SlideShare a Scribd company logo
1 of 6
Nathan Cash 1065621 Page 1
Enzyme Kinetics of Polyphenol oxidase
Author: NathanCash
Experimenters:NathanCash& Jacob Doughan
Introduction
Enzymesare specialisedproteinsthatincrease the rate of a reaction,withoutbeingconsumed.
Polyphenol Oxidase isanenzyme thatcatalysesthe oxidationof phenolssuchascatechol.This
enzyme isthe majorcause of brownpigmentationanddiscolouration infruits,includingbanana[1].
Whenmolecularoxygenispresent,PolyphenolOxidase catalysesthe o-hydroxylationof o-diphenols
intocorrespondingo-quinones.Inbananas,catechol formsbenzoquinone,ayellow compound,after
whichbenzoquinone isoxidisedtomelaninasa resultof oxygenexposure.Consequently,the fruit
presentswithabrowncolourationseeninthe bruisingof fruits[2].Inthisexperiment,the kinetics
of Polyphenol Oxidasewere testedbycombiningenzymeextractwithcatechol.Reactionrateswere
measuredthroughspectrophotometry,atechnique whichwasutilisedtodemonstrate absorption
changesinthe solutionascatechol wascatalysedandunderwentcolourchange toyellow,which
was comparedtoa control.Itwas hypothesisedthatif the concentrationof catechol increased,the
absorptionof the solutionwouldalsoincrease.The aimof thisexperimentwastoobtainthe
Michaelisconstant(Km) andthe maximal velocityof enzymereaction(Vmax) of Polyphenol Oxidase.
Methods
1. Polyphenol Oxidase wasextractedfromapiece of bananaby 10g of the fruitbeingground
intoa paste consistencyusingamortar and pestle onice andwas dilutedusing30mLof ice
water
2. The homogenate (PolyphenolOxidase)solutionwasseparatedfromanysolidsand this
solutionwasthentransferredintoa10mL centrifuge tube.Attentiontodetail wasensured
to minimise oxidationof the sample.
3. The centrifuge tube containingthe enzyme extractwasthenplacedina refrigerated
centrifuge (4˚C) at10, 000 x g for 5 minutes.
4. The enzyme wasdilutedtoa 1:4 ratiowithice coldwater,whichresultedina5mL solution.
5. A 96-well microtiterplate wasusedtomeasure the enzymereactions.A 0.1M phosphate
buffer(pH6.8) was addedtowellsA1-A7usinga P200 air displacementmicropipette with
volumesof 178, 176, 172, 165, 150, 140 & 130µL addedinascendingorder(A1-A7).
6. Step6 wasrepeatedforwellsH1-H7.
7. A 200mM catechol stockwas addedtowellsA1-A7usingairdisplacementpipettesaccording
to volume added,eitherP20or P200. Volumesaddedare asfollowsinorderfromA1-A7:
2.0, 4.0, 8.0, 15.0, 30.0, 40.0 & 50.0µL.
8. Step7 wasrepeatedforwellsH1-H7.
9. Simultaneously,one experimenteradded20µL of water (H2O) towellsA1-A7andthe other
experimenteradded20µL of 1:4 enzyme extracttowellsH1-H7.Thisstepwas completedin
undera minute toensure accurate readingsforenzyme reactions.
Nathan Cash 1065621 Page 2
10. The microtiterplate wasthenimmediatelyplacedinthe plate readerandthe solutionswere
mixedusingthe shakerfunction(highsettingfor5 seconds).The measurementfilterwasset
to 405nm and absorptionreadingsforall wellswere printed.Resultsindicatedthe
absorptionunitsat1 minute.
11. Resultswere recordedinatable andthe differenceswere calculatedandwells withwater
(A1-A7) versuswellswiththe enzyme extract(H1-H7) were compared.
Results
The resultsshowedinTable 1 that the oxidationof catechol occurredmuchfasterandhence a
greaterabsorbance,whenPolyphenol Oxidase wasadded(wellsH1-H7) comparedtothat of wells
A1-A7 whenonlywaterwasaddedwithoutenzymeextract.WellsA1-A7were utilisedasthe control
inorder to measure the differenceinabsorbance whenenzyme extractisadded(tube H-tube A).
Thismethodgivesanaccurate measurementof absorptionforthe wellscontainingenzyme extract,
rather usinga straightreadingof absorption.Figure 1showedabsorptionunitsof Polyphenol
Oxidase catalysingcatechol inthe firstminutewithincreasingconcentrationsof catechol from
2.0mM to 50.0mM, withthe maximal absorptionbeing0.335Abs/minatsubstrate concentration
(catechol) of 50.0mM. A hyperboliccurve of the data showedthe velocityof the reactionoccurring.
The trend of the reaction beganto plateauwhenPolyphenol Oxidase iscompletelysaturatedin
substrate (Figure 2).Km isdemonstratedinFigure 2, at the half maximal response (0.1675Abs
units/min), the Km value can be estimatedtobe 8mM of catechol substrate.Fora more accurate
readingof Km and Vmax a linearLineweaverBurkplotwasconstructedusingvalues1/V0against1/[S].
Figure 3 showsa lineartrendline forenzyme substrate reaction,the y-interceptwhichis3.74Abs
units(V0) givesanindicationof 1/Vmax therefore Vmax being0.26Absunits/min.Furthermore Km was
calculatedbythe 1/x-interceptwhich wasKm wasfoundto be 3.07mM, whichshowedthe substrate
concentrationatthe half maximal reactionvelocity.
Table 1. Absorption unitsfor solutions
1 minute
Tube Enzyme Catechol
[S] (mM)
Absorption units
(Abs)
Tube H-Tube A
(Difference in Abs
units)
H1 + 2.0 0.175 0.143
A1 - 2.0 0.032
H2 + 4.0 0.122 0.083
A2 - 4.0 0.039
H3 + 8.0 0.260 0.221
A3 - 8.0 0.039
H4 + 15.0 0.296 0.224
A4 - 15.0 0.052
H5 + 30.0 0.351 0.292
A5 - 30.0 0.059
H6 + 40.0 0.334 0.270
A6 - 40.0 0.064
H7 + 50.0 0.403 0.335
A7 - 50.0 0.068
Nathan Cash 1065621 Page 3
Figure 1. Absorptionof enzyme extractin1 minute.Linearrepresentationof reactants
Polyphenol Oxidase andcatechol atvarying substrate concentrations 2.0mM-50.0mM
.
