SlideShare a Scribd company logo
1 of 175
Download to read offline
ELECTRICAL POWER
GENERATION, TRANSMISSION
AND DISTRIBUTION
KN. Chandrabose
Asst.Professor
EEE Dept. GEC
Sunday, August 05, 2012 1KN. Chandra Bose, Asst. Professor, GECT
Over View of Syllabus
Objectives:
 To understand the various energy sources.
 To understand about transmission and Distribution 
schemes.
 To evaluate the performance of power system.
Sunday, August 05, 2012 2KN. Chandra Bose, Asst. Professor, GECT
Sources
• Power  generated is the compliments of our 
natural resources.
• Renewable and Non‐renewable.
– A renewable resource is a natural resource with the 
ability to reproduce through biological or natural 
processes and replenished with the passage of time. 
Renewable resources are part of our natural 
environment and form our eco‐system.
– Solar radiation, tides, winds, geothermal, biomass and other natural 
elements. 
Sunday, August 05, 2012 3KN. Chandra Bose, Asst. Professor, GECT
Sources cntd…
• Power  generated is the compliments of our 
natural resources.
• Non‐renewable.
– Nonrenewable energy‐Energy that is impossible to re‐
make.
– Natural resources such as coal, petroleum (crude oil) 
and natural gas take thousands of years to form 
naturally and cannot be replaced as fast as they are 
being consumed.
Sunday, August 05, 2012 4KN. Chandra Bose, Asst. Professor, GECT
Sources cntd…
• Eventually natural resources will become too 
costly to harvest and humanity will need to find 
other sources of energy.
• Natural gas is a mixture of gases, the most 
common being methane (CH4). It also contains 
some ethane (C2H5), propane (C3H8), and 
butane (C4H10).
Sunday, August 05, 2012 5KN. Chandra Bose, Asst. Professor, GECT
MODULE ‐ 1
 Hydro electric
 Thermal
 Diesel
 Nuclear
 Solar
 Wind
 Tidal
 MHD
 Geothermal 
 Fuel cells 
 CONVENTIONAL SOURCES OF 
ENERGY
 NON‐CONVENTIONAL 
SOURCES OF ENERGY
Sunday, August 05, 2012 6KN. Chandra Bose, Asst. Professor, GECT
MAIN GOAL:
 To provide an adequate and efficient natural 
source of energy without burning of fossil fuels.
 To harness the energy of moving water.
 To provide a cheap source of energy.
Sunday, August 05, 2012 7KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY
Hydro electricity:
• Hydro‐electric power is the power from the 
energy of falling water.
• Hydro‐electric plant is the power plant utilizing 
the potential energy of water at a height.
• Most widely used form of renewable energy and 
is produced in about 150 countries.
• Accounting for 16% of global electricity consumption, 
and 3,427 terawatt‐hours of electricity production in 
2010.
Sunday, August 05, 2012 8KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
• Asia‐Pacific region generating 32% of global hydropower 
in 2010.
• China is the largest hydroelectricity producer, with 721 
terawatt‐hours of production in 2010, representing 
around 17 percent of domestic electricity use. 
• There are now three hydroelectricity plants larger than 
10 GW: the 
1. Three Gorges Dam in China (22.5 billion kilowatts)
2. Itaipu Dam in Brazil (14 billion kilowatts) and
3. Guri Dam in Venezuela (10.2 Billion Kilo Watts)
Sunday, August 05, 2012 9KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
• Reasons for extensive development of water power.
– Tremendous increase in demand of electricity
– High cost of fuels
– Limited resources
– Projects are multipurpose
• India has hydel potential of 600 billion units of firm 
annual energy.
• Only 23% of this has been utilized so far.
Sunday, August 05, 2012 10KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
• The average cost of electricity from a hydro plant, larger 
than 10 megawatts is 3 to 5 U.S. cents per kilowatt‐hour.
• The water flowing in the river possesses two type of 
energy: the kinetic energy due to flow of water and 
potential energy due to the height of water. 
• In hydroelectric power plant, potential energy of water is 
utilized to generate electricity.
• The total power that can be generated from water in 
hydroelectric power plant is
Where     w – specific wt of water in kg/m3 , Q – rate of flow of water in m3/s, 
H – Height of fall in meter's ,  – overall efficiency
Sunday, August 05, 2012 11KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
• In hydro‐electric power station, water head is created by 
constructing dam across a river.
Factors to be considered:‐ before a project site is 
considered.
– Capital cost of plant
– Capital cost of erecting and maintaining the transmission lines, 
and annual energy loss in transformation and transmission of 
power.
– Energy generation cost compared with those in case of steam, 
oil or gas plants, which can be conveniently set up near the load 
centre.
Sunday, August 05, 2012 12KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
SELECTION OF SITE (HYDRO‐ELECTRIC PLANT):
• Select site with natural storage and with large catchment 
area.
• High average rain fall, steep gradients, and suitable place 
for constructing reservoir.
FACTORS TO BE CONSIDERED:
1. Availability of water: ‐
– Potential energy of water fall or kinetic energy of flowing 
stream is utilized for generation of power.
– Hence station should construct based on availability of 
water head.
Sunday, August 05, 2012 13KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
– Estimation of availability of energy from a stream or river 
is estimated on the discharge flow and its variation with 
time over a number of years.
2. Water storage:
– Storage of water in a suitable reservoir at a height is 
essential in order to have continuous supply during dry 
season.
– A careful study of geology and topography of the 
catchment area is required, before the construction  of 
dam.
3. Water Head:
– Water head depends on the topography of the area.
– Availability of head has considerable effect on the cost and 
economy of power generation.Sunday, August 05, 2012 14KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
4. Distance from load centre:
– Distance to be considered for economical transmission of 
power.
5. Accessibility of the site:
– Adequate transportation facilities must be available.
6. Water pollution:
– Polluted water must be eliminated from the site.
– Pollution may cause excessive corrosion and damage to the 
metallic structures. 
7. Sedimentation:
– Gradual deposition of silt may reduce the capacity of reservoir.
– Which may cause damage of turbine blades.
Sunday, August 05, 2012 15KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
• 8. Large catchment area:
– Must have large catchment area, so that level of water in the 
reservoir may not fall below the minimum.
• 9. Availability of land:
– Available land should be cheap in cost.
– Rocky in order to withstand the weight of water, large buildings 
and machinery.
Sunday, August 05, 2012 16KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
How it Works:
 Build a dam on a large river that has a large drop 
in elevation.
 The dam stores lots of water behind it in the 
reservoir.
 Near the bottom of the dam wall, there is a water 
intake.
 Gravity causes it to fall through the penstock 
inside the dam.
 At the end of the penstock, there is a turbine 
propeller which is turned by the moving water.
Sunday, August 05, 2012 17KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
 The shaft from the turbine goes up into the 
generator, which rotates the armature, producing 
power.
 Power lines are connected to the generator that carry 
electricity.
 The water continues past the propeller through the 
tail‐race into the river past the dam.
Sunday, August 05, 2012 18KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 19
ELEMENTS OF HYDRO PLANT
1.  STORAGE RESERVOIR
2.  DAM
3.  FOREBAY
4.  SPILLWAY
5.  INTAKE
6.  SURGE TANK
7.  PENSTOCK
8.  VALVES AND GATES
9.  TRASH RACKS
10.  TAIL RACE
11.  DRAFT TUBES
12.  PRIME MOVERS/ WATER TURBINES
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 20
1. STORAGE RESERVOIR
– Purpose is to store water during excess flow.
