting -1.20 Deburring -1.21 HT -1.47 Casting -1.19 Deburring -1.14 HT -1.58 Casting -1.16 Deburring -1.19 HT -1.67 Casting -1.20 Deburring -1.13 HT -1.32 Casting -1.22 Deburring -1.15 HT -1.51 Casting -1.18 Deburring -1.14 HT -1.57 Casting -1.26 Deburring -1.32 HT -1.42 Casting -1.35 Deburring -1.22 HT -1.73 Casting -1.20 Deburring -1.35 HT -1.56 Casting -1.23 Deburring -1.12 HT -1.43 Casting -1.21 Deburring -1.12 HT -1.39 Casting -1.38 Deburring -1.11 HT -1.47 Casting -1.18 Deburring -1.08 HT -1.63 Casting -1.31 Deburring -1.10 HT -1.75 Casting -1.18 Deburring -1.06 HT -1.54 Casting -1.09 Deburring -0.99 HT -1.56 Casting -1.29 Deburring -1.20 HT -1.49 Casting -1.36 Deburring -1.11 HT -1.57 Casting -1.32 Deburring -1.09 HT -1.64 Casting -1.04 Deburring -1.19 HT -1.49 Casting -1.23 Deburring -1.16 HT -1.53 Casting -1.02 Deburring -1.25 HT -1.43 Casting -1.14 Deburring -1.08 HT -1.37 Casting -1.19 Deburring -1.20 HT -1.55 Casting -1.16 Deburring -1.22 HT -1.66 Casting -1.22 Deburring -1.21 HT -1.70 Casting -1.17 Deburring -1.18 HT -1.69 Casting -1.03 Deburring -1.26 HT -1.45 Casting -1.17 Deburring -1.16 HT -1.62 -1.0-1.1-1.2-1.3 Median Mean -1.12-1.14-1.16-1.18-1.20 A nderson-Darling Normality Test V ariance 0.0061 Skewness -0.370835 Kurtosis 0.478176 N 30 Minimum -1.3500 A -Squared 1st Q uartile -1.2100 Median -1.1550 3rd Q uartile -1.1075 Maximum -0.9900 95% C onfidence Interv al for Mean -1.1894 0.25 -1.1313 95% C onfidence Interv al for Median -1.1977 -1.1200 95% C onfidence Interv al for StDev 0.0620 0.1046 P-V alue 0.732 Mean -1.1603 StDev 0.0778 95% Confidence Intervals Summary for Measurement_Deburing AM I CD -1.0-1.1-1.2-1.3-1.4 Median Mean -1.16-1.18-1.20-1.22-1.24 A nderson-Darling Normality Test V ariance 0.0080 Skewness 0.010839 Kurtosis 0.212838 N 30 Minimum -1.3800 A -Squared 1st Q uartile -1.2375 Median -1.1950 3rd Q uartile -1.1600 Maximum -1.0200 95% C onfidence Interv al for Mean -1.2347 0.69 -1.1679 95% C onfidence Interv al for Median -1.2200 -1.1723 95% C onfidence Interv al for StDev 0.0712 0.1202 P-V alue 0.065 Mean -1.2013 StDev 0.0894 95% Confidence Intervals Summary for Measurement_Casting -1.3-1.4-1.5-1.6-1.7 Median Mean -1.50-1.52-1.54-1.56-1.58-1.60 A nderson-Darling Normality Test V ariance 0.0122 Skewness 0.024626 Kurtosis -0.647635 N 30 Minimum -1.7500 A -Squared 1st Q uartile -1.6290 Median -1.5520 3rd Q uartile -1.4608 Maximum -1.3210 95% C onfidence Interv al for Mean -1.5863 0.14 -1.5037 95% C onfidence Interv al for Median -1.5828 -1.4872 95% C onfidence Interv al for StDev 0.0881 0.1487 P-V alue 0.967 Mean -1.5450 StDev 0.1106 95% Confidence Intervals Summary for Measurement_HT Observation Measurement_Deburing 30282624222018161412108642 -1.0 -1.1 -1.2 -1.3 -1.4 Number of runs about median: 0.93142 12 Expected number of runs: 16.00000 Longest run about median: 7 Approx P-Value