SlideShare a Scribd company logo
Basic Electricity for Fursuits
A lot of people find wiring up lighting and fans for
their fursuits daunting. But it's not too hard if you
follow a few simple guidelines.
We'll look at batteries, switches, LED's, fans, and
the basics of wiring and soldering.
CanFURence 2016
Revision 5
What I hope to present ...
● I'm not really going to go into a lot of detail
about what to do with LED's, fans, etc.
● I'll leave the creative side of what to accomplish
up to you.
● I'll try to give you the how so that you can
decide on the what you want to do with them.
Vast, Hand-waving Simplifications
● This presentation is glossing over a lot of
details, because I don't want to bore people
● Also, what we're talking about doesn't need
more than a workable approximation.
So what is this electricity stuff
anyways?
● The usual analogy is to think plumbing.
– Think of water as electricity (electrons)
– Batteries are like a water tower – the higher it is the higher
the pressure (voltage), the bigger the tank the more energy
it can hold (AmpHours)
– Wires are like the pipes
– Switches are like valves
– Amps are like how much water flows each second
– LED's and fans take that flow, and convert it to light or air
movement.
A little bit of Math,
because it's useful
● Ohm's Law
I = E/R
I (current, Amperes)
E (voltage, Volts)
R (resistance, Ohms usually written as Ω)
● Why is this useful?
You can measure the voltage across a resistor, and
know the current flowing through the resistor.
A little bit more, sometimes useful
● I = P/E
(current = power / voltage)
e.g. something rated 1 Watt at 12 Volts is drawing
1/12 of an Amp (0.083A or 83mA)
1 Ampere = 1000 milliAmpere
Nothing is perfect
● In the real world, nothing works like theory
anyways.
● Batteries in particular are a headache
What's wrong with batteries?
● Think of them like a glass of water filled with
ice.
– If you drink it quickly, you get a little water and a lot
of ice left behind.
– If you drink slowly, the ice melts, you drink a full
glass of water, and there's no ice left behind.
Think of a fully charged battery
But if you use it quickly,
you leave some behind
But if you use it gradually, you won't
leave much behind.
More of
What's wrong with batteries?
● They're heavy and bulky
– Think of that weight/bulk representing energy that ultimately gives us light or turns a fan
– The more light for longer we want, or the longer to run a fan, we will have to carry around more weight and bulk.
● Remember the glass of ice? Lets say you have two 1 litre glasses, and they're each half ice.
– If you pour out 500ml from the first glass, you have only ice left.
– If you pour out 125ml from the second glass, you still have 375ml of water, and 500ml of ice left. Wait a little while, then pour
out another 125ml, and keep repeating this. By waiting, you've given the ice a chance to melt, and you'll be able to get more
than 500ml before you have nothing but ice.
What does that analogy mean?
– Increasing the the rate at which you pull energy out of a battery will give you less energy before you run out of usable energy.
– But also using a bigger battery means you can get more water before you have only ice.
– So you either live with shortening the run time, or use a larger battery pack if you need a particular rate.
– See also “Brook's Law” - One of the points made in the book “The Mythical Man-Month” is that having 1 person working on a
project for 1000 days is not the same as having 1000 people working on a project for 1 day. Batteries are kind of like that – if
you have a 20Ah battery, you can draw 1A of current from it for 20hours, you will get less than 1 hour of output if you draw 20A
from it.
But ...
● They may be less than perfect, but we can still
do something useful.
● For a lot of useful info on batteries, their use,
care and feeding, have a look at
http://www.powerstream.com/
What I won't really mention (much)
●
Rechargeable batteries
– When you add in the charger, they're pretty expensive up front.
– The charger needs to be plugged into an outlet, and I don't want anyone getting
killed by trying to do it themselves. So, unless you know what you're doing...
– Depending on the type, the requirements for the charger to work correctly are
complicated.
– But, depending on what kind of battery chemistry, they can have advantages over
alkaline batteries.
– Oh, and you probably want two sets – so you can keep one of them on charge while
you're using the one set. That should prevent you from having a discharged battery
just when you need if.
●
So, if you want rechargeable batteries, buy them and the matching charger.
Battery Simplification
● We'll talk about non-rechargeable alkaline type
batteries.
– Common sizes: AAA, AA, C, D, 9V
– Limited voltages: nominal 12V, 6V, and 9V
● How do we get 6V, 9V and 12V output?
– Use either 4 batteries for 6V, 6 for 9V and 8 for 12V
● Is it really 6, 9, or 12 volt?
– No, but it's close enough.
8xAA Battery holder
How much power can I get? **
Capacities assume 100mA discharge - higher rates will decrease
available power, lower rates will generally provide more effective
capacity.
● AAA – about 450mAh
● AA – about 1200mAh
● 9V – about 400mAh *
● C – about 4500mAh
● D – about 10000mAh
These are based on discharge to 1.2V for all except 9V which is to 6.0V.
* For an equal comparison, I should compare the capacity to a discharge of the 9V to 7.2V, but manufacturer
data sheets don't list that. For 7.2V the actual capacity is probably more like 300mAh.
** I presented hugely incorrect numbers at FE in this slide, these are corrected values. My apologies for a major case of brain
confusion.
Note on battery capacity
● Manufacturer data sheets list capacity based upon a
discharge to a lower voltage (0.8V or 4.8V) than on
the previous slide – one particular vendor shows:
● AAA - 900mAh
● AA - 2200mAh
● 9V - 470mAh
● C - 7500mAh
● D - 16000mAh
Capacity and the 20 hour rating
● Some batteries, especially “Gel” cells, come with an
amp-hour rating at a 20 hour rate.
● “Gel” cells – rechargeable battery, like a car battery,
but with a gelled electrolyte instead of liquid acid.
● So, a 12V 1.2 Ah battery means that you can draw
1.2 / 20 amps (or 60 milliamps) for 20 hours, giving
1.2 Amp-hours total energy.
● You can’t draw 1.2 amps for an hour – you might
get half an hour before the voltage drops too low.
LED's
● Convert electricity to light, if you feed them correctly.
● Polarity sensitive – hook them up backwards and they
won't light up
● Need 20mA current nominal maximum current (mostly)
● Different colours have different voltage across them
when lit
– Red/yellow/orange about 2 Volts
– green/blue/white about 3 Volts
● Lets call it 2.5 Volts
Polarity you say?
So how do I hook them up?
● 3 cases – 6V, 9V and 12V
● 6V – 1 resistor per LED, each LED draws 20mA
● 9V – 1 resistor in series with 2 LED's, every 2
draw 20mA
● 12V – 1 resistor in series with 3 LED's, every 3
draw 20mA
Yeah, but ...
So say you have 6 LED's
– 6V battery pack – 120mA current draw
– 9V battery pack – 60mA current draw
– 12V battery pack – 40mA current draw
You'll notice the power usage (voltage * current) is very different in
each case – the different is being thrown away as heat in the resistors.
● If you're using AA batteries
– 4xAA – 2200mAh/120mA = about 18 hours
– 9V – 400mAh/60mA = about 6 hours
– 8xAA – 2200mAh/40mA = about 55 hours
What about those LED Strips
● Effectively the same chip inside a single LED, but mounted
on a flexible strip, along with limiting resistors (or sometimes
a driver chip)
● Packaged on a reel – some vendors will cut to length
● Multiple versions
– Single colour
– RGB – each chip is actually 3 LED's with limiting resistors
– Digital RGB – controller/driver chip for LED's
● Some are “waterproof”
● A little delicate
Typical RGB LED strip
Key Features
● Flexible substrate with adhesive back
● LED's with built in resistors for nominal 12V
operation
● Best used on a prop with protection
● Shouldn't be washed, or flexed a lot. If you're
careful, you could use it on more rigid parts of a
costume and remove it for washing.
Close up of LED strip
Note ...
● The white squares are the LED's – really 3
LED's in one, Red, Blue, and Green
● The “scissor” symbol marks where you can cut
the strip into shorter pieces.
● The copper pads are where you can solder to
them, or slide on connectors.
Waterproof RGB Strip,
Digital Interface
Resistors, what are those?
● It is a device that “resists” the flow of electricity, by
turning the energy into heat.
– Just think of them as a pair of wires with a blob of stuff
in the middle
– And we use them to ensure that only a certain amount
of current flows through the LED's – which prevents
them from going up in a small poof of smoke.
– The higher the resistance (in Ohms, abbreviated as Ω)
the less current flows, and vice-versa
Here's an example
(270 ohm 5% 1/4 watt)
And that means?
● Resistors are marked with colour bands to signify
the value:
2 (red) 7 (violet) 1 (10**1 == times 10)
= 27 * 10 = 270
gold band – 5% tolerance on the value
0.25 watt – uhhh, because it is?
Maximum power dissipation we would ever need
for LED's is
0.020A (20mA) * 12V = 0.24W.
And they only come in some values
We'll just look at the 10% values, 'cause they're
close enough, even though you can use 5% or 1%
tolerance resistors too.
● 10% resistor values:
10 12 15 18 22 27 33 39 47 56 68 82
● Which means can multiply any of those values by
10, 100, 1000, 100000, .... to get a 22Ω, 220Ω,
2.2KΩ,22KΩ, 220KΩ, ... resistor
So, what values do we need?
● Simplification:
1 resistor, 1 LED at 6V – (6V-2.5V)/0.02 = 175ohms
1 resistor, 2 LED's at 9V – (9V-5V)/0.02 = 200ohms
1 resistor, 3 LED's at 12V – (12V-7.5V)/0.02 = 225ohms
● So we could use 180, 200, and 220 ohm resistors, or
just use 220ohms (or 270ohms if we want to trade off
brightness for duration) for everything, since we're
trying to keep it simple.
Obligatory Circuit Diagram
Crude Example
Vast Oversimplification Warning
Remember what I said earlier – this is a
simplification. Not a bad approximation, but...
YMMV
TANSTAAFL
Fans
● Electricity in, air movement out
● We're only going to look at DC axial fans
– Different sizes – 40mm through 120mm
– Different thicknesses – 10mm to 25mm
– Different air volumes
– Different noise levels
– I'm going look at 12V ones, although they come in many voltages, and run on
both DC and AC electricity
● Usually the smaller the fan either less air flow, or more noise to
maintain air flow
● Fans will have a red(+), black(-) and sometimes a third lead that we'll
ignore (it's for a tachometer signal)
Run Time estimate
● Remember what we did with the LED's?
● Take their current rating, and divide by the mAh