– Can be of natural and artificial.
– Natural reservoir is in the form of lake in high 
mountains with large storing capacity.
– Capacity of reservoir depends on the difference 
between run‐offs during high and lean (dry) flows.
2. DAM
– Function of dam is not only to raise the water 
head, but also to provide the pondage, storage or 
the facility of diversion into conduits.
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 21
– Dam is the most expensive and important part of 
hydro project.
– Built of concrete, earth or rock fill.
– Choice of dam depends upon the foundation 
condition, local materials and transportation 
availability, occurrence of earth quakes and other 
hazards.
– Concrete or masonry dams are of three types:
• Solid gravity
• Buttress
• Arch dam
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 22
– Solid gravity dam:
• Made of concrete and suitable for most sites.
• Height of dam cannot be very high, depends on the 
strength of subsoil.
– Arch dam:
• It is a curved dam and transmits a major portion of its 
water pressure horizontally to the abutments by arch 
action.
• Arch dam is preferred, where eve a narrow canyon 
width is available.
• It has inherent stability against sliding.
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 23
• Buttress dam: 
– Buttress/deck dam has inclined up stream face.
– So that water pressure creates a large downward 
force, provides stability against over turning or sliding.
3. FOREBAY
– Mainly forebay provided before the Penstock, acts as 
water reservoir for medium head plants. 
– Serves as a regulating reservoir storing water 
temporarily during light load period.
– Provides same for initial increase on account of 
increasing load.
– Mainly forebay provided before the Penstock, acts as 
water reservoir for medium head plants. 
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 24
• 4.  SPILLWAY
– Act as a safety valve.
– A spillway is located at the top of the reservoir pool.
– Dams may also have bottom outlets with valves or 
gates which may be operated to release flood flow.
– Two main types of spillways: controlled and 
uncontrolled.
• A controlled spillway has mechanical structures or gates
to regulate the rate of flow. 
• An uncontrolled spillway, in contrast, does not have gates; 
when the water rises above the lip or crest of the spillway 
it begins to be released from the reservoir. 
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 25
5. INTAKE
– A penstock is a sluice or gate or intake structure that 
controls water flow, or an enclosed pipe that delivers 
water to hydraulic turbines.
– Intake structures are of two, High Pressure and small 
pressure.
6. SURGE TANK
– Surge tanks are usually provided in high or medium‐
head plants.
– The main functions of the surge tank are: 
• 1. When the load decreases, the water moves backwards 
and gets stored in it. 
• 2. When the load increases, additional supply of water 
will be provided by surge tank.KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 26
– Change in load creates a very high pressure in the 
penstock.
– Results in water hammer phenomenon, which may 
leads to penstock bursting. 
– Surge Tanks are placed near to the Turbine.
– The Height of Surge Tank is generally kept above the 
maximum Water Level in the supply Level Reservoir.
• There are three important types of Surge Tanks used in 
Hydro Electric Power Plant.
01)Simple Surge Tank
02)Restricted Orifice type Surge Tank
03)Differential Surge Tank. 
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 27
– simple surge tank is of uniform cross section and is 
open to atmosphere.
– Directly connected to penstock.
– Large in size with expensive proportions and sluggish.
– Not common in common practice.
– Restricted orifice surge tank is more efficient and 
economical.
– Drawback is the sudden creation of accelerating and 
retarding heads in the conduits, results in proportional 
sudden fluctuations on the turbine.
– Differential surge tank is the best suited for practical 
case.
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 28
7. PENSTOCK
– A closed conduit for carrying water to turbine.
– Penstocks are built of steel or reinforced concrete.
– Thickness must be adequate to withstand the 
pressure.
8. Valves and gates
– Control the flow of water into turbine.
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 29
9. TRASH RACKS
– Built up from long, flat bars set vertically spaced in 
accordance with minimum width of water passage 
through the turbine.
– Prevent the ingress of floating and other material to 
the turbine.
10. TAIL RACE
– Tail race is the path through which water is pumped 
out of the hydro power plant after power generation.
11. Draft Tubes
– An air tight pipe of suitable diameter attached to the 
runner outlet and conducting water down from the 
wheel.
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 30
12. PRIME MOVERS/ WATER TURBINES
– Hydro plants uses water turbine as prime movers.
– Converting one form of energy into other.
– Turbines are of mainly three types
• Pelton wheel ‐ Impulse type
• Francis turbine ‐ Radial Flow
• Kaplan turbine ‐ Axial Flow
– Pelton wheel is an impulse turbine, suited for high head 
and low flow plants
– Francis turbine is a reaction turbine, suited for medium 
head and medium flow plants.
– Kaplan is a special type of propeller turbine having 
adjustable blades and suited for low head and high flow 
plants.
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 31
• Hydro‐electric Generator
– A low‐speed generator driven by water turbines.
– Hydrogenerators may have a horizontal or vertical 
shaft.
– The horizontal units are usually small with speeds of 
300–1200 revolutions per minute (rpm).
– The vertical units are usually larger and more easily 
adapted to small hydraulic heads. The rotor 
diameters range from 2 to 62 ft (0.6 to 19 m) and 
capacities from 50 to 900,000 kVA.
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 32
Hydro‐electric Generator cntd…
– The generators are rated in kVA (kilovolts times 
amperes). 
– The normal power‐factor rating of small synchronous 
generators is between 0.8 and 1.0 with 0.9 being 
common. 
– For large generators a rating of 0.9–0.95 is common 
with the machines able to operate up to 1.0 when 
the load requires.
– Fields are connected in series, supplied from a dc 
source at 110/220/300 V.
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 33
Hydro‐electric Generator cntd…
– Recent generators uses static excitation system.
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 34
Hydro‐electric Generator cntd…
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 35
Hydro‐electric Generator cntd…
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 36
Hydro‐electric Generator cntd…
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 37
Hydro‐electric Generator cntd…
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 38
Hydro‐electric Generator cntd…
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 39
Hydro‐electric Generator cntd…
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 40
Hydro‐electric Generator cntd…
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 41
Hydro‐electric Generator cntd…
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 42
KERALA PROJECTS:
• KSEB has 23 Hydro Electric Projects, two Diesel power 
plants and one Wind Farm . The total installed capacity 
is 2229.6 MW. They are
• Hydro Electric Projects (1940.2MW)
– Idukki (780MW)
– Sabarigiri (335MW)
– Idamalayar (75MW)
– Sholayar (54MW)
– Pallivasal (37.5MW)
– Kuttiyadi (225MW)
– Panniar (30MW)
– Neriamangalam (77.65MW)
– Lower Periyar (180MW)
– Poringalkuthu & PLBE (48MW)
– Sengulam (48MW)
– Kakkad (50MW)KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 43
• Small Hydro Electric Projects(52.85MW)
– Kallada (15MW)
– Peppara (3MW)
– Malankara (10.5MW)
– Madupatty (2MW)
– Malampuzha (2.5MW)
– Lower Meenmutty (3.5MW)
– Chembukadavu ‐ 1 (2.7MW)
– Chembukadavu ‐ 2 (3.7MW)
– Urumi ‐1 (3.75MW)
– Urumi ‐2 (2.4MW)
– Kuttiyadi Tail Race (3.75MW)
• Thermal Projects (234.6MW)
– Brahmapuram Diesel Power Plant (106.6MW)
– Kozhikode Diesel Power Plant (128MW)
• Non‐conventional energy (2MW)
– Kanjikode Wind Farm (2MW)
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 44
Biggest Kerala project: (An Over view)
• The 'Idukki Dam' ‐ Asia's biggest Arch Dam of 555 
feet height.