for Clustering: 0.06858 Approx P-Value for Mixtures: Number of runs up or down: 0.02645 24 Expected number of runs: 19.66667 Longest run up or down: 2 Approx P-Value for Trends: 0.97355 Approx P-Value for Oscillation: Run Chart of Measurement_Deburing Observation Measurement_Casting 30282624222018161412108642 -1.0 -1.1 -1.2 -1.3 -1.4 Number of runs about median: 0.64491 15 Expected number of runs: 16.00000 Longest run about median: 6 Approx P-Value for Clustering: 0.35509 Approx P-Value for Mixtures: Number of runs up or down: 0.27571 21 Expected number of runs: 19.66667 Longest run up or down: 2 Approx P-Value for Trends: 0.72429 Approx P-Value for Oscillation: Run Chart of Measurement_Casting Observation Measurement_HT 30282624222018161412108642 -1.3 -1.4 -1.5 -1.6 -1.7 -1.8 Number of runs about median: 0.35509 17 Expected number of runs: 16.00000 Longest run about median: 5 Approx P-Value for Clustering: 0.64491 Approx P-Value for Mixtures: Number of runs up or down: 0.77172 18 Expected number of runs: 19.66667 Longest run up or down: 3 Approx P-Value for Trends: 0.22828 Approx P-Value for Oscillation: Run Chart of Measurement_HT ANOVA Analysis 30 Inlet Deforming data were collected for each process station from Casting to Heat Treating, all data are independent and normal distributed (P>0.05).
  • 19. V2008 R2 - 19 Stations Measurements HTDeburringCasting -0.9 -1.0 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 -1.7 -1.8 Boxplot of Measurements by Stations ANOVA Analysis AM I CD No big difference observed between the measurement data after Deburring station and data after Casting station. So the Degating/Deburring process Does Not Cause Difference to the part inlet position. The measurement data after Heat Treating station are obviously different with those after Casting and Degating/Deburing station. The Heat Treating process Causes Difference to the part inlet position.
  • 20. V2008 R2 - 20 Data VerticalHorizontal 0.50 0.25 0.00 -0.25 -0.50 Boxplot of Horizontal, Vertical 2 Sample T-Test AM I CD Compared with the horizontal placement, the inlet position difference of vertical placement is much better (mean 0.115 vs. mean -0.390), so we will use this placement method, and the part fixture will be designed accordingly.
  • 21. V2008 R2 - 21 AM I CDSOV Analysis Mold Mold 1 Mold 2 Machine Setting 1 2 1 2 SOV is conducted to verify which factor in the casting process to cause the biggest variance. In this study, 2 duplicated molds from 2 suppliers were used. 2 machine settings (different temperature, 3 pressures) were applied to verify the largest variance.
  • 22. V2008 R2 - 22 Mold Measurement 21 -0.9 -1.0 -1.1 -1.2 -1.3 -1.4 -1.5 -1.6 Machine Setting 1 2 Multi-Vari Chart for Measurement by Machine Setting - Mold AM I CDSOV Analysis In the Casting Process, The Largest Variance is From the Machine Setting.