value of your batteries, and you'll have a rough
value (although it may be on the low side, since
they're moderately high current.
Sample 60mm fans
But from above
Some real differences
● 2 are 25mm thick, 1 is 15mm
● Different currents: 100mA, 150mA, 220mA
– Runtime of about 22, 14 and about 9 hours with
8xAA batteries.
– Remember about the higher draw shortening life –
I've adjusted the numbers a bit to take that into
account, but still kind of a rough guess.
I don't want all that battery weight in
my fursuit head ...
● Yeah, you probably don't.
● What I'd suggest is increase the length of the wires running
to the fan. The 22g wires I've suggested are more than
adequate to allow the battery to be located elsewhere
(collar, pouch hanging from your neck, belt, ??? - is that a
battery pack in your pocket or are you just glad to see me)
on your suit.
● You'll want to leave a little slack so that you can remove
your head, and then have a plug/jack to allow you to fully
disconnect the fan in your head when you want to take it
off.
Moving parts
● One side of the fan is the actual moving part –
you'll need to protect it from rubbing against
anything so it will turn
● Something like the fan guard shown in the next
slide
● They aren't waterproof – you'll need to remove
the fan before you wash your head.
Fan with guard
Wires
● Copper transports the electricity
● Stranded vs Solid
– Stranded – made up of many smaller sized wires
– Solid – one solid piece of wire
– Anywhere the wire is flexed, use stranded.
● Gauge – size of the wire
– Higher the number, the smaller the wire
● Insulation – plastic coating on the copper
– Higher the voltage, more/better insulation needed
– But we're only talking about 12Volts, so anything you find should be more
than good enough.
Wire, continued
● What we'll use:
– 24 or 22 Gauge stranded, low voltage
– 2 rolls of single conductor wire, one red, one black.
– You can also use wire with two conductors, your choice.
● What if I can only get 26 Gauge or 18 Gauge?
– Close enough
● Why red/black?
– Because – but you can use any colours you want as long as you find it easy to
know which they are. Two conductor wire may be just one colour, but will have
either a printed white strip, ribbing molded into the insulation, or other mechanism
to tell them apart.
– red is “positive” or “+”
– Black is “negative” or “-”
Switches
● Controls the flow of electricity
● A lot of different ways to package them.
● SPST - “single pole, single throw”
● Two terminals, usually a toggle or slide
● Some switches may have 3 terminals (SPDT) – but you can
use them as a 2 terminal device
● We're not using a lot of current with the stuff I'm talking about
here, so most any switch you choose will be able to handle
the current (mostly less than 1A.)
● We can also take a battery out of the pack to turn it “off”
Basic Tools
● Soldering iron
● Rosin core solder
● Wire stripper – removes insulation
● Needle nose pliers – holding small or hot objects
● Side cutters – cutting wires
● “helping hands” - useful but not essential, for
when you need more than two hands
Soldering Irons
● There are a lot of variations, but they all have a
means to heat up metal sufficient to melt solder
● NOTE: you're not melting the solder, you're
heating up what you want to solder.
● You can spend $10 or $200+ on a soldering iron.
The more expensive ones are nice, but the $10
one will work.
● Choose the size for what you want to solder – we
need an iron at the smaller end of the scale
No, too big usually ...
Not bad for small volume work ...
OK for a lot of stuff
Ah, now just the thing ...
Soldering Iron Safety
● They get really hot – 600° to 800° F – that's hot
enough to start fires, so use them on fire-resistant
surfaces and away from combustible materials.
● You can get burned very badly, so treat them with
respect
● When you're done with them, make sure you turn
them off and unplug them. Make sure.
● Did I say enough “THEY GET REALLY HOT”?
Solder
● You can use any of the common alloys (50/50,
60/40, ... - we don't need anything exotic)
● The “Rosin Core” cleans when you solder, so
you don't have to have that as a separate step.
● We're doing relatively small stuff, so get a
smaller size – 1/16 of an inch (0.0625) or
smaller.
Doesn't have to be this thin ...
Solder – a safety note
● Contains lead (although there are lead free
ones)
● Don't breath fumes when soldering
● Wash hands after handling
● If you do this a lot you should invest in a fume
extractor
● And when melted it is HOT! As in the surface-
of-the-planet-Mercury hot.
Wire strippers – many different
shapes and sizes
Needle Nose and Side Cutter
When you don't have hand-paws in
addition to your hands ...
Oh yeah, sometimes you have to
take things apart ...
Maybe a little trim ...
And maybe we need to measure a
voltage or two ...
Just a few more things ...
● Electrical tape – conventional or self-
amalgamating
● Heat shrink tubing - and a heat gun?
● ....
Well, maybe ...
● You get the idea, there are a lot of nice to have
tools, but you can get away with the basic list ...
● Inclusion or exclusion of any particular brand of
tool is purely accidental – take my mention of
them for what it is worth.
● Some of the tools shown are inexpensive tools
– serviceable, but you should make your own
value judgements.
Very basic soldering
● Strip back the insulation
● Heat the items you're soldering – briefly – as long as
necessary but no longer
● Touch the solder to the heated items, not the soldering iron tip
(well, you may like to put a little bit of solder at the point
where the iron touches the wires to improve heat transfer, but
the majority should be melted by the wires being hot enough)
● Feed as much solder as you need, then remove the solder
and the iron
● Let it cool – if you've done it right, it will be nice and shiny.
Joining wires
● Strip back some insulation, twist together,
solder – not really the best way, but often good
enough.
● Insulate with tape or heat-shrink tubing.
● For a stronger joint, use a “Western Union
Splice”
More information
● I'll try to expand this section soon, but here are
some other presentations with more detail
● https://youtu.be/BLfXXRfRIzY
● http://www.slideshare.net/JasonDeMoe/how-to-solder-v35
● http://www.slideshare.net/callr/soldering-14867588
Want to make something flash?
● Look up resources on line for the “555” chip
such as http://www.instructables.com/id/555-
Timer/
● They're pretty durable, relatively simple to use.
● But until you feel comfortable doing the basics
maybe this is a little challenging
If you get into doing circuitry you'll
want something like this
(circuitry optional)
EL (electroluminescent) lighting
● Think of them like flexible fluorescent lamps
● But they need about 100VAC at about 1kHZ to drive them.
● If you want to use them, buy the inverter. It isn't a simple
DIY project.
● You may want the vendor to connect the wires to the EL
wire, or if you feel confident you can try soldering to them
yourself
● Most vendors will provide the connectors - you just have
to connect the wires, not solder directly the EL wire
Typical EL “kit”
EL
● Shown inverter has 2 AA batteries and 3m of EL wire
● Ran for over 12 hours, but brightness decreased as
battery was used up
● Other inverters with more batteries for more length
of EL wire or longer run time. There are also AC
powered inverters for fixed intallations.
● Different diameter and colours of EL wire available
● You may not like the sound it makes
Want more info on EL wires?
● Lots of interesting pieces on Instructables, such
as:
http://www.instructables.com/id/How-to-Solder-
EL-Electroluminescent-Wire/
Microcontrollers
● Arduino, Raspberry PI
● Small computers well adapted to controlling
lights, servos, ...
● Can be programmed in software to control very
complicated systems.
● But really, if you know how to use them you
probably don't need this presentation?
Batteries – an environmental note
● Depending on the chemistry, they contain a lot
of chemicals, and some even contain lead.
● When you're done with them, please dispose of
them in a safe way.
● In Toronto, take them to your local “Environment
Days”, or the Household Hazardous Waste
Depots at the City of Toronto Transfer Stations.
See http://www.toronto.ca for full details.
Toronto Parts Sources
● Above All Electronic Surplus, Ltd (mostly old, computer related)
635 Bloor Street W Suite A
Toronto, ON M6G 1K8
(416) 588-8119
● Electronic Surplus Industries
(more of a curiosity than a supplier – props for the film industry mostly)
53 Sheffield Street
North York, ON M6M 3E5
(416) 240-1950
●
Active Surplus (new and old)
347 Queen Street W
Toronto, ON M5V 2A4
(416) 593-0909
Closed – they did have a second location, but I’m not sure if it is still open either.
● Home Hardware (hosting Supremetronic in the basement - new)
290 College St
Toronto, ON M5T 1S3
(416) 922-1158
Toronto Parts Sources, Continued
● A-1 Electronic Parts (new and old)
www.a1parts.com
196 North Queen
Etobicoke, ON Canada
(416) 255-0343
●
Sayal Electronics (new)
www.sayal.com
1350 Matheson Blvd E #1-5
Mississauga, ON
(905) 238-8640
● Sayal Electronics (new)
www.sayal.com
1330 Creditstone Road
Vaughan, ON
(905) 738-7193
●
Creatron Inc. (new – emphasis on microcontrollers but also components)
www.creatroninc.com
349 College Street (or 255?)
Toronto, ON
(647) 349-9258 (or 416-977-9258?)
Toronto Parts Sources, Continued
● Lee Valley Tools (3 physical locations in the GTA)
https://www.leevalley.com/
(they mostly don't sell electronics – but they have started to carry LED lighting strips)
Ottawa Sources
● I have not personally checked all these out, but they look likely.
● Gervais Electronics
716 Industrial Avenue, Unit 1
Ottawa Ontario, K1G 0Y9, Canada
http://www.gervaiselectronics.ca/
● Active Tech
1465 Merivale Road,
Ottawa, Ontario K2E 5N9 Canada
http://www.active123.com/
● BuyaPi – they sell components as well as Pi’s
Online only, but low cost, same day pickup in Kanata, or shipped
https://www.buyapi.ca
Sort of Local Part Suppliers
● Active Tech
http://www.active123.com/
● Addison Electronics (Montreal)
http://addison-electronique.com/
● LED Montreal
http://ledmontreal.com/en/
Online Suppliers (U.S. Centred)
● Electro Sonic
https://www.e-sonic.com
(used to be a Toronto company, now part of a
U.S. company, on-line only with Ontario
distribution centre)
● Newark
http://canada.newark.com/
● Digi-Key
http://www.digikey.ca/
● Mouser
http://ca.mouser.com/
Disclaimer
● A lot of this is my opinion – meaning you may
not agree with me. That's fine.
● I've tried my best to give you good information
– but anything you do based upon information
in this presentation is purely at your own risk.
Contact Me:
● liath.mactire@gmail.com