• Between the two mountains ‐ 'Kuravanmala' (839 
meters) and 'Kurathimala' (925 meters ). 
• Consists of three major dams.
• Idukki Dam was commissioned in 1976.
• Thickness of 19.81 m, at the deepest foundation & 
7.62 m at top.
• Power House is located at Moolamattom which is 
about 43 kms away from Idukki.
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 45
• A single reservoir spread over 36 miles on a 
height of 2300 ft. m.s.l. 
• falls through a drop of about 669.2 metres
(2195 feet) to the underground power.
• The Idukki Project was completed with the 
economic and technological assistance of 
Canada in accordance with the Colombo Plan of 
Commonwealth Countries. 
• Turbines, 6 x 130 MW Pelton‐type.
• Technically, the dam type is a concrete double, 
curvature parabolic, thin arc.KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 46KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 47
•
KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 48KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 49KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 50KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 51KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 52
Hydro Electric Projects of Kerala under KSEB 
• Pallivasal Hydro Electtic Project‐ Dams‐Kandla,Madupetty River‐Palar/Periyar
• Sengulam HEP‐ Shengulam Dam River‐Mudriapuzha/Periyar
• Neriyamangalam HEP‐ Kallarkutty Dam River‐Mudriapuzha/Periyar
• Panniyar HEP‐ Dams‐Ponmudi,Anayirangal Rivers‐ Panniar/Periyar
• Idukki HEP‐ Dams‐ Idukki,Cheruthoni,Kulamavu Rivers‐ Periyar, Cheruthoni/Periyar, Kilivillithode
• Idukki Augmentation‐ Dams‐ Kallar, Erattayar, Azhutha, Vadakkepuzha, Vazhikkadavu Rivers‐
Perinjankutty/Periyar,Perinjankutty, Periyar..
• ldamalayar HEP‐ Idamalayar Dam‐ Rivers‐ldamalayar/Periyar
• Lower Periyar HEP‐ Dam‐ Lower Periyar‐ River‐Periyar
• Poringalkuttu HEP‐ Dam‐Poringalkuttu‐ River‐ Chalakudy
• Sholayar HEP‐ Dams‐ Sholayar‐Main Dam,Sholayar‐Flanking,Sholayar‐ Saddle Dam River‐
Chalakudy
• Sabarigiri HEP‐ Dams‐Kakki,Anathodu,Pampa Rivers‐ Kakki/Pamba, Anathodu/Pamba,Pampa
• Sabarigiri Augmentation‐ Dams‐ Upper Moozhiyar, Gavi, Kallar, Meenar I,Meenar II Rivers‐
Moozhiyar/Pamba,Gavi Ar/Pamba, Kallar/Pamba, Minar/Pamba, Minar/Pamba
• Kakkad HEP‐ Dams‐Veluthodu, Moozhiyar Rivers‐ Veluthodu/Pamba, Moozhiyar/Pamba
• Kuttiyadi HEP‐ Dams‐Kuttiyadi River‐Kuttiyadi
• Kuttiyadi Augmentation‐ Dams‐ Kuttiyadi Augn, Kosani Saddle,Near Kottagiri Saddle, Kottagiri
Saddle,Kuttiyadi Saddle River‐ Karamanthodu/KabaniKN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
• Sizes and capacities of hydroelectric facilities
Sunday, August 05, 2012 53KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
•Major Hydro‐electric Plants
Sunday, August 05, 2012 54KN. Chandra Bose, Asst. Professor, GECT
CONVENTIONAL SOURCES OF ENERGY …
Sunday, August 05, 2012 55
Position of Country in hydro‐ generation
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 56
THERMAL POWER PLANT
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 57
• A thermal power station is a power plant in which the 
prime mover is steam driven. 
• Water is heated, turns into steam and spins a steam 
turbine which drives an electrical generator. 
• After it passes through the turbine, the steam is 
condensed in a condenser and recycled to where it was 
heated; this is known as a Rankine cycle. 
• The greatest variation in the design of thermal power 
stations is due to the different fuel sources. 
• In India 65% of total power is generated by the Thermal 
Power Stations.
THERMAL PLANT
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 58
• Almost all coal, nuclear, geothermal, solar thermal 
electric, and waste incineration plants, as well as many 
natural gas power plants are thermal.
• Steam power plants may be either condensing or non‐
condensing type.
• According to use, plants can be classified into:‐
– Industrial power plants or captive power plant.
– Central power plants or common plants.
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 59
EFFICIENCY OF STEAM POWER PLANTS
• Thermal efficiency of plant is defined as the ratio of the 
heat equivalent of mechanical energy transmitted to 
the turbine and heat of combustion (about 30%).
• Over all efficiency is the ratio of heat equivalent of 
electrical output to the heat of combustion (29%).
Losses in steam plant
• a) Boiler house losses
– i) dry flue gases 5%
– ii) moisture in gases 5%
– iii) ash and unburnt carbon 1%
– iv) radiation and leakage 2.5%
– v) unknown losses 2.5%
TOTAL 16%KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 60
• b) Turbine losses
– Heat rejected to condenser 54%
– Alternator losses 01%
– Thus out put is 29%
• Thermal efficiency mainly depends on 3 factors –
– Pressure
– Temperature of the steam entering the turbine
– Pressure in the condenser
• Thermal efficiency increase with increase in temp and 
pressure of steam entering the turbine.
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 61
• Which effectively increased by decreasing the pressure in the 
condenser and usually kept very low at 0.04kg/cm2.
• It can also increased by re‐heating the steam.
Classification
• Classified by the type of fuel and the type of prime mover 
installed.
– By fuel
• Fossil‐fuel power stations
• Nuclear power plants
• Geothermal power
• Biomass‐fuelled power plants
• In integrated steel mills, blast furnace exhaust gas is a low‐cost, fuel.
• Waste heat from industrial processes is occasionally concentrated enough 
to use for power generation.
• Solar thermal.
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 62
– By prime mover
• Steam turbine
• Gas turbine
• Combined cycle
• Internal combustion reciprocating engines
• Microturbines, Stirling engine
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 63
• Factors to be considered
– Nearness to the load Centre
– Supply of water
– Availability of coal
– Land requirement
– Type of land
– Transportation facilities
– Labour supplies
– Ash disposal
– Distance from polluted area
Selection of site for steam power plants
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 64
• 1. Load centre: ‐
– Plant should be as near as possible to the load centre so that the 
transmission cost and losses are minimum.
• 2. Supply of water: ‐ Large amount of water is required 
• to raise the steam in the boiler 
• for cooling purpose
• As carrying medium for ash disposal
• Drinking purpose.
– In plants approximately 1.26x106 k cals of heat per MW 
per Hour has to be disposed off in the condenser.
– In direct circulation from source of water, 120m3 of 
water is required per MW per hour.
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 65
– Efficiency of direct cooled plant is 0.5% higher than that of plant 
cooled by cooling towers.