  • 23. V2008 R2 - 23 Summary Table of Validated X’s Y’s X’s X’s Identified from FMEA / CE Matrix/CE Diagram/5 Why’s X’s Validated from Hypothesis Test/Corr/Regression/ Plot/Chart Conclusion Remarks (attach Minitab output) Inlet Defor mation X1: Inlet cooling too quick C&E Matrix Fishbone Diagram Quick Win Implementation Important (Defect rate lowered 2%) X2: Injection pin location not even C&E Matrix Fishbone Diagram Quick Win Implementation Important (Defect rate lowered 2%) X3: High content of strontium C&E Matrix Fishbone Diagram Quick Win Implementation Important (Defect rate lowered 2%) X4: Part placement orientation in HT furnace C&E Matrix Fishbone Diagram ANOVA and 2 Sample T-Test Significant (P<0.05) X5: Melting aluminum temperature C&E Matrix Fishbone Diagram SOV Analysis Variance components percentage 70% X6: Casting filling pressures C&E Matrix Fishbone Diagram SOV Analysis Variance components percentage 70% AM I CD
  • 24. V2008 R2 - 24 Improve Phase Planning Y Variable, X’s Improve Methods Status Y: Inlet Deformation X1: Melting Aluminum Temperature DOE On-goingX2: P1 X3: P2 X4: P3 AM I CD
  • 25. V2008 R2 - 25 DOE Plan Y Factors Defination Levels X1: Temperature Temperature of Melting Aluminum Ready for Casting 2 X2: P1 Tube Pressure 2 X3: P2 Tank Pressure 2 X4: P3 Molding Pressure 2 Inlet Deformation AM I CD Factors Level 1 Level 2 Temperature 685 °C 705 °C P1 0.1 Mpa 0.2 Mpa P2 0.1 Mpa 0.22 Mpa P3 0.23 Mpa 0.35 Mpa
  • 26. V2008 R2 - 26 Step 1 View the Data – Graphical Summary Data is normally distributed without outlier points DOE Analysis AM I CD -0.2-0.4-0.6-0.8-1.0-1.2-1.4 Median Mean -0.5-0.6-0.7-0.8-0.9 A nderson-Darling Normality Test V ariance 0.10171 Skewness -0.574826 Kurtosis 0.008989 N 20 Minimum -1.42000 A -Squared 1st Q uartile -0.91500 Median -0.66000 3rd Q uartile -0.47500 Maximum -0.17000 95% C onfidence Interv al for Mean -0.86276 0.31 -0.56424 95% C onfidence Interv al for Median -0.81000 -0.49941 95% C onfidence Interv al for StDev 0.24253 0.46580 P-V alue 0.522 Mean -0.71350 StDev 0.31892 95% Confidence Intervals Summary for Inlet Deformation
  • 27. V2008 R2 - 27 DOE Analysis AM I CD Step 2 Create the Model – All terms are included in the initial model
  • 28. V2008 R2 - 28 AM I CD  Estimated effects and coefficients indicate that Temperature, P2, P3 and interaction between Temperature*P3 are significant at a = 0.05.  R-Sq = 99.22% R-Sq(adj) = 96.27%  Curvature is not significant. DOE Analysis Step 3 Fit the Model – Effects Estimation
  • 29. V2008 R2 - 29 Standardized Effect Percent 1050-5-10-15 99 95 90 80 70 60 50 40 30 20 10 5 1 Factor P3 Name A Temperature B P1 C P2 D Effect Type Not Significant Significant AD D C A Normal Probability Plot of the Standardized Effects (response is Inlet Deformation, Alpha = .05) AM I CDDOE Analysis Step 3 Fit the Model – Probability Plot of Effects  Normal Probability Plot of Effects also shows that Temperature, P2, P3 and interaction between Temperature*P3 are significant at a = 0.05.
  • 30. V2008 R2 - 30 AM I CDDOE Analysis Term Standardized Effect ACD BD B ABC BCD ABD ABCD AB CD BC AC AD C D A 181614121086420 2.78 Factor P3 Name A Temperature B P1 C P2 D Pareto Chart of the Standardized Effects (response is Inlet Deformation, Alpha = .05) Step 3 Fit the Model – Pareto Plot of Effects Pareto Plot of Effects shows the same result.