More Related Content

Similar to Electric fursuits

Electronics Project Book
Electronics Project BookElectronics Project Book
Electronics Project Book
Varun Bansal
 
Simple led flasher circuits
Simple led flasher circuitsSimple led flasher circuits
Simple led flasher circuits
Muhammad Khan
 
Components of solar systems
Components of solar systemsComponents of solar systems
Components of solar systems
Jay Ranvir
 
30.led .projects
30.led .projects30.led .projects
30.led .projects
Toz Koparan
 
30 led projects
30 led projects30 led projects
30 led projects
Saumya Bhagat
 
30 led projects
30 led projects30 led projects
30 led projects
César Antônio Sousa
 
30 led projects
30 led projects30 led projects
30 led projects
Saumya Bhagat
 
30 led projects
30 led projects30 led projects
30 led projects
mosliw
 
Battery
BatteryBattery
30 led projects
30 led projects30 led projects
30 led projects
Paulo Henrique S
 
How to make ultimate 18650 power bank with expandable capacity
How to make ultimate 18650 power bank with expandable capacityHow to make ultimate 18650 power bank with expandable capacity
How to make ultimate 18650 power bank with expandable capacity
Muhammad Iqbal
 
Basic-Electronic-Components .pdf
Basic-Electronic-Components         .pdfBasic-Electronic-Components         .pdf
Basic-Electronic-Components .pdf
Desalechali1
 
30 led projects
30 led projects30 led projects
30 led projects
anjum mujawar mujawar
 