– Hence saving is Rs.7.5lacs per year in fuel cost for a 2000MW 
station.
– Hence plant should be located near sea, river or lake.
• 3. availability of coal: ‐
– huge amount of coal is required for raising steam – 20,000 
tonnes per day for a 2000MW station.
– Govt. policy is to use only low grade coal with 30 to 40% ash 
content for power generation.
• 4. Land requirement:
– For coal storage, cottage, and ash disposal etc.
– For a 2000MW plant, around 200 to 250 acres land is required.
– Consider future expansion while selecting land.
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 66
• 5. Type of land:
– Should be of good bearing capacity.
– Over all load may come around 7kg per cm2
– Reasonably plain land is suitable.
• 6. Transportation
• 7. Labour supplies: ‐ skilled and un‐skilled
• 8. Ash disposal:
– Main waste from plant is ash which may come around 3.5 tonnes
per day.
– It may be used for building purpose or brick making.
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 67
WORKING OF STEAM PLANT
• A coal based thermal power plant converts the chemical 
energy of the coal into electrical energy. 
• Achieved by raising the steam in the boilers, expanding it 
through the turbine and coupling the turbines to the 
generators which converts mechanical energy into 
electrical energy.
• Steam after expansion, condensed and fed into boiler 
again.
• Coal based thermal power plant works on the principal 
of Modified Rankine Cycle.
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 68
WORKING OF STEAM PLANT
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 69
WORKING OF STEAM PLANT
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 70
WORKING OF STEAM PLANT
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 71
• A deaerator is a device used for the removal of oxygen and other 
dissolved gases from the feedwater. 
• Dissolved oxygen in boiler feed water will cause serious corrosion, 
damages the steam systems by attaching to the walls of metal 
piping and other metallic equipment and forming oxides (rust). 
• Dissolved carbon dioxide combines with water to form carbonic acid
that causes further corrosion. 
• Most deaerators are designed to remove oxygen down to levels of 7 
ppb by weight (0.005 cm³/L) or less as well as essentially eliminating 
carbon dioxide.
• Types of deaerators:‐ the tray‐type and the spray‐type:
• The tray‐type (also called the cascade‐type) includes a vertical 
domed deaeration section mounted on top of a horizontal 
cylindrical vessel which serves as the deaerated boiler feedwater
storage tank.
• The spray‐type consists only of a horizontal (or vertical) cylindrical 
vessel which serves as both the deaeration section and the boiler 
feedwater storage tank.
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 72KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 73
Components of Coal Fired Thermal Power Station:
Coal Preparation
• i)Fuel preparation system:
– The raw feed coal from the coal storage area is first crushed into 
small pieces and then conveyed to the coal feed hoppers at the 
boilers. 
– The coal is next pulverized into a very fine powder, so that coal 
will undergo complete combustion during combustion process.
• ii)Dryers:
– Used in order to remove the excess moisture from coal.
– presence of moisture will result in fall in efficiency due 
to incomplete combustion and also result in 
CO emission. KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 74
• iii)Magnetic separators:
– coal may contain iron particles. These iron particles may result in 
wear and tear.
– so they are removed with the help of magnetic separators.
– The coal finally transferred to the storage site.
– There are two types of storage:
– 1. Live Storage(boiler room storage):
• This storage consists of about 24 to 30 hrs. of coal 
requirements of the plant. 
• The live storage can be provided with bunkers & coal bins. 
• Bunkers are enough capacity to store the requisite of coal. 
From bunkers coal is transferred to the boiler grates.
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 75
– 2. Dead storage‐
• stored for future use. 
• Mainly it is for longer period of time
• It is also mandatory to keep a backup of fuel for specified 
amount of days depending on the reputation of the company. 
Forms of storages are :–
• Stacking the coal in heaps over available open ground areas.
• Under cover or alternatively in bunkers.
• Allocating special areas & surrounding these with high 
reinforced concerted retaking walls.
• A Boiler or steam generator essentially is a container into which 
water can be fed and steam can be taken out at desired pressure, 
temperature and flow.
Boiler and auxiliaries
KN. Chandra Bose, Asst. Professor, GECT
Thermal ENERGY …
Sunday, August 05, 2012 76
• The boiler should have a facility to burn a fuel and release the heat. 
The functions of a boiler:‐
– 1. To convert chemical energy of the fuel into heat energy.
– 2. To transfer this heat energy to water for evaporation as well to 
steam for superheating.
The basic components of Boiler are: ‐
• Furnace and Burners :‐ A furnace is a device used for heating.
• Steam and Superheating
• Bolilers are classified as:
1. Fire tube boilers : 
– In fire tube boilers, hot gases are passed through the tubes and 
water surrounds these tubes. 
– Simple, compact and rugged in construction. 
– Depending on whether the tubes are vertical or horizontal these 
are further classified as vertical and horizontal tube boilers.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 77
– In this since the water volume is more, circulation will be poor.
– So they can't meet quickly the changes in steam demand.
– High pressures of steam are not possible,
– Maximum pressure that can be attained is about 17.5kg/cm2. 
– Due to large quantity of water in the drain it requires more time 
for steam raising.
2. Water tube boilers : 
– Here Water is inside the tubes and hot gases are outside the 
tubes.
– Hot gases which surrounds these tubes will convert the water in 
tubes in to steam.
– Attain pressure as high as 125 kg/sq cm and temperatures from 
315 to 575 centigrade.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 78
• Superheater : 
– A device which removes the last traces of moisture from the 
saturated steam leaving the boiler tubes and also heated 
above its saturation temperature. 
– The superheater may consist of one or more stages of tube 
banks arranged to effectively transfer heat from the 
products of combustion.
– Carbon steel – upto 950oF, stainless steel – 1200oF
– Superheaters are classified as convection , radiant or 
combination of these.
Reheater : 
– Reheater is also steam boiler component in which heat is 
added to the intermediate‐pressure steam.
– The steam after reheating is used to rotate the second 
steam turbine 
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 79
Condenser : 
– Steam after passing through turbine comes to condenser.
– Condenser refers to the shell and tube heat exchanger installed 
at the outlet of every steam turbine. 
– These are heat exchangers which convert steam from its gaseous 
to its liquid state.
– Condensers are classified as (i) Jet condensers or contact 
condensers (ii) Surface condensers.
Cooling Towers :
– The condensate (water) formed in the condenser after 
condensation is initially at high temperature.
– It is a tower‐ or building‐like device in which atmospheric air 
circulates in direct or indirect contact with warmer water.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 80
Economiser :
– Flue gases coming out of the boiler carry lot of heat.
– Function of economiser is to recover some of the heat from the 
heat carried away in the flue gases up the chimney and utilize for 
heating the feed water to the boiler.
– Placed in the passage of flue gases in between the exit from the 
boiler and the entry to the chimney.
– The use of economiser results in saving in coal consumption , 
increase in steaming rate and high boiler efficiency by 10 – 12%.
Prime Movers:
– Converts steam energy into mechanical energy.
– Reciprocating type or turbines, (common is turbines).
– Turbines gives high speed.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 81
Steam turbines:
– There is no pistons, slide valves and no fly wheels.
– Classified into impulse and reaction type Turbine.
• In an Impulse turbine, steam expands in stationary nozzles and 
there is no pressure drop over the blades or runner.
• Has high speed and ample clearance between runner and 
stationary blades.