Figure 2. V0 (absorptionunitsperminute) plottedagainstsubstrate (catechol) concentration
[S]. Data representedwithahyperboliccurve of enzyme andsubstrate reaction.
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0 10 20 30 40 50 60
V0(Abs/min)
[S]
Nathan Cash 1065621 Page 4
Figure 3. LineweaverBurke Plotof Polyphenoloxidase. Thischartgivesa linearprojectionof
V0 plottedagainst[S] togive a more accurate value forVmax and Km.
Discussion
The activityof Polyphenol Oxidase increasedwiththe amountof substrate itreactedwith,by
increasingthe concentrationof catechol the activityof Polyphenol Oxidaseincreased.Thisbecame
evidentwhenthe dataobtainedfromthe spectrophotometryof the solutionshowedanincrease in
absorptionwhenthe catechol concentrationwasincreased,whichreflectsenzyme activity(Figure
2). Like all enzymes,PolyphenolOxidase isaffectedbytemperature andpH,factorswhichwere
accountedforusinga 0.1M phosphate bufferwithapHof 6.8 inall solutionstomaximiseenzyme
activity.The volume of phosphate bufferaddedincreasedwithincreasedvolumesof catechol
substrate,at50.0mM catechol substrate,130µl of 0.1M phosphate bufferwasaddedtothe solution.
The optimumpH level forPolyphenol OxidasevariesindifferentfruitsrangingfrompH4.0-8.0 [2],
usinga 0.1M phosphate bufferwithapH of 6.8 coincideswithotherstudiesshowingoptimumpH
for BananaPolyphenol OxidasebetweenpH6.5 - 7.0 [2][5] [4].
In bananatissue,PolyphenolOxidase isfoundinthe cytoplasmof cellsandcatechol iscontained
withinvacuoles[3].Whentissue damage occursasa resultof bruisingorinvasionof other
organisms,o-quinone productionservestoseal off the areaand acts on enzymesproducedby
pathogenstoultimatelyinactivatethemandpreventinfectionof the fruit[3].Preparationof the
enzyme extractatcold temperatureswasusedtokeepPolyphenol Oxidase fromreactingwith
catechol whenthe vegetativetissueisdisturbed.The optimumtemperature atwhichPolyphenol
Oxidase catalysescatechol is30˚C[2].Obtainingthe enzyme extractwascarriedoutwithbanana
groundin a mortar on ice and thenspunina centrifuge at4˚C to preventanyreactionof catechol
that may have beenpresentinthe enzymeextract.
Errors in the experimentwere made whichcanbe seeninFigure 1. Theoretically,the absorption
shouldincrease withincreasingconcentrationof catechol,althoughat2.0mM and30.0mM
substrate concentrationthe absorptionvaluesdidnotcorrespondwiththe trendof the data.This
couldpossiblybe due to incorrectmeasurementsof substrate beingaddedtowellsandthenhaving
y = 11.331x + 3.7474
0
2
4
6
8
10
12
14
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
1/V0
(Absunits/min)
1/[S] (mM)
Nathan Cash 1065621 Page 5
to be removed,polluting wellsH1& H5. These valuescanbe overall seenasoutliersasthe majority
of the data followedatrend.The foremostmethodof obtainthe Kmvalue istouse the data from
Figure 3. Thisshowedthatthe Km of polyphenol oxidaseoccuredat3.07mM of substrate andthat
the maximumvelocityof enzyme reactionwas0.26 Absunits/min.Thisvalueof Vmax contradicted
data, as at 50.0mM substrate concentration, the absorptioncanbe seentobe 0.335Abs (Table 1).
Therefore,amore accurate value of Vmax was obtainedthroughanalysisof Figure 2,wherebythe
enzyme reactionbegantoplateau at0.35 Abs units/min(Vmax).Inastudyof Polyphenol Oxidase
frombanana pulpbyYang, C.P etal [4] oxidation of substrate byPolyphenol Oxidasewasmeasured
inthe same wayonlyusinga varietyof substrates.Thisstudyshowedthatdopamine wasrapidly
oxidisedbyPolyphenolOxidase withaKmof 2.8mM [S],and uponadditionof catechol,the
oxidationrate washalf thatof dopamine.The studyconducted,showedthatthe oxidationrate of
catechol wasnot quite half thatof dopamine inthe literature[4] buthad a lowerspecificityfor
catechol witha Km of 3.07mM [S].These resultsdiffersubstantiallyfromthatobtainedin[5] where
avocadoPolyphenol Oxidase wasmeasuredandcatechol wasshowntohave a higherenzyme
activitythanthat of DL-DOPA substrate.
In conclusion,techniquessuchasspectrophotometrywere utilisedtomeasure the enzyme kinetics
of polyphenol oxidaseiseffective,asthe catalysisof catechol intoo-quinoneschangesthe solution
fromtransparentto yellowwhichcanbe measuredusingasetwavelength(405nm).Overall,the
data collectedinthisexperimentshowedthatanincrease incatechol substrate concentration
resultedinincreasedenzymeactivityof Polyphenol Oxidase untilPolyphenol Oxidaseisfully
saturatedinsubstrate at whichVmax occurs (0.35abs units/min)withahalf maximal velocity(Km)of
3.07mM [S],valueswhichcoincidewithsimilarstudies.
Nathan Cash 1065621 Page 6
References:
1. Gooding PS, Robinson SP, Bird C. Molecular cloning and characterisation of banana
fruit Polyphenol oxidase. Planta.September2001;213:5-748-757
2. Umit Unal M. Properties of polyphenol oxidase from Anamur banana (Musa cavendishii).
Food Chemistry 2007; 100:3-909–913
3. Wuyts N, Waele DD, Swennen R. Extraction and partial characterization of polyphenol
oxidase frombanana(Musa acuminata Grande naine) roots.Plantphysiol andbiochemistry.
2007; 44:5–6:308–314
4. Yang CP, FujitaS, AshrafuzzamanM,NakamuraN, Hayashi N.J AgricFood Chem.
2000;48:2732-5.
5. Gomez-LopezVM. Some biochemical propertiesof polyphenoloxidase fromtwovarieties of
avocado. Food Chemistry. 2002; 77:2:163–169