Solar Power Basics; Large and small for day to day and survival
Solar Power Basics; Large and small for day to day and survivalSolar Power Basics; Large and small for day to day and survival
Solar Power Basics; Large and small for day to day and survival
Bob Mayer
 
Electricity storage
Electricity storageElectricity storage
Electricity storage
Enes Bolfidan
 
Solar Power Basics; Large and small for day to day and survival
Solar Power Basics; Large and small for day to day and survivalSolar Power Basics; Large and small for day to day and survival
Solar Power Basics; Large and small for day to day and survival
Bob Mayer
 
Basic electronics
Basic electronicsBasic electronics
Basic electronics
Mrinal Pal
 
Electrotherm_Report
Electrotherm_ReportElectrotherm_Report
Electrotherm_Report
Bhavdeep Nakum
 
Motorcycle electrics jerry skene
Motorcycle electrics jerry skeneMotorcycle electrics jerry skene
Motorcycle electrics jerry skene
andonis-artist
 
Dsc marine electrical systems seminar 020311
Dsc marine electrical systems seminar 020311Dsc marine electrical systems seminar 020311
Dsc marine electrical systems seminar 020311
downtownsailing
 

Similar to Electric fursuits (20)

Electronics Project Book
Electronics Project BookElectronics Project Book
Electronics Project Book
 
Simple led flasher circuits
Simple led flasher circuitsSimple led flasher circuits
Simple led flasher circuits
 
Components of solar systems
Components of solar systemsComponents of solar systems
Components of solar systems
 
30.led .projects
30.led .projects30.led .projects
30.led .projects
 
30 led projects
30 led projects30 led projects
30 led projects
 
30 led projects
30 led projects30 led projects
30 led projects
 
30 led projects
30 led projects30 led projects
30 led projects
 
30 led projects
30 led projects30 led projects
30 led projects
 
Battery
BatteryBattery
Battery
 
30 led projects
30 led projects30 led projects
30 led projects
 
How to make ultimate 18650 power bank with expandable capacity
How to make ultimate 18650 power bank with expandable capacityHow to make ultimate 18650 power bank with expandable capacity
How to make ultimate 18650 power bank with expandable capacity
 
Basic-Electronic-Components .pdf
Basic-Electronic-Components         .pdfBasic-Electronic-Components         .pdf
Basic-Electronic-Components .pdf
 
30 led projects
30 led projects30 led projects
30 led projects
 
Solar Power Basics; Large and small for day to day and survival
Solar Power Basics; Large and small for day to day and survivalSolar Power Basics; Large and small for day to day and survival
Solar Power Basics; Large and small for day to day and survival
 
Electricity storage
Electricity storageElectricity storage
Electricity storage
 
Solar Power Basics; Large and small for day to day and survival
Solar Power Basics; Large and small for day to day and survivalSolar Power Basics; Large and small for day to day and survival
Solar Power Basics; Large and small for day to day and survival
 
Basic electronics
Basic electronicsBasic electronics
Basic electronics
 
Electrotherm_Report
Electrotherm_ReportElectrotherm_Report
Electrotherm_Report
 
Motorcycle electrics jerry skene
Motorcycle electrics jerry skeneMotorcycle electrics jerry skene
Motorcycle electrics jerry skene
 
Dsc marine electrical systems seminar 020311
Dsc marine electrical systems seminar 020311Dsc marine electrical systems seminar 020311
Dsc marine electrical systems seminar 020311
 

Recently uploaded

按照学校原版(UAL文凭证书)伦敦艺术大学毕业证快速办理
按照学校原版(UAL文凭证书)伦敦艺术大学毕业证快速办理按照学校原版(UAL文凭证书)伦敦艺术大学毕业证快速办理
按照学校原版(UAL文凭证书)伦敦艺术大学毕业证快速办理
yizxn4sx
 
一比一原版(Adelaide文凭证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide文凭证书)阿德莱德大学毕业证如何办理一比一原版(Adelaide文凭证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide文凭证书)阿德莱德大学毕业证如何办理
nudduv
 
买(usyd毕业证书)澳洲悉尼大学毕业证研究生文凭证书原版一模一样
买(usyd毕业证书)澳洲悉尼大学毕业证研究生文凭证书原版一模一样买(usyd毕业证书)澳洲悉尼大学毕业证研究生文凭证书原版一模一样
买(usyd毕业证书)澳洲悉尼大学毕业证研究生文凭证书原版一模一样
nvoyobt
 
按照学校原版(AU文凭证书)英国阿伯丁大学毕业证快速办理
按照学校原版(AU文凭证书)英国阿伯丁大学毕业证快速办理按照学校原版(AU文凭证书)英国阿伯丁大学毕业证快速办理
按照学校原版(AU文凭证书)英国阿伯丁大学毕业证快速办理
ei8c4cba
 
Production.pptxd dddddddddddddddddddddddddddddddddd
Production.pptxd ddddddddddddddddddddddddddddddddddProduction.pptxd dddddddddddddddddddddddddddddddddd
Production.pptxd dddddddddddddddddddddddddddddddddd
DanielOliver74
 
加急办理美国南加州大学毕业证文凭毕业证原版一模一样
加急办理美国南加州大学毕业证文凭毕业证原版一模一样加急办理美国南加州大学毕业证文凭毕业证原版一模一样
加急办理美国南加州大学毕业证文凭毕业证原版一模一样
u0g33km
 
一比一原版(TheAuckland毕业证书)新西兰奥克兰大学毕业证如何办理
一比一原版(TheAuckland毕业证书)新西兰奥克兰大学毕业证如何办理一比一原版(TheAuckland毕业证书)新西兰奥克兰大学毕业证如何办理
一比一原版(TheAuckland毕业证书)新西兰奥克兰大学毕业证如何办理
xuqdabu
 
按照学校原版(UVic文凭证书)维多利亚大学毕业证快速办理
按照学校原版(UVic文凭证书)维多利亚大学毕业证快速办理按照学校原版(UVic文凭证书)维多利亚大学毕业证快速办理
按照学校原版(UVic文凭证书)维多利亚大学毕业证快速办理
1jtj7yul
 
SOLIDWORKS 2024 Enhancements eBook.pdf for beginners
SOLIDWORKS 2024 Enhancements eBook.pdf for beginnersSOLIDWORKS 2024 Enhancements eBook.pdf for beginners
SOLIDWORKS 2024 Enhancements eBook.pdf for beginners
SethiLilu
 
按照学校原版(USD文凭证书)圣地亚哥大学毕业证快速办理
按照学校原版(USD文凭证书)圣地亚哥大学毕业证快速办理按照学校原版(USD文凭证书)圣地亚哥大学毕业证快速办理
按照学校原版(USD文凭证书)圣地亚哥大学毕业证快速办理
snfdnzl7
 
按照学校原版(Adelaide文凭证书)阿德莱德大学毕业证快速办理
按照学校原版(Adelaide文凭证书)阿德莱德大学毕业证快速办理按照学校原版(Adelaide文凭证书)阿德莱德大学毕业证快速办理
按照学校原版(Adelaide文凭证书)阿德莱德大学毕业证快速办理
terpt4iu
 
按照学校原版(QU文凭证书)皇后大学毕业证快速办理
按照学校原版(QU文凭证书)皇后大学毕业证快速办理按照学校原版(QU文凭证书)皇后大学毕业证快速办理
按照学校原版(QU文凭证书)皇后大学毕业证快速办理
8db3cz8x
 