• In a reaction turbine, the steam does not expands in nozzle but 
expands as flows over the blades.
• They are of low speed.
Control room:
– Houses all necessary measuring instruments for each 
panel.
– Separate battery room and a motor generator set or a 
rectifier is installed for control circuit.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 82KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 83
Advantages:
• The fuel used is quite cheap.
• Less initial cost as compared to other generating plants.
• It can be installed at any place irrespective of the existence of coal. 
• It require less space as compared to Hydro power plants.
• Cost of generation is less than that of diesel power plants.
• Suitable for rapidly changing loads and can operate under 25% over load 
continuously.
Disadvantages:
• It pollutes the atmosphere due to production of large amount of 
smoke and fumes.
• It is costlier in running cost as compared to Hydro electric plants.
• Requires huge amount of water. 
Merits and Demerits of Steam Plant
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 84
 Diesel oil is used as fuel.
 Diesel plants are uneconomical owing to oil cost.
 Commonly installed, where other sources of fuel is not 
available.
Selection of site:
 Distance from load centre
 Availability of land
 Availability of fuel
 Transportation facility
 Availability of water
 Distance from populated area
 Types of land
Diesel Electric Power Plant
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 85
 Diesel Engine
 Air filter and Supercharger :
 Exhaust system :
 Fuel System :
 Cooling System :
 Starting System :
 Governing System :
 Diesel Engine Generator :
Diesel Electric Power Plant
Elements of Plant
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 86
Diesel Engine :
 which develops power. 
 They may be 4 strokes or 2 stroke engine. 
 4 stroke engines has lower fuel consumption, more flexibility, better 
scavenging and higher efficiency than 2 stroke. 
 Cylinders are arranged in V shape to make the engine more 
compact. 
 6 to 8 cylinders are commonly used. 
 Speed is in the range of 500‐1000 rpm. 
 The diesel engines are compression ignition type. 
 Diesel engines are available in sizes from 75kW to 3750kW.
Diesel Electric Power Plant
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 87
Air filter and Supercharger :
 The function of air filter is to remove the dust from the air.
 The function of supercharger is to increase the pressure of air 
supplied to the engine to increase the power of the engine. 
 The supercharger is driven by the engine.
Exhaust system :
 This includes silencer and connecting ducts. 
 silencer is required in between the engine and the intake system.
 The temperature of exhaust gases are really high.
 Which can be used for heating the oil or air supplied to the engine.
Diesel Electric Power Plant
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 88
Fuel System :
 This includes fuel storage tank, fuel pump, fuel transfer pump, 
strainers and heaters. 
 The fuel is supplied according to the load on the plant. 
 Strainers are provided to remove the suspended impurities. 
 Heaters are required to heat the oil, especially during winter 
seasons.
Cooling System :
 Includes oil pumps, oil tanks, filters, coolers and connecting pipes.
 The function of the lubricating system is to reduce the friction of 
moving parts and to reduce the wear and tear of the engine parts.
 The life of engine and its efficiency largely depends on the 
lubricating system.
Diesel Electric Power Plant
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 89
Starting System :
 Includes compressed air tanks. 
 Function is to start the engine from cold by supplying the compressed air.
Governing System :
 Their function is to maintain the speed of the engine constant irrespective 
of load on the plant. 
 Done by varying fuel supply to the engine according to load.
Diesel Engine Generator :
 The generators is of rotating field, salient pole construction, speed 
ranging from 214 to 1000 rpm.
 Capacities ranging from 25‐5000 kVA at 0.8 power factor lagging. 
 Generators are coupled directly to diesel engine. 
 Provided with voltage regulators to allow voltage regulation. 
 Excitation is usually at 115 to 230 V from a DC exciter, usually coupled to 
the engine shaft through a belt.
Diesel Electric Power Plant
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 90
• The only purpose of a nuclear power plant is to produce 
electricity.
• Power plant needs a source of heat to boil the water which 
becomes steam and turbine turns an electrical generator.
• In a nuclear plant the source of heat is a nuclear reactor.
• Fuel for a nuclear reactor is uranium, but not just any 
uranium.
• Most uranium atoms (99.3%) consist of a nucleus with 146 
uncharged neutrons and 92 positively charged protons.
• Adding the number of neutrons and protons, these atoms 
have a total of 238 neutrons and protons. 
NUCLEAR POWER PLANT
KN. Chandra Bose, Asst. Professor, GECT
HOW IT WORKS??
 However, not all uranium atoms have 146 neutrons; 
0.7% have 143, so this is called U‐235.
 The most important difference is that U‐235 
spontaneously splits, producing two smaller nuclei 
plus 2 to 5 neutrons.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 92
• To have U‐235 fission efficiently, the uranium fuel is enriched.
• Uranium has gone through a process to increase the content of U‐
235 from 0.7% to 3 to 4%. 
PROCESS:
– Energy is released from uranium.
– Uranium atom is split into two.
– Energy released in the form 
of radiation and heat. 
– Uranium is first formed into 
pellets and then into long rods. 
– The uranium rods are kept cool 
by submerging them in water. 
– While they are remove from the 
water, nuclear reaction takes place causing heat. 
Nuclear Power Plant
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 93
 The amount of heat required is controlled by raising and lowering 
the rods. 
 If more heat is required the rods are raised further out of the water 
and if less is needed they lower further into it.
 The most common  nuclear fuels are 235U and 239Pu.
Nuclear Power Plant
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 94
Nuclear Power Plant
• • U235 + n → fission + 2 or 3 n + 200 MeV  
 If each neutron releases two or more neutrons, then the 
number of fissions doubles in each generation. 
 In that case, in 10th generations there are 1,024 fissions 
and in 80 generations about 6 x 10 23 (a mole) fissions. 
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 95
 PLANT LAYOUT
Nuclear Power Plant
KN. Chandra Bose, Asst. Professor, GECT
TYPES OF NUCLEAR RECATOR
BOILING WATER 
REACTOR
PRESSURIZED WATER 
REACTOR
KN. Chandra Bose, Asst. Professor, GECT
PRESSURIZED WATER REACTOR
KN. Chandra Bose, Asst. Professor, GECT
BOILING WATER REACTOR
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 99
Nuclear Power Plant
NUCLEAR REACTOR
 A nuclear reactor is a device in which nuclear chain reactions are 
initiated, controlled, and sustained at a steady rate.
CONTROL RODS 
 Control rods absorbs neutron's.
 The control rods essentially contain neutron absorbers like, 
boron, cadmium or indium.
STEAM GENERATORS
 Convert water into steam from heat produced in reactor core. 
Either ordinary water or heavy water is used as the coolant.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 100
STEAM TURBINE 
 Extracts thermal energy from pressurized steam, and converts it 
into useful mechanical power.
 Various high‐performance alloys and super alloys have been used 
for steam generator turbine.
COOLANT PUMP
 The coolant pump pressurizes the coolant to155bar. 
 The pressure of the coolant loop is maintained almost constant.
Nuclear Power Plant
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 101
FEED PUMP
 Steam coming out of the turbine, flows through the condenser for 
condensation and recirculate for the next cycle of operation. 
 The feed pump circulates the condensed water in the working fluid loop.
CONDENSER
 Used to condense vapour into liquid.
 The objective of the condenser are to reduce the turbine exhaust 
pressure.
 Which increases the efficiency and to recover high quality feed water in 
the form of condensate & feed back it to the steam generator without 
any further treatment.