  • 31. V2008 R2 - 31 AM I CD Step 3 Fit the Model - Main Effects and Interaction Effects Plots  The significant effects can also be verified through the Main Effect Plot and Interaction Effect Plot. DOE Analysis MeanofInletDeformation 705695685 -0.5 -0.6 -0.7 -0.8 -0.9 0.200.150.10 0.220.160.10 -0.5 -0.6 -0.7 -0.8 -0.9 0.350.290.23 Temperature P1 P2 P3 Point Type Corner Center Main Effects Plot (data means) for Inlet Deformation Temperature 0.200.150.10 0.220.160.10 0.350.290.23 -0.4 -0.8 -1.2 P1 -0.4 -0.8 -1.2 P2 -0.4 -0.8 -1.2 P3 Temperature Center 705 Corner Point Type 685 Corner 695 P1 Center 0.20 Corner Point Type 0.10 Corner 0.15 P2 Center 0.22 Corner Point Type 0.10 Corner 0.16 Interaction Plot (data means) for Inlet Deformation
  • 32. V2008 R2 - 32 AM I CDDOE Analysis Step 4 Perform Residual Diagnostics  The residuals are not normally distributed.  The residuals are not randomly centered around zero in the plot of Residuals vs. Fitted Values.  The residuals are not randomly centered around zero in the plot of Residuals vs. Run Order. Standardized Residual Percent 3210-1 99 90 50 10 1 Fitted Value StandardizedResidual 0.0-0.4-0.8-1.2-1.6 2 1 0 -1 -2 Standardized Residual Frequency 1.51.00.50.0-0.5-1.0-1.5 16 12 8 4 0 Observation Order StandardizedResidual 2018161412108642 2 1 0 -1 -2 Normal Probability Plot of the Residuals Residuals Versus the Fitted Values Histogram of the Residuals Residuals Versus the Order of the Data Residual Plots for Inlet Deformation
  • 33. V2008 R2 - 33 AM I CDDOE Analysis Step 4 Perform Residual Diagnostics  The residuals show non-random pattern in the plots of Residuals vs. each Input Factors. Temperature StandardizedResidual 705700695690685 2 1 0 -1 -2 P1 StandardizedResidual 0.2000.1750.1500.1250.100 2 1 0 -1 -2 P2 StandardizedResidual 0.200.150.10 2 1 0 -1 -2 P3 StandardizedResidual 0.350.300.25 2 1 0 -1 -2 Residuals Versus Temperature (response is Inlet Deformation) Residuals Versus P1 (response is Inlet Deformation) Residuals Versus P2 (response is Inlet Deformation) Residuals Versus P3 (response is Inlet Deformation)
  • 34. V2008 R2 - 34 AM I CDDOE Analysis Step 5 Check for Possible Transformation  A Transformation is not necessary since the SSE for Lambda=1 is below the 95% confidence line. lambda ResidualSumofSquares 210-1-2 1.00 0.10 0.01 0.020 Box-Cox Transformations With approximate 95 % confidence interval for the transformation parameter
  • 35. V2008 R2 - 35 AM I CDDOE Analysis Step 6 Remove Non-significant Terms / Refit Reduced Model - Non-significant terms are removed
  • 36. V2008 R2 - 36 AM I CD  All terms are significant.  R-Sq = 94.21% R-Sq(adj) = 92.67%  Curvature is not significant. DOE Analysis Step 6 Remove Non-significant Terms / Refit Reduced Model
  • 37. V2008 R2 - 37 AM I CDDOE Analysis Step 6 Remove Non-significant Terms / Refit Reduced Model  Normal Probability Plot and Pareto Plot of Effects also show that all terms are significant at a = 0.05.
  • 38. V2008 R2 - 38 AM I CDDOE Analysis Step 6 Remove Non-significant Terms / Refit Reduced Model  The significant effects can also be verified through the Main Effect Plot and Interaction Effect Plot. MeanofInletDeformation 705695685 -0.5 -0.6 -0.7 -0.8 -0.9 0.220.160.10 0.350.290.23 -0.5 -0.6 -0.7 -0.8 -0.9 Temperature P2 P3 Point Type Corner Center Main Effects Plot (data means) for Inlet Deformation T emperature 0.220.160.10 0.350.290.23 -0.4 -0.8 -1.2 P2 -0.4 -0.8 -1.2 P3 Temperature Center 705 Corner Point Type 685 Corner 695 P2 Center 0.22 Corner Point Type 0.10 Corner 0.16 Interaction Plot (data means) for Inlet Deformation