More Related Content

What's hot

Natalie rivera 28nov_2011
Natalie rivera 28nov_2011Natalie rivera 28nov_2011
Natalie rivera 28nov_2011
Programa_BRIC
 
simona Enzymatiy Fatty Ester Synthesis
simona Enzymatiy Fatty Ester Synthesissimona Enzymatiy Fatty Ester Synthesis
simona Enzymatiy Fatty Ester Synthesis
Simona Pe?nik Posel
 
A New Lupan type Triterpene Butilinol from Viburnum grandiflorum
A New Lupan type Triterpene Butilinol from Viburnum grandiflorumA New Lupan type Triterpene Butilinol from Viburnum grandiflorum
A New Lupan type Triterpene Butilinol from Viburnum grandiflorum
IOSR Journals
 
AJPTR-52023_6434
AJPTR-52023_6434AJPTR-52023_6434
AJPTR-52023_6434
Ali Mroweh
 
Chan et al 2002
Chan et al 2002Chan et al 2002
Chan et al 2002
Kin Chan
 

What's hot (20)

Natalie rivera 28nov_2011
Natalie rivera 28nov_2011Natalie rivera 28nov_2011
Natalie rivera 28nov_2011
 
Operating Conditions Effects Onenzyme Activity: Case Enzyme Protease
Operating Conditions Effects Onenzyme Activity: Case Enzyme ProteaseOperating Conditions Effects Onenzyme Activity: Case Enzyme Protease
Operating Conditions Effects Onenzyme Activity: Case Enzyme Protease
 
Lectin-functionalized carboxymethylated kappa-carrageenan microparticles for ...
Lectin-functionalized carboxymethylated kappa-carrageenan microparticles for ...Lectin-functionalized carboxymethylated kappa-carrageenan microparticles for ...
Lectin-functionalized carboxymethylated kappa-carrageenan microparticles for ...
 