Nuclear Power Plant
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 102
COOLING TOWER
 Transfer process waste heat to the atmosphere.
 Water circulating through condenser is taken to the cooling tower 
for cooling and reuse.
Nuclear Power Plant
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 103
ADVANTAGES
 Fission is the most energy efficient process.
 Nuclear power generation does emit relatively low amounts of 
carbon dioxide (CO2). 
 The emissions of green house gases (global warming) relatively 
little.
 It is possible to generate a high amount of electrical energy.
Nuclear Power Plant
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 104
DISADVANTAGES 
 The problem of radioactive waste is still an unsolved one. 
 High risks: It is technically impossible to build a plant with 100% 
security. 
 Uranium is a scarce resource, its supply is estimated to last only for 
the next 30 to 60 years depending on the actual demand.
Nuclear Power Plant
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 105
DISADVANTAGES 
 Nuclear power plants as well as nuclear waste could be preferred 
targets for terrorist attacks.
 During operation radioactive waste is produced, which in turn can 
be used for the production of nuclear weapons. 
Nuclear Power Plant
KN. Chandra Bose, Asst. Professor, GECT
Indian Nuclear Program: The
Constraints
• Uranium ore reserves only for 10,000MW for 40 years
• Slow growth of nuclear electric power: ~1000 MW
annually
• Major dependence on Pu and U233.
• Complex fuel technologies. Total capacity limited
Nuclear Power Plant
KN. Chandra Bose, Asst. Professor, GECT
Nuclear Power: The Present Status
0
2000
4000
6000
8000
10000
12000
14000
1969 1973 1981 1984 1986 1991 1992 1993 1995 2000 2005 2006 2015
InstalledCapacity(MW)
Planned
Presently installed
Nuclear Power Plant
KN. Chandra Bose, Asst. Professor, GECT
Indian Energy Scenarios: 2015
Coal
60.44%
Gas
14.49%
Diesel
0.48%
Nuclear
5.06%
Hydro
15.96%
Solar thermal
0.40%
Biomass
1.19%
Wind
1.99%
Gas
14.49%
Diesel
0.48%
Nuclear
14.60%
Hydro
15.96%
Solar thermal
0.40%
Biomass
1.19%
Wind
1.99%
Coal
50.90%
Same Fuel Mix as now Aggressive Nuclear Capacity Addition
• Reduction in annual coal consumption ~ 100 Million Tons
• Reduction in annual CO2 Emissions > 170 Million Tons
• ~ Total present CO2 emissions of Netherlands !
Nuclear Power Plant
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 109
Renewable energy
The Ultimate Renewable
Resources
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 110
 A renewable resource is a natural resource with the 
ability to reproduce through biological or natural 
processes and replenished with the passage of time. 
 Renewable resources are part of our natural 
environment and form our eco‐system.
Energy generated by using 
wind
Tides
Solar
geothermal heat
biomass including farm and animal waste as 
well as human excreta.
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
 All renewable energy, ultimately comes from the sun.
 The earth receives 1.74 x 1017 watts of power (per hour) from the 
sun.
 About one or 2 percent of this energy is converted to wind energy.
Sunday, August 05, 2012 111
WIND POWER Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 112
Working:
 The terms wind energy or wind power describe the 
process by which the wind is used to generate mechanical 
power or electricity. 
 Wind turbines convert 
the kinetic energy in the 
wind into mechanical 
power. 
 Gross wind power 
potential of India is 
estimated to be about 
20,000 MW, wind power 
projects of 970 MW 
capacities were installed
till March. 1998
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 113
Consists of three crucial parts:
 Rotor blades –
 When the wind forces the blades to move, it has transferred some of its 
energy to the rotor.
 Shaft –
 Shaft is connected to the center of the rotor. 
 When the rotor spins, the rotor transfers its mechanical, rotational energy to 
the shaft.
 High‐speed shaft: Drives the generator.
 Low‐speed shaft: The rotor turns the low‐speed shaft at about 30 to 60 
rotations per minute.
 Generator
• Anemometer:
– Measures the wind speed and transmits wind speed data to the 
controller.
• Brake:
– A disc brake, which can be applied mechanically, electrically, or 
hydraulically to stop the rotor in emergencies.
Parts of Wind Turbines
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 114
• Controller:
– The controller starts up the machine at wind speeds of about 8 
to 16 miles per hour (mph) and shuts off the machine at about 
55 mph. 
– Turbines do not operate at wind speeds above about 55 mph 
because they might be damaged by the high winds.
• Gear box:
– Gears connect the low‐speed shaft to the high‐speed shaft and 
increase the rotational speeds from about 30 to 60 rotations per 
minute (rpm) to about 1000 to 1800 rpm. 
• Nacelle:
– The nacelle sits at top of the tower and contains the gear box, 
low‐ and high‐speed shafts, generator, controller, and brake. 
Some nacelles are large enough for a helicopter to land on.
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 115
Pitch:
– Blades are turned, or pitched, out of the wind to control the 
rotor speed and keep the rotor from turning in winds that are 
too high or too low to produce electricity.
Rotor:
– The blades and the hub together are called the rotor.
Tower:
– Towers are made from tubular steel, concrete, or steel lattice. 
– Because wind speed increases with height, taller towers enable 
turbines to capture more energy and generate more electricity.
Wind direction:
– This is an “upwind” turbine, so‐called because it operates facing 
into the wind. 
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 116
Wind vane:
– Measures wind direction and communicates with the yaw drive 
to orient the turbine properly with respect to the wind.
Yaw drive:
– Used to keep the rotor facing into the wind as the wind direction 
changes
Yaw motor:
– Powers the yaw drive.
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 117
Wind power
– The power in the wind is proportional to:
• the area of windmill being swept by the wind
• the cube of the wind speed
• the air density – which varies with altitude
– The formula:
Power =½(density of air x swept area x velocity cubed)
P = ½.ρ.A.V3
where, P is power in watts (W)
ρ is the air density in (kg/m3)
A is the swept rotor area in (m2)
V is the wind speed in (m/s)
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 118
 Mean wind speed is from, 6 to 10 m/s.
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 119
 It is a renewable source of energy.
 Wind power systems are non‐polluting.
 Wind energy systems avoid fuel provision and transport.
 On a small scale up to a few kilowatt, system is small.
 Wind energy available is fluctuating  in  nature.
 Wind energy needs storage capacity because of its 
irregularities.
 Wind energy systems are noisy in operation.
 Wind power systems have a relatively high overall weight.
ADVANTAGES OF WIND ENERGY
DISADVANTAGES OF WIND ENERGY
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 120
What is Tidal Energy?
– Tidal energy is the utilization of the variations in sea level caused 
primarily by the gravitational effects of the moon, combined 
with the rotation of the Earth.
• Tides generated by the combination of the moon and sun’s 
gravitational forces
• Greatest affect in spring when moon and sun combine forces
• Bays and inlets amplify the height of the tide
• For energy production, the height difference needs to be at least 5 
meters. 
 India possesses 8000‐9000 MW of tidal energy potential. 
Tidal Energy
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 121
• Tidal Energy
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 122
• Two types of tidal plant facilities.
– Tidal barrages
– Tidal current turbines
• Ideal sites are located at narrow channels and 
experience high variation in high and low tides.