按照学校原版(Birmingham文凭证书)伯明翰大学|学院毕业证快速办理
按照学校原版(Birmingham文凭证书)伯明翰大学|学院毕业证快速办理按照学校原版(Birmingham文凭证书)伯明翰大学|学院毕业证快速办理
按照学校原版(Birmingham文凭证书)伯明翰大学|学院毕业证快速办理
6oo02s6l
 
按照学校原版(Westminster文凭证书)威斯敏斯特大学毕业证快速办理
按照学校原版(Westminster文凭证书)威斯敏斯特大学毕业证快速办理按照学校原版(Westminster文凭证书)威斯敏斯特大学毕业证快速办理
按照学校原版(Westminster文凭证书)威斯敏斯特大学毕业证快速办理
yizxn4sx
 
按照学校原版(UOL文凭证书)利物浦大学毕业证快速办理
按照学校原版(UOL文凭证书)利物浦大学毕业证快速办理按照学校原版(UOL文凭证书)利物浦大学毕业证快速办理
按照学校原版(UOL文凭证书)利物浦大学毕业证快速办理
terpt4iu
 
按照学校原版(SUT文凭证书)斯威本科技大学毕业证快速办理
按照学校原版(SUT文凭证书)斯威本科技大学毕业证快速办理按照学校原版(SUT文凭证书)斯威本科技大学毕业证快速办理
按照学校原版(SUT文凭证书)斯威本科技大学毕业证快速办理
1jtj7yul
 
一比一原版(ANU文凭证书)澳大利亚国立大学毕业证如何办理
一比一原版(ANU文凭证书)澳大利亚国立大学毕业证如何办理一比一原版(ANU文凭证书)澳大利亚国立大学毕业证如何办理
一比一原版(ANU文凭证书)澳大利亚国立大学毕业证如何办理
nudduv
 
按照学校原版(UST文凭证书)圣托马斯大学毕业证快速办理
按照学校原版(UST文凭证书)圣托马斯大学毕业证快速办理按照学校原版(UST文凭证书)圣托马斯大学毕业证快速办理
按照学校原版(UST文凭证书)圣托马斯大学毕业证快速办理
zpc0z12
 
按照学校原版(UPenn文凭证书)宾夕法尼亚大学毕业证快速办理
按照学校原版(UPenn文凭证书)宾夕法尼亚大学毕业证快速办理按照学校原版(UPenn文凭证书)宾夕法尼亚大学毕业证快速办理
按照学校原版(UPenn文凭证书)宾夕法尼亚大学毕业证快速办理
uwoso
 
一比一原版(Adelaide文凭证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide文凭证书)阿德莱德大学毕业证如何办理一比一原版(Adelaide文凭证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide文凭证书)阿德莱德大学毕业证如何办理
xuqdabu
 

Recently uploaded (20)

按照学校原版(UAL文凭证书)伦敦艺术大学毕业证快速办理
按照学校原版(UAL文凭证书)伦敦艺术大学毕业证快速办理按照学校原版(UAL文凭证书)伦敦艺术大学毕业证快速办理
按照学校原版(UAL文凭证书)伦敦艺术大学毕业证快速办理
 
一比一原版(Adelaide文凭证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide文凭证书)阿德莱德大学毕业证如何办理一比一原版(Adelaide文凭证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide文凭证书)阿德莱德大学毕业证如何办理
 
买(usyd毕业证书)澳洲悉尼大学毕业证研究生文凭证书原版一模一样
买(usyd毕业证书)澳洲悉尼大学毕业证研究生文凭证书原版一模一样买(usyd毕业证书)澳洲悉尼大学毕业证研究生文凭证书原版一模一样
买(usyd毕业证书)澳洲悉尼大学毕业证研究生文凭证书原版一模一样
 
按照学校原版(AU文凭证书)英国阿伯丁大学毕业证快速办理
按照学校原版(AU文凭证书)英国阿伯丁大学毕业证快速办理按照学校原版(AU文凭证书)英国阿伯丁大学毕业证快速办理
按照学校原版(AU文凭证书)英国阿伯丁大学毕业证快速办理
 
Production.pptxd dddddddddddddddddddddddddddddddddd
Production.pptxd ddddddddddddddddddddddddddddddddddProduction.pptxd dddddddddddddddddddddddddddddddddd
Production.pptxd dddddddddddddddddddddddddddddddddd
 
加急办理美国南加州大学毕业证文凭毕业证原版一模一样
加急办理美国南加州大学毕业证文凭毕业证原版一模一样加急办理美国南加州大学毕业证文凭毕业证原版一模一样
加急办理美国南加州大学毕业证文凭毕业证原版一模一样
 
一比一原版(TheAuckland毕业证书)新西兰奥克兰大学毕业证如何办理
一比一原版(TheAuckland毕业证书)新西兰奥克兰大学毕业证如何办理一比一原版(TheAuckland毕业证书)新西兰奥克兰大学毕业证如何办理
一比一原版(TheAuckland毕业证书)新西兰奥克兰大学毕业证如何办理
 
按照学校原版(UVic文凭证书)维多利亚大学毕业证快速办理
按照学校原版(UVic文凭证书)维多利亚大学毕业证快速办理按照学校原版(UVic文凭证书)维多利亚大学毕业证快速办理
按照学校原版(UVic文凭证书)维多利亚大学毕业证快速办理
 
SOLIDWORKS 2024 Enhancements eBook.pdf for beginners
SOLIDWORKS 2024 Enhancements eBook.pdf for beginnersSOLIDWORKS 2024 Enhancements eBook.pdf for beginners
SOLIDWORKS 2024 Enhancements eBook.pdf for beginners
 
按照学校原版(USD文凭证书)圣地亚哥大学毕业证快速办理
按照学校原版(USD文凭证书)圣地亚哥大学毕业证快速办理按照学校原版(USD文凭证书)圣地亚哥大学毕业证快速办理
按照学校原版(USD文凭证书)圣地亚哥大学毕业证快速办理
 
按照学校原版(Adelaide文凭证书)阿德莱德大学毕业证快速办理
按照学校原版(Adelaide文凭证书)阿德莱德大学毕业证快速办理按照学校原版(Adelaide文凭证书)阿德莱德大学毕业证快速办理
按照学校原版(Adelaide文凭证书)阿德莱德大学毕业证快速办理
 
按照学校原版(QU文凭证书)皇后大学毕业证快速办理
按照学校原版(QU文凭证书)皇后大学毕业证快速办理按照学校原版(QU文凭证书)皇后大学毕业证快速办理
按照学校原版(QU文凭证书)皇后大学毕业证快速办理
 
按照学校原版(Birmingham文凭证书)伯明翰大学|学院毕业证快速办理
按照学校原版(Birmingham文凭证书)伯明翰大学|学院毕业证快速办理按照学校原版(Birmingham文凭证书)伯明翰大学|学院毕业证快速办理
按照学校原版(Birmingham文凭证书)伯明翰大学|学院毕业证快速办理
 
按照学校原版(Westminster文凭证书)威斯敏斯特大学毕业证快速办理
按照学校原版(Westminster文凭证书)威斯敏斯特大学毕业证快速办理按照学校原版(Westminster文凭证书)威斯敏斯特大学毕业证快速办理
按照学校原版(Westminster文凭证书)威斯敏斯特大学毕业证快速办理
 
按照学校原版(UOL文凭证书)利物浦大学毕业证快速办理
按照学校原版(UOL文凭证书)利物浦大学毕业证快速办理按照学校原版(UOL文凭证书)利物浦大学毕业证快速办理
按照学校原版(UOL文凭证书)利物浦大学毕业证快速办理
 