Purification and Characterization of Manganese Peroxidase of the White Rot Fu...
Purification and Characterization of Manganese Peroxidase of the White Rot Fu...Purification and Characterization of Manganese Peroxidase of the White Rot Fu...
Purification and Characterization of Manganese Peroxidase of the White Rot Fu...
 
Poster presentation
Poster presentationPoster presentation
Poster presentation
 
Isolation and Characterization of Colchicine from Physostigma Venenosium
Isolation and Characterization of Colchicine from Physostigma VenenosiumIsolation and Characterization of Colchicine from Physostigma Venenosium
Isolation and Characterization of Colchicine from Physostigma Venenosium
 
Phosphate Removal from Water by Iron-Mango Waste Powder.
Phosphate Removal from Water by Iron-Mango Waste Powder.Phosphate Removal from Water by Iron-Mango Waste Powder.
Phosphate Removal from Water by Iron-Mango Waste Powder.
 
Metabolomic Profiling of Spent Biomass Of Marine Microalgae, Chlorella vulgaris
Metabolomic Profiling of Spent Biomass Of Marine Microalgae, Chlorella vulgarisMetabolomic Profiling of Spent Biomass Of Marine Microalgae, Chlorella vulgaris
Metabolomic Profiling of Spent Biomass Of Marine Microalgae, Chlorella vulgaris
 
simona Enzymatiy Fatty Ester Synthesis
simona Enzymatiy Fatty Ester Synthesissimona Enzymatiy Fatty Ester Synthesis
simona Enzymatiy Fatty Ester Synthesis
 
A New Lupan type Triterpene Butilinol from Viburnum grandiflorum
A New Lupan type Triterpene Butilinol from Viburnum grandiflorumA New Lupan type Triterpene Butilinol from Viburnum grandiflorum
A New Lupan type Triterpene Butilinol from Viburnum grandiflorum
 
How to find antioxidant properties from selected plants
How to find antioxidant properties from selected plantsHow to find antioxidant properties from selected plants
How to find antioxidant properties from selected plants
 
DETERMINATION OF MIANSERIN USING TROPAEOLIN-OOO BY ION PAIR FORMATION
DETERMINATION OF MIANSERIN USING TROPAEOLIN-OOO BY ION PAIR FORMATIONDETERMINATION OF MIANSERIN USING TROPAEOLIN-OOO BY ION PAIR FORMATION
DETERMINATION OF MIANSERIN USING TROPAEOLIN-OOO BY ION PAIR FORMATION
 
20081217 01 Busaba Value Creation Of New Yellow Pigments Produced By An Uniqu...
20081217 01 Busaba Value Creation Of New Yellow Pigments Produced By An Uniqu...20081217 01 Busaba Value Creation Of New Yellow Pigments Produced By An Uniqu...
20081217 01 Busaba Value Creation Of New Yellow Pigments Produced By An Uniqu...
 
Protein purification
Protein purificationProtein purification
Protein purification
 
AJPTR-52023_6434
AJPTR-52023_6434AJPTR-52023_6434
AJPTR-52023_6434
 
Enzyme assay methods
Enzyme assay methodsEnzyme assay methods
Enzyme assay methods
 
Synthesis of N,N-butyl-d9-methylpyrrolidinium Bis(trifluoromethanesulfonyl)im...
Synthesis of N,N-butyl-d9-methylpyrrolidinium Bis(trifluoromethanesulfonyl)im...Synthesis of N,N-butyl-d9-methylpyrrolidinium Bis(trifluoromethanesulfonyl)im...
Synthesis of N,N-butyl-d9-methylpyrrolidinium Bis(trifluoromethanesulfonyl)im...
 
Development of RP-HPLC method for simultaneous estimation of gemifloxacin and...
Development of RP-HPLC method for simultaneous estimation of gemifloxacin and...Development of RP-HPLC method for simultaneous estimation of gemifloxacin and...
Development of RP-HPLC method for simultaneous estimation of gemifloxacin and...
 
Chan et al 2002
Chan et al 2002Chan et al 2002
Chan et al 2002
 
Effect of solvents on formation of disulphide bond in peptides: A comparativ...
	Effect of solvents on formation of disulphide bond in peptides: A comparativ...	Effect of solvents on formation of disulphide bond in peptides: A comparativ...
Effect of solvents on formation of disulphide bond in peptides: A comparativ...
 

Viewers also liked (9)

2017ResumeAlexsys
2017ResumeAlexsys2017ResumeAlexsys
2017ResumeAlexsys
 
Incremente su Productividad
Incremente su ProductividadIncremente su Productividad
Incremente su Productividad
 
tusar CV(1)
tusar CV(1)tusar CV(1)
tusar CV(1)
 
Detection of human Alu SINE insertion at the PV92 locus of chromosome 16 usin...
Detection of human Alu SINE insertion at the PV92 locus of chromosome 16 usin...Detection of human Alu SINE insertion at the PV92 locus of chromosome 16 usin...
Detection of human Alu SINE insertion at the PV92 locus of chromosome 16 usin...
 