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Tidal Barrage •Two types:
• Single basin system-
Ebb generation: During flood tide
basin is filled and sluice gates are
closed , trapping water. Gates are
kept closed until the tide has ebbed
sufficiently and thus turbines start
spinning and generating electricity.
Flood generation: The basin is filled
through the turbine which generate
at flood tide.
Two way generation: Sluice gates and
turbines are closed until near the end
of the flood tide when water is
allowed to flow through the turbines
into the basin creating electricity. At
the point where the hydrostatic head
is insufficient for power generation
the sluice gates are opened and kept
open until high tide when they are
closed. When the tide outside the
barrage has dropped sufficiently
water is allowed to flow out of the
basin through the turbines again
creating electricity.
Double-basin system: There are two
basins, but it operates similar to en
ebb generation, single-basin system.
The only difference is a proportion of
the electricity is used to pump water
into the second basin allowing
storage.
• Utilize potential energy
• Tidal barrages are typically dams built
across an estuary or bay.
• consist of turbines, sluice gates,
embankments, and ship locks.
Basin
KN. Chandra Bose, Asst. Professor, GECT
Tidal current turbines
• Extracts kinetic energy from
moving water generated by tides.
• Operate during flood and ebb
tides.
• Consists of a rotor, gearbox, and
a generator. These three parts are
mounted onto a support
structure. There are three main
types:
▫ Gravity structure
▫ Piled structure
▫ Floating structure
KN. Chandra Bose, Asst. Professor, GECT
-Advantages and Disadvantages-
• Advantages
– The energy is free – no fuel needed, no waste
produced
– Not expensive to operate and maintain
– Can produce a great deal of energy
• Disadvantages
– Depends on the waves – sometimes you’ll get
loads of energy, sometimes almost nothing
– Needs a suitable site, where waves are
consistently strong
– Some designs are noisy. But then again, so are
waves, so any noise is unlikely to be a problem
– Must be able to withstand
KN. Chandra Bose, Asst. Professor, GECT
-Environmental Impact-
– Noise pollution
– Displace productive fishing sites
– Change the pattern of beach sand
nourishment
– Alter food chains and disrupt migration
patterns
– Offshore devices will displace bottom-
dwelling organisms.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 127
What is Solar Energy?
 Originates with the 
thermonuclear fusion 
reactions occurring in
the sun.
 Represents the entire 
electromagnetic radiation
(visible light, infrared, 
ultraviolet, x‐rays, and 
radio waves).
Renewable energy
Solar Energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 128
How much solar energy?
 The surface receives about 47% of the total solar energy.
 Sun radiates energy of 3.5x1023kW into space and only 
2x1014kW reaches the earth.
 Photovoltaic cells are capable of directly converting 
sunlight into electricity.
 A simple silicon 
Wafer converts 
light energy into   
Voltage.
 Produced based 
on types of silicon 
(n‐ and p‐types)
used for the layers.  
Each cell=0.5 volts.
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 129
• Battery needed as storage.
• No moving partsdo not wear out.
• Because they are exposed to the weather, their lifespan is 
about 20 years.
 India gets more than 5,000 trillion kWh of Solar Energy 
every year.
 Solar Energy is successfully used in residential and 
industrial settings for cooking, heating, cooling, lighting, 
space technology, and for communications among other 
uses.
 Solar panels are one of the most important factors in the 
generation of Solar Energy. 
 On an average, 1 Sq. Ft. of Solar Panel generates 10.6 W 
of power.
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 130
 Efficiency of cells is up to 23%/ improving.
 Solar collectors are of mainly two types‐
 Flat plate collectors
 Focussing or concentrating collectors.
 Cylindrical parabolic concentrators
 Paraboloids, mirror arrays
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 131

Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 132
Different Arrangements of Plant Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 133
Geo‐Thermal Energy:
• Geo‐thermal energy is the heat of the earth's interior. This 
energy is manifested in the hot springs. 
• India is not very rich in this source.
Energy from Biomass:
• Biomass refers to all plant material and animal excreta 
when considered as an energy source. 
• Some important kinds of biomass are inferior wood, 
urban waste, farm animal and human waste.
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 134

Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 135
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 136
Advantages of Geothermal Energy
• Significant Cost Saving : 
• Environmental Benefits :.
• Direct Use : 
• Job Creation and Economic Benefits : 
Disadvantages of Geothermal Energy
• Not Widespread Source of Energy :
• High Installation Costs :
 Can Run Out Of Steam
 Suited To Particular Region
 May Release Harmful Gases :
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 137
 The field of MHD was initiated by Hannes Alfvén , for 
which he received the Nobel Prize in Physics in 1970.
 Magneto hydrodynamics (MHD) (magneto fluid 
dynamics or hydro magnetics) is the academic 
discipline which studies the dynamics of electrically 
conducting fluids. 
 Examples of such fluids include plasmas, liquid metals, 
and salt water.
Renewable energy
MAGNETO HYDRO DYNAMIC POWER
GENERATION (MHD )
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 138
 MHD power generation is a new system of electric power 
generation which is said to be of high efficiency and low 
pollution. 
 In advanced countries MHD generators are widely used 
but in developing countries like INDIA, it is still under 
construction.
 An MHD generator is a device for converting heat energy 
of a fuel directly into electrical energy without 
conventional electric generator.
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 139
• Conventional Gen: ‐ conductor moves across a magnetic 
field, a voltage is induced in it.
• In MHD generator, the solid conductors are replaced by a 
gaseous conductor, an ionized gas. 
• If such a gas is passed at a high velocity through a 
powerful magnetic field, a current is generated and can be 
extracted by placing electrodes in suitable position in the 
stream.
Renewable energy
PRINCIPLES OF MHD POWER
GENERATION
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 140
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 141
• The flow direction is right angles to the magnetic fields 
direction. 
• An electromotive force (or electric voltage) is induced in 
the direction at right angles to both flow and field 
directions.
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 142
 The conducting flow fluid is forced between the plates 
with a kinetic energy and pressure differential sufficient to 
over come the magnetic induction force Find.
 Ionization is produced either by thermal means.
 The atoms of seed element split off electrons. 
 The presence of the negatively charged electrons makes 
the gas an electrical conductor.
Renewable energy
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 143
 The conversion efficiency is around 50%. 
 Still higher efficiencies are expected in future, around 60 –
65%.
• Large amount of power is generated.
• It has no moving parts, so more reliable.
• The closed cycle system produces power, free of pollution.
• It has ability to reach the full power level as soon as 
started.
 It is possible to use MHD for peak power generations and 
emergency service.
Renewable energy
ADVANTAGES
KN. Chandra Bose, Asst. Professor, GECT
Economics of Power Generation
• The function of a power station is to deliver power 
at the lowest possible cost per kilo watt hour.
(Practically not possible, explained by Economics of power Generation).
• The total cost is made up of fixed and operating 
cost.
– Fixed cost consists:‐
• interest on the capital, 
• taxes, insurance, depreciation
• salary of managerial staff
– operating expenses
• cost of fuels, water, oil, labor, repairs and maintenance 
etc.Sunday, August 05, 2012 144KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 145
 The cost of power generation can be minimized by :
1. Selecting equipment of longer life and proper 
capacities.
2. Running the station at high load factor.
3. Operation through fewer men.
4. Increasing the efficiency of plant.
5. Proper maintenance in time.
6. Keep efficient supervisors.
7. Using a plant of simple design that does not  
need highly skilled personnel.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 146
 Hence plant selection can be based on fixed and 
operating cost.