按照学校原版(SUT文凭证书)斯威本科技大学毕业证快速办理
按照学校原版(SUT文凭证书)斯威本科技大学毕业证快速办理按照学校原版(SUT文凭证书)斯威本科技大学毕业证快速办理
按照学校原版(SUT文凭证书)斯威本科技大学毕业证快速办理
 
一比一原版(ANU文凭证书)澳大利亚国立大学毕业证如何办理
一比一原版(ANU文凭证书)澳大利亚国立大学毕业证如何办理一比一原版(ANU文凭证书)澳大利亚国立大学毕业证如何办理
一比一原版(ANU文凭证书)澳大利亚国立大学毕业证如何办理
 
按照学校原版(UST文凭证书)圣托马斯大学毕业证快速办理
按照学校原版(UST文凭证书)圣托马斯大学毕业证快速办理按照学校原版(UST文凭证书)圣托马斯大学毕业证快速办理
按照学校原版(UST文凭证书)圣托马斯大学毕业证快速办理
 
按照学校原版(UPenn文凭证书)宾夕法尼亚大学毕业证快速办理
按照学校原版(UPenn文凭证书)宾夕法尼亚大学毕业证快速办理按照学校原版(UPenn文凭证书)宾夕法尼亚大学毕业证快速办理
按照学校原版(UPenn文凭证书)宾夕法尼亚大学毕业证快速办理
 
一比一原版(Adelaide文凭证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide文凭证书)阿德莱德大学毕业证如何办理一比一原版(Adelaide文凭证书)阿德莱德大学毕业证如何办理
一比一原版(Adelaide文凭证书)阿德莱德大学毕业证如何办理
 