  • 39. V2008 R2 - 39 AM I CDDOE Analysis Step 6 Residual Diagnostics for Reduced Model  The residuals are not normally distributed.  The plot of Residuals vs. Fitted Values and Residuals vs. Run Order do not show any non-random patterns. Standardized Residual Percent 210-1-2 99 90 50 10 1 Fitted Value StandardizedResidual -0.3-0.6-0.9-1.2 2 1 0 -1 -2 Standardized Residual Frequency 2.01.51.00.50.0-0.5-1.0-1.5 4.8 3.6 2.4 1.2 0.0 Observation Order StandardizedResidual 2018161412108642 2 1 0 -1 -2 Normal Probability Plot of the Residuals Residuals Versus the Fitted Values Histogram of the Residuals Residuals Versus the Order of the Data Residual Plots for Inlet Deformation
  • 40. V2008 R2 - 40 AM I CD  The residuals do not show any non-random pattern in the plots of Residuals vs. each Input Factors. DOE Analysis Temperature StandardizedResidual 705700695690685 2 1 0 -1 -2 P1 StandardizedResidual 0.2000.1750.1500.1250.100 2 1 0 -1 -2 P2 StandardizedResidual 0.200.150.10 2 1 0 -1 -2 P3 StandardizedResidual 0.350.300.25 2 1 0 -1 -2 Residuals Versus Temperature (response is Inlet Deformation) Residuals Versus P1 (response is Inlet Deformation) Residuals Versus P2 (response is Inlet Deformation) Residuals Versus P3 (response is Inlet Deformation)
  • 41. V2008 R2 - 41 Y (Inlet Deformation) = -6.9454 + 0.0098 (Temperature) + 1.8524 (P2) + 80.9792 (P3) - 0.1208 (Temperature)*(P3) AM I CDDOE Analysis Step 7 Choose Improved Model & Predict Response The reduced model is acceptable and thus the chosen model is as below:
  • 42. V2008 R2 - 42 AM I CDDOE Analysis Step 7 Choose Improved Model & Predict Response Predict Inlet Deformation at the following settings of factors:  Temperature = 685 °C  P2 = 0.22 MPa  P3 = 0.23 MPa
  • 43. V2008 R2 - 43 AM I CDDOE Analysis Step 8 Interpret Chosen Model The Contour Plot and Surface Plot show the basic changing direction of factors to meet target Y. Temperature P3 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 704702700698696694692690688686 0.34 0.32 0.30 0.28 0.26 0.24 Hold Values P2 0.22 Contour Plot of Inlet Deformation vs P3, Temperature 0.35 Inlet Deformation -1.2 0.30 -0.9 -0.6 P3 -0.3 684 0.25690 696 702 T emperature Hold Values P2 0.22 Surface Plot of Inlet Deformation vs P3, Temperature
  • 44. V2008 R2 - 44 AM I CDDOE Analysis Step 8 Interpret Chosen Model
  • 45. V2008 R2 - 45 AM I CDDOE Analysis Step 8 Interpret Chosen Model Optimal Y value -0.2422 can be reached at the following settings of Xs:  Temperature = 685 °C  P2 = 0.22 MPa  P3 = 0.23 MPa
  • 46. V2008 R2 - 46 AM I CDDOE Analysis Step 9 Make Confirmation Runs  Will conduct 10 confirmation runs at the optimal settings above.  Calculate the confidence interval of prediction based on the number of confirmation test run.  10 confirmation runs conducted. The mean (-0.2387) of the 10 confirmation runs falls within the calculated confidence interval.  Thus we can finally draw the conclusion that the model is acceptable.