The Best Programming Practice for Cell/B.E.
The Best Programming Practice for Cell/B.E.The Best Programming Practice for Cell/B.E.
The Best Programming Practice for Cell/B.E.
 
Boecher_Portfolio_Sml
Boecher_Portfolio_SmlBoecher_Portfolio_Sml
Boecher_Portfolio_Sml
 
Best Ivf Specialist Doctor Dr. K.D.Nayar Clinic in Delhi
Best Ivf Specialist Doctor Dr. K.D.Nayar Clinic in DelhiBest Ivf Specialist Doctor Dr. K.D.Nayar Clinic in Delhi
Best Ivf Specialist Doctor Dr. K.D.Nayar Clinic in Delhi
 
Resume of Steven Beckett Jan 2017
Resume of Steven Beckett Jan 2017Resume of Steven Beckett Jan 2017
Resume of Steven Beckett Jan 2017
 
Incremente su Productividad
Incremente su ProductividadIncremente su Productividad
Incremente su Productividad
 

Similar to Enzyme Kinetics of Polyphenol oxidase

35.Isolation and purification of endopolygalacturonase produced by Alternaria...
35.Isolation and purification of endopolygalacturonase produced by Alternaria...35.Isolation and purification of endopolygalacturonase produced by Alternaria...
35.Isolation and purification of endopolygalacturonase produced by Alternaria...
Annadurai B
 
DETERMINE THE Km and vmax OF THE ACIDIC PHOSPHATASE
DETERMINE THE Km and vmax OF THE ACIDIC PHOSPHATASEDETERMINE THE Km and vmax OF THE ACIDIC PHOSPHATASE
DETERMINE THE Km and vmax OF THE ACIDIC PHOSPHATASE
Khusboo Haarshee
 
Senior Poster for AU Research Day (AL)
Senior Poster for AU Research Day (AL)Senior Poster for AU Research Day (AL)
Senior Poster for AU Research Day (AL)
Ailin Lian
 
Benzocaine Catch-up lab report.docx
Benzocaine Catch-up lab report.docxBenzocaine Catch-up lab report.docx
Benzocaine Catch-up lab report.docx
DanielNorton6
 
BarreraBasnetDelgadoLamichhaneShifatuShrestha_Report2_4140_S13
BarreraBasnetDelgadoLamichhaneShifatuShrestha_Report2_4140_S13BarreraBasnetDelgadoLamichhaneShifatuShrestha_Report2_4140_S13
BarreraBasnetDelgadoLamichhaneShifatuShrestha_Report2_4140_S13
Juan Barrera
 
Siavosh Naji-Talakar[email protected]TITLE Enzyme Kineti.docx
Siavosh Naji-Talakar[email protected]TITLE Enzyme Kineti.docxSiavosh Naji-Talakar[email protected]TITLE Enzyme Kineti.docx
Siavosh Naji-Talakar[email protected]TITLE Enzyme Kineti.docx
edgar6wallace88877
 

Similar to Enzyme Kinetics of Polyphenol oxidase (20)

35.Isolation and purification of endopolygalacturonase produced by Alternaria...
35.Isolation and purification of endopolygalacturonase produced by Alternaria...35.Isolation and purification of endopolygalacturonase produced by Alternaria...
35.Isolation and purification of endopolygalacturonase produced by Alternaria...
 
poster template 2015 4501
poster template 2015 4501poster template 2015 4501
poster template 2015 4501
 
New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...
New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...
New RP HPLC method for the simultaneous estimation of sulbactum and ceftriaxo...
 
paper1-published
paper1-publishedpaper1-published
paper1-published
 
BCE-lab report
BCE-lab reportBCE-lab report
BCE-lab report
 
Addition condensation
Addition condensationAddition condensation
Addition condensation
 
Atp as a biological hydrotrope
Atp as a biological hydrotropeAtp as a biological hydrotrope
Atp as a biological hydrotrope
 
DETERMINE THE Km and vmax OF THE ACIDIC PHOSPHATASE
DETERMINE THE Km and vmax OF THE ACIDIC PHOSPHATASEDETERMINE THE Km and vmax OF THE ACIDIC PHOSPHATASE
DETERMINE THE Km and vmax OF THE ACIDIC PHOSPHATASE
 
7.29.10 enzymes (kinetics) coloso
7.29.10 enzymes (kinetics)   coloso7.29.10 enzymes (kinetics)   coloso
7.29.10 enzymes (kinetics) coloso
 
Analysis of bioreactor parameters online and offline
Analysis of bioreactor parameters online and offlineAnalysis of bioreactor parameters online and offline
Analysis of bioreactor parameters online and offline
 
Senior Poster for AU Research Day (AL)
Senior Poster for AU Research Day (AL)Senior Poster for AU Research Day (AL)
Senior Poster for AU Research Day (AL)
 
Effect of solvents on formation of disulphide bond in peptides: A comparative...
Effect of solvents on formation of disulphide bond in peptides: A comparative...Effect of solvents on formation of disulphide bond in peptides: A comparative...
Effect of solvents on formation of disulphide bond in peptides: A comparative...
 