Electric fursuits

  • 1. Basic Electricity for Fursuits A lot of people find wiring up lighting and fans for their fursuits daunting. But it's not too hard if you follow a few simple guidelines. We'll look at batteries, switches, LED's, fans, and the basics of wiring and soldering. CanFURence 2016 Revision 5
  • 2. What I hope to present ... ● I'm not really going to go into a lot of detail about what to do with LED's, fans, etc. ● I'll leave the creative side of what to accomplish up to you. ● I'll try to give you the how so that you can decide on the what you want to do with them.
  • 3. Vast, Hand-waving Simplifications ● This presentation is glossing over a lot of details, because I don't want to bore people ● Also, what we're talking about doesn't need more than a workable approximation.
  • 4. So what is this electricity stuff anyways? ● The usual analogy is to think plumbing. – Think of water as electricity (electrons) – Batteries are like a water tower – the higher it is the higher the pressure (voltage), the bigger the tank the more energy it can hold (AmpHours) – Wires are like the pipes – Switches are like valves – Amps are like how much water flows each second – LED's and fans take that flow, and convert it to light or air movement.
  • 5. A little bit of Math, because it's useful ● Ohm's Law I = E/R I (current, Amperes) E (voltage, Volts) R (resistance, Ohms usually written as Ω) ● Why is this useful? You can measure the voltage across a resistor, and know the current flowing through the resistor.
  • 6. A little bit more, sometimes useful ● I = P/E (current = power / voltage) e.g. something rated 1 Watt at 12 Volts is drawing 1/12 of an Amp (0.083A or 83mA) 1 Ampere = 1000 milliAmpere
  • 7. Nothing is perfect ● In the real world, nothing works like theory anyways. ● Batteries in particular are a headache
  • 8. What's wrong with batteries? ● Think of them like a glass of water filled with ice. – If you drink it quickly, you get a little water and a lot of ice left behind. – If you drink slowly, the ice melts, you drink a full glass of water, and there's no ice left behind.
  • 9. Think of a fully charged battery
  • 10. But if you use it quickly, you leave some behind
  • 11. But if you use it gradually, you won't leave much behind.
  • 12. More of What's wrong with batteries? ● They're heavy and bulky – Think of that weight/bulk representing energy that ultimately gives us light or turns a fan – The more light for longer we want, or the longer to run a fan, we will have to carry around more weight and bulk. ● Remember the glass of ice? Lets say you have two 1 litre glasses, and they're each half ice. – If you pour out 500ml from the first glass, you have only ice left. – If you pour out 125ml from the second glass, you still have 375ml of water, and 500ml of ice left. Wait a little while, then pour out another 125ml, and keep repeating this. By waiting, you've given the ice a chance to melt, and you'll be able to get more than 500ml before you have nothing but ice. What does that analogy mean? – Increasing the the rate at which you pull energy out of a battery will give you less energy before you run out of usable energy. – But also using a bigger battery means you can get more water before you have only ice. – So you either live with shortening the run time, or use a larger battery pack if you need a particular rate. – See also “Brook's Law” - One of the points made in the book “The Mythical Man-Month” is that having 1 person working on a project for 1000 days is not the same as having 1000 people working on a project for 1 day. Batteries are kind of like that – if you have a 20Ah battery, you can draw 1A of current from it for 20hours, you will get less than 1 hour of output if you draw 20A from it.
  • 13. But ... ● They may be less than perfect, but we can still do something useful. ● For a lot of useful info on batteries, their use, care and feeding, have a look at http://www.powerstream.com/
  • 14. What I won't really mention (much) ● Rechargeable batteries – When you add in the charger, they're pretty expensive up front. – The charger needs to be plugged into an outlet, and I don't want anyone getting killed by trying to do it themselves. So, unless you know what you're doing... – Depending on the type, the requirements for the charger to work correctly are complicated. – But, depending on what kind of battery chemistry, they can have advantages over alkaline batteries. – Oh, and you probably want two sets – so you can keep one of them on charge while you're using the one set. That should prevent you from having a discharged battery just when you need if. ● So, if you want rechargeable batteries, buy them and the matching charger.
  • 15. Battery Simplification ● We'll talk about non-rechargeable alkaline type batteries. – Common sizes: AAA, AA, C, D, 9V – Limited voltages: nominal 12V, 6V, and 9V ● How do we get 6V, 9V and 12V output? – Use either 4 batteries for 6V, 6 for 9V and 8 for 12V ● Is it really 6, 9, or 12 volt? – No, but it's close enough.
  • 17. How much power can I get? ** Capacities assume 100mA discharge - higher rates will decrease available power, lower rates will generally provide more effective capacity. ● AAA – about 450mAh ● AA – about 1200mAh ● 9V – about 400mAh * ● C – about 4500mAh ● D – about 10000mAh These are based on discharge to 1.2V for all except 9V which is to 6.0V. * For an equal comparison, I should compare the capacity to a discharge of the 9V to 7.2V, but manufacturer data sheets don't list that. For 7.2V the actual capacity is probably more like 300mAh. ** I presented hugely incorrect numbers at FE in this slide, these are corrected values. My apologies for a major case of brain confusion.
  • 18. Note on battery capacity ● Manufacturer data sheets list capacity based upon a discharge to a lower voltage (0.8V or 4.8V) than on the previous slide – one particular vendor shows: ● AAA - 900mAh ● AA - 2200mAh ● 9V - 470mAh ● C - 7500mAh ● D - 16000mAh
  • 19. Capacity and the 20 hour rating ● Some batteries, especially “Gel” cells, come with an amp-hour rating at a 20 hour rate. ● “Gel” cells – rechargeable battery, like a car battery, but with a gelled electrolyte instead of liquid acid. ● So, a 12V 1.2 Ah battery means that you can draw 1.2 / 20 amps (or 60 milliamps) for 20 hours, giving 1.2 Amp-hours total energy. ● You can’t draw 1.2 amps for an hour – you might get half an hour before the voltage drops too low.
  • 20. LED's ● Convert electricity to light, if you feed them correctly. ● Polarity sensitive – hook them up backwards and they won't light up ● Need 20mA current nominal maximum current (mostly) ● Different colours have different voltage across them when lit – Red/yellow/orange about 2 Volts – green/blue/white about 3 Volts ● Lets call it 2.5 Volts
  • 22. So how do I hook them up? ● 3 cases – 6V, 9V and 12V ● 6V – 1 resistor per LED, each LED draws 20mA ● 9V – 1 resistor in series with 2 LED's, every 2 draw 20mA ● 12V – 1 resistor in series with 3 LED's, every 3 draw 20mA
  • 23. Yeah, but ... So say you have 6 LED's – 6V battery pack – 120mA current draw – 9V battery pack – 60mA current draw – 12V battery pack – 40mA current draw You'll notice the power usage (voltage * current) is very different in each case – the different is being thrown away as heat in the resistors. ● If you're using AA batteries – 4xAA – 2200mAh/120mA = about 18 hours – 9V – 400mAh/60mA = about 6 hours – 8xAA – 2200mAh/40mA = about 55 hours
  • 24. What about those LED Strips ● Effectively the same chip inside a single LED, but mounted on a flexible strip, along with limiting resistors (or sometimes a driver chip) ● Packaged on a reel – some vendors will cut to length ● Multiple versions – Single colour – RGB – each chip is actually 3 LED's with limiting resistors – Digital RGB – controller/driver chip for LED's ● Some are “waterproof” ● A little delicate
  • 26. Key Features ● Flexible substrate with adhesive back ● LED's with built in resistors for nominal 12V operation ● Best used on a prop with protection ● Shouldn't be washed, or flexed a lot. If you're careful, you could use it on more rigid parts of a costume and remove it for washing.
  • 27. Close up of LED strip
  • 28. Note ... ● The white squares are the LED's – really 3 LED's in one, Red, Blue, and Green ● The “scissor” symbol marks where you can cut the strip into shorter pieces. ● The copper pads are where you can solder to them, or slide on connectors.
  • 30. Resistors, what are those? ● It is a device that “resists” the flow of electricity, by turning the energy into heat. – Just think of them as a pair of wires with a blob of stuff in the middle – And we use them to ensure that only a certain amount of current flows through the LED's – which prevents them from going up in a small poof of smoke. – The higher the resistance (in Ohms, abbreviated as Ω) the less current flows, and vice-versa
  • 31. Here's an example (270 ohm 5% 1/4 watt)
  • 32. And that means? ● Resistors are marked with colour bands to signify the value: 2 (red) 7 (violet) 1 (10**1 == times 10) = 27 * 10 = 270 gold band – 5% tolerance on the value 0.25 watt – uhhh, because it is? Maximum power dissipation we would ever need for LED's is 0.020A (20mA) * 12V = 0.24W.
  • 33. And they only come in some values We'll just look at the 10% values, 'cause they're close enough, even though you can use 5% or 1% tolerance resistors too. ● 10% resistor values: 10 12 15 18 22 27 33 39 47 56 68 82 ● Which means can multiply any of those values by 10, 100, 1000, 100000, .... to get a 22Ω, 220Ω, 2.2KΩ,22KΩ, 220KΩ, ... resistor
  • 34. So, what values do we need? ● Simplification: 1 resistor, 1 LED at 6V – (6V-2.5V)/0.02 = 175ohms 1 resistor, 2 LED's at 9V – (9V-5V)/0.02 = 200ohms 1 resistor, 3 LED's at 12V – (12V-7.5V)/0.02 = 225ohms ● So we could use 180, 200, and 220 ohm resistors, or just use 220ohms (or 270ohms if we want to trade off brightness for duration) for everything, since we're trying to keep it simple.
  • 37. Vast Oversimplification Warning Remember what I said earlier – this is a simplification. Not a bad approximation, but... YMMV TANSTAAFL
  • 38. Fans ● Electricity in, air movement out ● We're only going to look at DC axial fans – Different sizes – 40mm through 120mm – Different thicknesses – 10mm to 25mm – Different air volumes – Different noise levels – I'm going look at 12V ones, although they come in many voltages, and run on both DC and AC electricity ● Usually the smaller the fan either less air flow, or more noise to maintain air flow ● Fans will have a red(+), black(-) and sometimes a third lead that we'll ignore (it's for a tachometer signal)
  • 39. Run Time estimate ● Remember what we did with the LED's? ● Take their current rating, and divide by the mAh value of your batteries, and you'll have a rough value (although it may be on the low side, since they're moderately high current.