  • 47. V2008 R2 - 47 AM I CDPilot Run Data Analysis result: P value is greater than 0.05, the data are normal distributed. Cp=3.09, Cpk=2.17 IndividualValue 30272421181512963 0.00 -0.25 -0.50 _ X=-0.2970 UCL=0.0262 LCL=-0.6203 MovingRange 30272421181512963 0.4 0.2 0.0 __ MR=0.1216 UCL=0.3971 LCL=0 Observation Values 3025201510 -0.15 -0.30 -0.45 -0.1-0.2-0.3-0.4-0.5 0.0-0.2-0.4-0.6 Within Overall Specs Within StDev 0.10776 C p 3.09 C pk 2.17 C C pk 3.09 O v erall StDev 0.09132 Pp 3.65 Ppk 2.57 C pm * Process Capability Sixpack of Inlet Deformation I Chart Moving Range Chart Last 25 Observations Capability Histogram Normal Prob Plot A D: 0.423, P: 0.300 Capability Plot
  • 48. V2008 R2 - 48 AM I CDPilot Run 1.20.80.40.0-0.4-0.8-1.2 LSL USL Process Data Sample?N 60 StDev (Within) 0.14320 StDev (O v erall) 0.14565 LSL -1.25000 Target * USL 1.25000 Sample Mean -1.13583 Potential (Within) C apability C C pk 2.91 O v erall C apability Pp 2.86 PPL 0.26 PPU 5.46 Ppk C p 0.26 C pm * 2.91 C PL 0.27 C PU 5.55 C pk 0.27 O bserv ed Performance PPM?<?LSL 100000.00 PPM?>?USL 0.00 PPM?Total 100000.00 Exp. Within Performance PPM?<?LSL 212646.00 PPM?>?USL 0.00 PPM?Total 212646.00 Exp. O v erall Performance PPM?<?LSL 216566.12 PPM?>?USL 0.00 PPM?Total 216566.12 Within Overall Process Capability of Inlet Deforming Cp=2.91 Cpk=0.27 Cp=3.09 Cpk=2.17 Current Performance: Mean: -0.29 Standard Deviation: s =0.10 Conclusion: variance is Ok and mean improved, successful improvement 0.90.60.30.0-0.3-0.6-0.9 LSL USL Process Data Sample?N 30 StDev (Within) 0.10776 StDev (O v erall) 0.09132 LSL -1.00000 Target * USL 1.00000 Sample Mean -0.29703 Potential (Within) C apability C C pk 3.09 O v erall C apability Pp 3.65 PPL 2.57 PPU 4.73 Ppk C p 2.57 C pm * 3.09 C PL 2.17 C PU 4.01 C pk 2.17 O bserv ed Performance PPM?<?LSL 0.00 PPM?>?USL 0.00 PPM?Total 0.00 Exp. Within Performance PPM?<?LSL 0.00 PPM?>?USL 0.00 PPM?Total 0.00 Exp. O v erall Performance PPM?<?LSL 0.00 PPM?>?USL 0.00 PPM?Total 0.00 Within Overall Process Capability of Inlet Deformation
  • 49. V2008 R2 - 49 AM I CDSolution Summary X1: Cooling rate at inlet position Solution: Add heating insert to help heating around mold inlet area X2: Injection pin location Solution: Add injection pin around mold inlet area for even distribution of force X3: Content of Strontium (Sr) Solution: Lower the Strontium content to the lower limit of Chrysler specification X4: Part placement orientation HT in furnace Solution: Vertical placement in HT furnace X5: Melting aluminum temperature Solution: Adjust the temperature setting X6: Casting filling 3 pressures Solution: Adjust the 3 pressures setting
  • 50. V2008 R2 - 50 Full Scale Implementation Plan Tasks Activities Responsible person Start Date Due Date Status and Actions WI Definition Re-develop the new working instruction for affected process XXX May 5 April 8 Closed Staff Training Train related operators and line supervisors XXX May 5 May 8 Closed Machine parameter adjustment Set the machine conditions XXX May 10 May 12 Closed Data collection Collect the data on time, 5 pcs/shift XXX May 15 June 15 On-going Implementation strategy Define the WI and set the selected pressure/temperature in parallel Then collect the data for 5 pcs per shift Time line: May 15 ~ June 15 AM I CD
  • 51. V2008 R2 - 51 AM I CDSPC Control Chart Sample SampleMean 60544842363024181261 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6 __ X=-0.268 UCL=-0.040 LCL=-0.496 Before After Xbar Chart of Inlet Deformation by Stage
  • 52. V2008 R2 - 52 Replication Standardization Solution Focus Pilot Site Company-wide Similar process Casting & HT process Yes Exhaust Manifold Line Aluminum Workshop Exhaust manifold line and other lines involving casting & HT process AM I CD Replication Opportunity Standardization and Documentation
  • 53. V2008 R2 - 53 Financial Impact Project Benefit: Initial estimate / COPQ: $264,000 Project Name Front Cover Inlet Deformation Issue Improvement Project Leader Ling Hang Financial Benefits 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter Total Direct savings 48,000 48,000 48,000 48,000 $192,000 Cost avoidance (3CPR avoidance) 35,000 $35,000 Total $0.00 $0.00 $0.00 $0.00 $227,000 Non-Financial Benefits Potential more business with Chrysler Signature Approvals MBB Name Date Champion Name Date Finance Name Date AM I CD