Benzocaine Catch-up lab report.docx
Benzocaine Catch-up lab report.docxBenzocaine Catch-up lab report.docx
Benzocaine Catch-up lab report.docx
 
Report 9
Report 9Report 9
Report 9
 
BarreraBasnetDelgadoLamichhaneShifatuShrestha_Report2_4140_S13
BarreraBasnetDelgadoLamichhaneShifatuShrestha_Report2_4140_S13BarreraBasnetDelgadoLamichhaneShifatuShrestha_Report2_4140_S13
BarreraBasnetDelgadoLamichhaneShifatuShrestha_Report2_4140_S13
 
Siavosh Naji-Talakar[email protected]TITLE Enzyme Kineti.docx
Siavosh Naji-Talakar[email protected]TITLE Enzyme Kineti.docxSiavosh Naji-Talakar[email protected]TITLE Enzyme Kineti.docx
Siavosh Naji-Talakar[email protected]TITLE Enzyme Kineti.docx
 
Antioxidant analysis
Antioxidant analysisAntioxidant analysis
Antioxidant analysis
 
Inhalational agents
Inhalational agentsInhalational agents
Inhalational agents
 
TR0006-Extinction-coefficients.pdf
TR0006-Extinction-coefficients.pdfTR0006-Extinction-coefficients.pdf
TR0006-Extinction-coefficients.pdf
 