  • 42. Some real differences ● 2 are 25mm thick, 1 is 15mm ● Different currents: 100mA, 150mA, 220mA – Runtime of about 22, 14 and about 9 hours with 8xAA batteries. – Remember about the higher draw shortening life – I've adjusted the numbers a bit to take that into account, but still kind of a rough guess.
  • 43. I don't want all that battery weight in my fursuit head ... ● Yeah, you probably don't. ● What I'd suggest is increase the length of the wires running to the fan. The 22g wires I've suggested are more than adequate to allow the battery to be located elsewhere (collar, pouch hanging from your neck, belt, ??? - is that a battery pack in your pocket or are you just glad to see me) on your suit. ● You'll want to leave a little slack so that you can remove your head, and then have a plug/jack to allow you to fully disconnect the fan in your head when you want to take it off.
  • 44. Moving parts ● One side of the fan is the actual moving part – you'll need to protect it from rubbing against anything so it will turn ● Something like the fan guard shown in the next slide ● They aren't waterproof – you'll need to remove the fan before you wash your head.
  • 46. Wires ● Copper transports the electricity ● Stranded vs Solid – Stranded – made up of many smaller sized wires – Solid – one solid piece of wire – Anywhere the wire is flexed, use stranded. ● Gauge – size of the wire – Higher the number, the smaller the wire ● Insulation – plastic coating on the copper – Higher the voltage, more/better insulation needed – But we're only talking about 12Volts, so anything you find should be more than good enough.
  • 47. Wire, continued ● What we'll use: – 24 or 22 Gauge stranded, low voltage – 2 rolls of single conductor wire, one red, one black. – You can also use wire with two conductors, your choice. ● What if I can only get 26 Gauge or 18 Gauge? – Close enough ● Why red/black? – Because – but you can use any colours you want as long as you find it easy to know which they are. Two conductor wire may be just one colour, but will have either a printed white strip, ribbing molded into the insulation, or other mechanism to tell them apart. – red is “positive” or “+” – Black is “negative” or “-”
  • 48. Switches ● Controls the flow of electricity ● A lot of different ways to package them. ● SPST - “single pole, single throw” ● Two terminals, usually a toggle or slide ● Some switches may have 3 terminals (SPDT) – but you can use them as a 2 terminal device ● We're not using a lot of current with the stuff I'm talking about here, so most any switch you choose will be able to handle the current (mostly less than 1A.) ● We can also take a battery out of the pack to turn it “off”
  • 49. Basic Tools ● Soldering iron ● Rosin core solder ● Wire stripper – removes insulation ● Needle nose pliers – holding small or hot objects ● Side cutters – cutting wires ● “helping hands” - useful but not essential, for when you need more than two hands
  • 50. Soldering Irons ● There are a lot of variations, but they all have a means to heat up metal sufficient to melt solder ● NOTE: you're not melting the solder, you're heating up what you want to solder. ● You can spend $10 or $200+ on a soldering iron. The more expensive ones are nice, but the $10 one will work. ● Choose the size for what you want to solder – we need an iron at the smaller end of the scale
  • 51. No, too big usually ...
  • 52. Not bad for small volume work ...
  • 53. OK for a lot of stuff
  • 54. Ah, now just the thing ...
  • 55. Soldering Iron Safety ● They get really hot – 600° to 800° F – that's hot enough to start fires, so use them on fire-resistant surfaces and away from combustible materials. ● You can get burned very badly, so treat them with respect ● When you're done with them, make sure you turn them off and unplug them. Make sure. ● Did I say enough “THEY GET REALLY HOT”?
  • 56. Solder ● You can use any of the common alloys (50/50, 60/40, ... - we don't need anything exotic) ● The “Rosin Core” cleans when you solder, so you don't have to have that as a separate step. ● We're doing relatively small stuff, so get a smaller size – 1/16 of an inch (0.0625) or smaller.
  • 57. Doesn't have to be this thin ...
  • 58. Solder – a safety note ● Contains lead (although there are lead free ones) ● Don't breath fumes when soldering ● Wash hands after handling ● If you do this a lot you should invest in a fume extractor ● And when melted it is HOT! As in the surface- of-the-planet-Mercury hot.
  • 59. Wire strippers – many different shapes and sizes
  • 60. Needle Nose and Side Cutter
  • 61. When you don't have hand-paws in addition to your hands ...
  • 62. Oh yeah, sometimes you have to take things apart ...
  • 63. Maybe a little trim ...
  • 64. And maybe we need to measure a voltage or two ...
  • 65. Just a few more things ... ● Electrical tape – conventional or self- amalgamating ● Heat shrink tubing - and a heat gun? ● ....
  • 66. Well, maybe ... ● You get the idea, there are a lot of nice to have tools, but you can get away with the basic list ... ● Inclusion or exclusion of any particular brand of tool is purely accidental – take my mention of them for what it is worth. ● Some of the tools shown are inexpensive tools – serviceable, but you should make your own value judgements.
  • 67. Very basic soldering ● Strip back the insulation ● Heat the items you're soldering – briefly – as long as necessary but no longer ● Touch the solder to the heated items, not the soldering iron tip (well, you may like to put a little bit of solder at the point where the iron touches the wires to improve heat transfer, but the majority should be melted by the wires being hot enough) ● Feed as much solder as you need, then remove the solder and the iron ● Let it cool – if you've done it right, it will be nice and shiny.
  • 68. Joining wires ● Strip back some insulation, twist together, solder – not really the best way, but often good enough. ● Insulate with tape or heat-shrink tubing. ● For a stronger joint, use a “Western Union Splice”
  • 69. More information ● I'll try to expand this section soon, but here are some other presentations with more detail ● https://youtu.be/BLfXXRfRIzY ● http://www.slideshare.net/JasonDeMoe/how-to-solder-v35 ● http://www.slideshare.net/callr/soldering-14867588
  • 70. Want to make something flash? ● Look up resources on line for the “555” chip such as http://www.instructables.com/id/555- Timer/ ● They're pretty durable, relatively simple to use. ● But until you feel comfortable doing the basics maybe this is a little challenging
  • 71. If you get into doing circuitry you'll want something like this (circuitry optional)
  • 72. EL (electroluminescent) lighting ● Think of them like flexible fluorescent lamps ● But they need about 100VAC at about 1kHZ to drive them. ● If you want to use them, buy the inverter. It isn't a simple DIY project. ● You may want the vendor to connect the wires to the EL wire, or if you feel confident you can try soldering to them yourself ● Most vendors will provide the connectors - you just have to connect the wires, not solder directly the EL wire
  • 74. EL ● Shown inverter has 2 AA batteries and 3m of EL wire ● Ran for over 12 hours, but brightness decreased as battery was used up ● Other inverters with more batteries for more length of EL wire or longer run time. There are also AC powered inverters for fixed intallations. ● Different diameter and colours of EL wire available ● You may not like the sound it makes
  • 75. Want more info on EL wires? ● Lots of interesting pieces on Instructables, such as: http://www.instructables.com/id/How-to-Solder- EL-Electroluminescent-Wire/
  • 76. Microcontrollers ● Arduino, Raspberry PI ● Small computers well adapted to controlling lights, servos, ... ● Can be programmed in software to control very complicated systems. ● But really, if you know how to use them you probably don't need this presentation?
  • 77. Batteries – an environmental note ● Depending on the chemistry, they contain a lot of chemicals, and some even contain lead. ● When you're done with them, please dispose of them in a safe way. ● In Toronto, take them to your local “Environment Days”, or the Household Hazardous Waste Depots at the City of Toronto Transfer Stations. See http://www.toronto.ca for full details.
  • 78. Toronto Parts Sources ● Above All Electronic Surplus, Ltd (mostly old, computer related) 635 Bloor Street W Suite A Toronto, ON M6G 1K8 (416) 588-8119 ● Electronic Surplus Industries (more of a curiosity than a supplier – props for the film industry mostly) 53 Sheffield Street North York, ON M6M 3E5 (416) 240-1950 ● Active Surplus (new and old) 347 Queen Street W Toronto, ON M5V 2A4 (416) 593-0909 Closed – they did have a second location, but I’m not sure if it is still open either. ● Home Hardware (hosting Supremetronic in the basement - new) 290 College St Toronto, ON M5T 1S3 (416) 922-1158
  • 79. Toronto Parts Sources, Continued ● A-1 Electronic Parts (new and old) www.a1parts.com 196 North Queen Etobicoke, ON Canada (416) 255-0343 ● Sayal Electronics (new) www.sayal.com 1350 Matheson Blvd E #1-5 Mississauga, ON (905) 238-8640 ● Sayal Electronics (new) www.sayal.com 1330 Creditstone Road Vaughan, ON (905) 738-7193 ● Creatron Inc. (new – emphasis on microcontrollers but also components) www.creatroninc.com 349 College Street (or 255?) Toronto, ON (647) 349-9258 (or 416-977-9258?)
  • 80. Toronto Parts Sources, Continued ● Lee Valley Tools (3 physical locations in the GTA) https://www.leevalley.com/ (they mostly don't sell electronics – but they have started to carry LED lighting strips)
  • 81. Ottawa Sources ● I have not personally checked all these out, but they look likely. ● Gervais Electronics 716 Industrial Avenue, Unit 1 Ottawa Ontario, K1G 0Y9, Canada http://www.gervaiselectronics.ca/ ● Active Tech 1465 Merivale Road, Ottawa, Ontario K2E 5N9 Canada http://www.active123.com/ ● BuyaPi – they sell components as well as Pi’s Online only, but low cost, same day pickup in Kanata, or shipped https://www.buyapi.ca
  • 82. Sort of Local Part Suppliers ● Active Tech http://www.active123.com/ ● Addison Electronics (Montreal) http://addison-electronique.com/ ● LED Montreal http://ledmontreal.com/en/
  • 83. Online Suppliers (U.S. Centred) ● Electro Sonic https://www.e-sonic.com (used to be a Toronto company, now part of a U.S. company, on-line only with Ontario distribution centre) ● Newark http://canada.newark.com/ ● Digi-Key http://www.digikey.ca/ ● Mouser http://ca.mouser.com/
  • 84. Disclaimer ● A lot of this is my opinion – meaning you may not agree with me. That's fine. ● I've tried my best to give you good information – but anything you do based upon information in this presentation is purely at your own risk.