A04210105
A04210105A04210105
A04210105
 

Enzyme Kinetics of Polyphenol oxidase

  • 1. Nathan Cash 1065621 Page 1 Enzyme Kinetics of Polyphenol oxidase Author: NathanCash Experimenters:NathanCash& Jacob Doughan Introduction Enzymesare specialisedproteinsthatincrease the rate of a reaction,withoutbeingconsumed. Polyphenol Oxidase isanenzyme thatcatalysesthe oxidationof phenolssuchascatechol.This enzyme isthe majorcause of brownpigmentationanddiscolouration infruits,includingbanana[1]. Whenmolecularoxygenispresent,PolyphenolOxidase catalysesthe o-hydroxylationof o-diphenols intocorrespondingo-quinones.Inbananas,catechol formsbenzoquinone,ayellow compound,after whichbenzoquinone isoxidisedtomelaninasa resultof oxygenexposure.Consequently,the fruit presentswithabrowncolourationseeninthe bruisingof fruits[2].Inthisexperiment,the kinetics of Polyphenol Oxidasewere testedbycombiningenzymeextractwithcatechol.Reactionrateswere measuredthroughspectrophotometry,atechnique whichwasutilisedtodemonstrate absorption changesinthe solutionascatechol wascatalysedandunderwentcolourchange toyellow,which was comparedtoa control.Itwas hypothesisedthatif the concentrationof catechol increased,the absorptionof the solutionwouldalsoincrease.The aimof thisexperimentwastoobtainthe Michaelisconstant(Km) andthe maximal velocityof enzymereaction(Vmax) of Polyphenol Oxidase. Methods 1. Polyphenol Oxidase wasextractedfromapiece of bananaby 10g of the fruitbeingground intoa paste consistencyusingamortar and pestle onice andwas dilutedusing30mLof ice water 2. The homogenate (PolyphenolOxidase)solutionwasseparatedfromanysolidsand this solutionwasthentransferredintoa10mL centrifuge tube.Attentiontodetail wasensured to minimise oxidationof the sample. 3. The centrifuge tube containingthe enzyme extractwasthenplacedina refrigerated centrifuge (4˚C) at10, 000 x g for 5 minutes. 4. The enzyme wasdilutedtoa 1:4 ratiowithice coldwater,whichresultedina5mL solution. 5. A 96-well microtiterplate wasusedtomeasure the enzymereactions.A 0.1M phosphate buffer(pH6.8) was addedtowellsA1-A7usinga P200 air displacementmicropipette with volumesof 178, 176, 172, 165, 150, 140 & 130µL addedinascendingorder(A1-A7). 6. Step6 wasrepeatedforwellsH1-H7. 7. A 200mM catechol stockwas addedtowellsA1-A7usingairdisplacementpipettesaccording to volume added,eitherP20or P200. Volumesaddedare asfollowsinorderfromA1-A7: 2.0, 4.0, 8.0, 15.0, 30.0, 40.0 & 50.0µL. 8. Step7 wasrepeatedforwellsH1-H7. 9. Simultaneously,one experimenteradded20µL of water (H2O) towellsA1-A7andthe other experimenteradded20µL of 1:4 enzyme extracttowellsH1-H7.Thisstepwas completedin undera minute toensure accurate readingsforenzyme reactions.
  • 2. Nathan Cash 1065621 Page 2 10. The microtiterplate wasthenimmediatelyplacedinthe plate readerandthe solutionswere mixedusingthe shakerfunction(highsettingfor5 seconds).The measurementfilterwasset to 405nm and absorptionreadingsforall wellswere printed.Resultsindicatedthe absorptionunitsat1 minute. 11. Resultswere recordedinatable andthe differenceswere calculatedandwells withwater (A1-A7) versuswellswiththe enzyme extract(H1-H7) were compared. Results The resultsshowedinTable 1 that the oxidationof catechol occurredmuchfasterandhence a greaterabsorbance,whenPolyphenol Oxidase wasadded(wellsH1-H7) comparedtothat of wells A1-A7 whenonlywaterwasaddedwithoutenzymeextract.WellsA1-A7were utilisedasthe control inorder to measure the differenceinabsorbance whenenzyme extractisadded(tube H-tube A). Thismethodgivesanaccurate measurementof absorptionforthe wellscontainingenzyme extract, rather usinga straightreadingof absorption.Figure 1showedabsorptionunitsof Polyphenol Oxidase catalysingcatechol inthe firstminutewithincreasingconcentrationsof catechol from 2.0mM to 50.0mM, withthe maximal absorptionbeing0.335Abs/minatsubstrate concentration (catechol) of 50.0mM. A hyperboliccurve of the data showedthe velocityof the reactionoccurring. The trend of the reaction beganto plateauwhenPolyphenol Oxidase iscompletelysaturatedin substrate (Figure 2).Km isdemonstratedinFigure 2, at the half maximal response (0.1675Abs units/min), the Km value can be estimatedtobe 8mM of catechol substrate.Fora more accurate readingof Km and Vmax a linearLineweaverBurkplotwasconstructedusingvalues1/V0against1/[S]. Figure 3 showsa lineartrendline forenzyme substrate reaction,the y-interceptwhichis3.74Abs units(V0) givesanindicationof 1/Vmax therefore Vmax being0.26Absunits/min.Furthermore Km was calculatedbythe 1/x-interceptwhich wasKm wasfoundto be 3.07mM, whichshowedthe substrate concentrationatthe half maximal reactionvelocity. Table 1. Absorption unitsfor solutions 1 minute Tube Enzyme Catechol [S] (mM) Absorption units (Abs) Tube H-Tube A (Difference in Abs units) H1 + 2.0 0.175 0.143 A1 - 2.0 0.032 H2 + 4.0 0.122 0.083 A2 - 4.0 0.039 H3 + 8.0 0.260 0.221 A3 - 8.0 0.039 H4 + 15.0 0.296 0.224 A4 - 15.0 0.052 H5 + 30.0 0.351 0.292 A5 - 30.0 0.059 H6 + 40.0 0.334 0.270 A6 - 40.0 0.064 H7 + 50.0 0.403 0.335 A7 - 50.0 0.068
  • 3. Nathan Cash 1065621 Page 3 Figure 1. Absorptionof enzyme extractin1 minute.Linearrepresentationof reactants Polyphenol Oxidase andcatechol atvarying substrate concentrations 2.0mM-50.0mM . Figure 2. V0 (absorptionunitsperminute) plottedagainstsubstrate (catechol) concentration [S]. Data representedwithahyperboliccurve of enzyme andsubstrate reaction. 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0 10 20 30 40 50 60 V0(Abs/min) [S]
  • 4. Nathan Cash 1065621 Page 4 Figure 3. LineweaverBurke Plotof Polyphenoloxidase. Thischartgivesa linearprojectionof V0 plottedagainst[S] togive a more accurate value forVmax and Km. Discussion The activityof Polyphenol Oxidase increasedwiththe amountof substrate itreactedwith,by increasingthe concentrationof catechol the activityof Polyphenol Oxidaseincreased.Thisbecame evidentwhenthe dataobtainedfromthe spectrophotometryof the solutionshowedanincrease in absorptionwhenthe catechol concentrationwasincreased,whichreflectsenzyme activity(Figure 2). Like all enzymes,PolyphenolOxidase isaffectedbytemperature andpH,factorswhichwere accountedforusinga 0.1M phosphate bufferwithapHof 6.8 inall solutionstomaximiseenzyme activity.The volume of phosphate bufferaddedincreasedwithincreasedvolumesof catechol substrate,at50.0mM catechol substrate,130µl of 0.1M phosphate bufferwasaddedtothe solution. The optimumpH level forPolyphenol OxidasevariesindifferentfruitsrangingfrompH4.0-8.0 [2], usinga 0.1M phosphate bufferwithapH of 6.8 coincideswithotherstudiesshowingoptimumpH for BananaPolyphenol OxidasebetweenpH6.5 - 7.0 [2][5] [4]. In bananatissue,PolyphenolOxidase isfoundinthe cytoplasmof cellsandcatechol iscontained withinvacuoles[3].Whentissue damage occursasa resultof bruisingorinvasionof other organisms,o-quinone productionservestoseal off the areaand acts on enzymesproducedby pathogenstoultimatelyinactivatethemandpreventinfectionof the fruit[3].Preparationof the enzyme extractatcold temperatureswasusedtokeepPolyphenol Oxidase fromreactingwith catechol whenthe vegetativetissueisdisturbed.The optimumtemperature atwhichPolyphenol Oxidase catalysescatechol is30˚C[2].Obtainingthe enzyme extractwascarriedoutwithbanana groundin a mortar on ice and thenspunina centrifuge at4˚C to preventanyreactionof catechol that may have beenpresentinthe enzymeextract. Errors in the experimentwere made whichcanbe seeninFigure 1. Theoretically,the absorption shouldincrease withincreasingconcentrationof catechol,althoughat2.0mM and30.0mM substrate concentrationthe absorptionvaluesdidnotcorrespondwiththe trendof the data.This couldpossiblybe due to incorrectmeasurementsof substrate beingaddedtowellsandthenhaving y = 11.331x + 3.7474 0 2 4 6 8 10 12 14 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 1/V0 (Absunits/min) 1/[S] (mM)
  • 5. Nathan Cash 1065621 Page 5 to be removed,polluting wellsH1& H5. These valuescanbe overall seenasoutliersasthe majority of the data followedatrend.The foremostmethodof obtainthe Kmvalue istouse the data from Figure 3. Thisshowedthatthe Km of polyphenol oxidaseoccuredat3.07mM of substrate andthat the maximumvelocityof enzyme reactionwas0.26 Absunits/min.Thisvalueof Vmax contradicted data, as at 50.0mM substrate concentration, the absorptioncanbe seentobe 0.335Abs (Table 1). Therefore,amore accurate value of Vmax was obtainedthroughanalysisof Figure 2,wherebythe enzyme reactionbegantoplateau at0.35 Abs units/min(Vmax).Inastudyof Polyphenol Oxidase frombanana pulpbyYang, C.P etal [4] oxidation of substrate byPolyphenol Oxidasewasmeasured inthe same wayonlyusinga varietyof substrates.Thisstudyshowedthatdopamine wasrapidly oxidisedbyPolyphenolOxidase withaKmof 2.8mM [S],and uponadditionof catechol,the oxidationrate washalf thatof dopamine.The studyconducted,showedthatthe oxidationrate of catechol wasnot quite half thatof dopamine inthe literature[4] buthad a lowerspecificityfor catechol witha Km of 3.07mM [S].These resultsdiffersubstantiallyfromthatobtainedin[5] where avocadoPolyphenol Oxidase wasmeasuredandcatechol wasshowntohave a higherenzyme activitythanthat of DL-DOPA substrate. In conclusion,techniquessuchasspectrophotometrywere utilisedtomeasure the enzyme kinetics of polyphenol oxidaseiseffective,asthe catalysisof catechol intoo-quinoneschangesthe solution fromtransparentto yellowwhichcanbe measuredusingasetwavelength(405nm).Overall,the data collectedinthisexperimentshowedthatanincrease incatechol substrate concentration resultedinincreasedenzymeactivityof Polyphenol Oxidase untilPolyphenol Oxidaseisfully saturatedinsubstrate at whichVmax occurs (0.35abs units/min)withahalf maximal velocity(Km)of 3.07mM [S],valueswhichcoincidewithsimilarstudies.
  • 6. Nathan Cash 1065621 Page 6 References: 1. Gooding PS, Robinson SP, Bird C. Molecular cloning and characterisation of banana fruit Polyphenol oxidase. Planta.September2001;213:5-748-757 2. Umit Unal M. Properties of polyphenol oxidase from Anamur banana (Musa cavendishii). Food Chemistry 2007; 100:3-909–913 3. Wuyts N, Waele DD, Swennen R. Extraction and partial characterization of polyphenol oxidase frombanana(Musa acuminata Grande naine) roots.Plantphysiol andbiochemistry. 2007; 44:5–6:308–314 4. Yang CP, FujitaS, AshrafuzzamanM,NakamuraN, Hayashi N.J AgricFood Chem. 2000;48:2732-5. 5. Gomez-LopezVM. Some biochemical propertiesof polyphenoloxidase fromtwovarieties of avocado. Food Chemistry. 2002; 77:2:163–169