 For nuclear plant fuel cost is relatively low and 
fixed, operating, maintenance charges are high.
 For diesel, fuel cost is high
 For hydro, fixed charges are high  (70 to 80%).
 Hence generation must be regulated according to 
demand and plant should run at full load at which 
they give max.η.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 147
 Schedule the units to fit the load curve as 
closely as possible. 
 Demand is varying with time, hence 
generation must meet the demand at any 
time.
 In an electric power plant, the capital cost of 
generating equipment's increase with an 
increase in efficiency.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 148
General terms in power station practice, 
to run efficiently:
1. Load curve :
– Load curve is the plot of load in kilowatts versus time
usually for a day or a year. 
2. Load duration curve :
– Is the plot of load in kilowatts versus time duration for 
which it occurs.
3. Maximum demand :
– Is the greatest of all demands which have occurred during 
a given period of time. 
4. Average load :
– Is the average load on the power station in a given period 
(day/month or year)
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 149
5. Base load :
– Is the minimum load over a given period of time. 
6. Connected load :
– Is the sum of the continuous ratings of the load 
consuming apparatus connected to the system. 
7. Peak load :
– Is the maximum load consumed or produced by a unit 
or group of units in a stated period of time. 
– It may be the maximum instantaneous load or the 
maximum average load over a designated interval of 
time.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 150
8. Demand factor :
– Is the ratio of maximum demand to the connected load 
of a consumer.
9. Diversity factor :
– Is the ratio of sum of individual maximum demands to 
the combined maximum demand on power stations 
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 151
10. Load factor :
– Is the ratio of average load during a specified period to 
the maximum load occurring during the period. 
Load factor = Average Load / Maximum demand
11. Station load factor :
– Is the ratio of net power generated to the net maximum 
demand on a power station. 
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 152
12 . Plant factor :
– Is the ratio of the average load on the plant for the 
period of time considered. 
13. Capacity factor :
– Is the ratio of the average load on the machine for a 
period of time considered, to the rating of the machine. 
14. Demand factor :
– Is the ratio of maximum demand of system or part of 
system, to the total connected load of the system.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 153
15. Utilization factor :
– Is the ratio of maximum demand of a system or part of the 
system, to the rated capacity of the system, or part of the 
system, under consideration. 
16. Firm power :
– Firm power is the power intended always to be available 
even under emergency conditions. 
17. Prime power :
– Prime power is the maximum potential power constantly 
available for transformation into electrical power. 
18. Cold reserve :
– Is the reserve generating capacity that is available for 
service but not in operation. 
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 154
19. Hot reserve :
– Is the reserve generating capacity that is in operation 
but not in service. 
20. Spinning reserve :
– Spinning reserve is the reserve generating capacity that 
is connected to the bus and ready to take load. 
21. Run of river station :
– Run of river station is a hydro‐electric station that 
utilizes the stream flow without water storage.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 155
– Split into two parts: fixed costs and variable costs. 
(A) Fixed Cost :
– Fixed costs are to be borne by the plants irrespective of 
the load. 
These costs consist:‐
(i) Interest on capital :
– Capital includes the cost of land, buildings, equipment 
installation, designing, engineering etc. 
– Since the capital cost is fixed therefore interest on the 
amount is considered as fixed cost.
(ii) Taxes :
– A power generating and distributing company has to pay 
taxes to the Government.
– This amount is more or less fixed. 
Cost of generation :
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 156
(iii) Cost of Transmission and Distribution :
– Involves huge capital expenditure. 
– This involves cost of transmission lines, transformers, 
substations and associated equipment. Interest on the 
capital involved is considered as a fixed cost.
(iv) Depreciation:
– It is, decrease in value, caused by the wear due to 
constant use of an equipment.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 157
(v) Insurance :
– The plant and also life of some of workers working in 
dangerous areas, has to be insured against various risks 
involved. 
– For this purpose a fixed sum is payable as premium for 
the insurance cover.
vi) Salary for Managerial Staff :
– Irrespective of whether the plant works or not certain 
managerial staff has to be retained by the organization.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 158
(B ) Variable Cost :
– These costs vary in some proportion of the power 
generated in a plant. Consist of:‐
(i) Cost of fuel :
– Cost of fuel is directly related with the amount of 
power generated. 
– For generating more power, more fuel is required. 
– Cost of fuel may be 10% to 25% of the total cost of 
production. 
– In case of hydroelectric plants the cost of fuel is zero. 
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 159
(ii) Maintenance and Repair Charges: 
– To keep the plant in running condition, certain repairs 
are always needed. 
– Stock of some consumable and non‐ consumable items 
has got to be maintained. All chargers for such staff are 
considered as operating costs. 
(iii) Wages:
– Salaries including allowances bonus, benefits etc. for 
the workers.
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 160
A tariff is the rate of charge per kilowatt hour of 
energy supplied to a consumer.
Requirements of a Tariff:
 It should be easier to understand
 Provides low rate for higher consumption
 Encourage the consumers having high load factor.
 It should take into account max. demand charges & energy 
charges.
Tariff:
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 161
 Flat demand rate
 Straight line meter rate
 Step meter rate
 Block rate tariff
 Two part tariff
 Three part tariff
 Various type of tariffs can be derived from general equation
Y = DX+EZ+C
 Y = total amount of bill for the period considered
 D = Rate per kW of max demand
 X = max demand in kW
 E = energy rate per kW
 Z = Energy consumed in kWh during the given period
 C = Constant amount to be charged from consumer during each bill.
Types of Tariff:
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 162
1. Uniform Rate Tariff :
– A fixed rate per unit amount of energy consumed.
– This type of tariff accounts for all the costs involved in 
the generation of power. 
– Simplest tariff easily understood by consumers. 
2. Two Part Tariff :
• The total charges are split into two parts –
– fixed charges based on maximum demand (in kW) plus 
the charges based on energy consumption (in kWh). 
– Additional provision is to be incorporated for the 
measurement of maximum demand. 
– Under such tariff, the consumers having 'peaked' 
demand for short duration, are discouraged.
Types of Tariff cntd …
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 163
3. Block Rate Tariff :
– The fixed charges are merged into the unit charges for one 
or two blocks of consumption.
– all units in excess being charged at low or high unit rate. 
– Lower rates for higher blocks are fixed in order to 
encourage the consumers for more and more 
consumptions. 
– This is done in case the plant has got larger spare capacity.
– Wherever the plant capacity is inadequate, higher blocks 
are charged at higher rate in order to discourage the 
consumers .
4. Three Part Tariff :
– An extension of the two part tariff.
– In this even if the consumer has got zero power 
consumption, he has to pay some charges merely because a 
connection has been provided to him. 
Types of Tariff cntd …
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 164
5. Power Factor Tariff :
– In case the power factor of a consumer installation is low, 
the energy consumption in terms of kW will be low. 
– In order to discharge such consumers, power factor tariff is 
introduced, 
• which are of two types:‐
(a) Maximum kVA demand Tariff :
• In this instead of kW. the kVA consumption is measured and the 
charge are Based partly or fully on this demand. 
(b) Sliding Scale :
• In this case the average power factor is fixed say at 0.8 lagging.
• Now if the power factor of a consumer falls below by 0.01 or 
multiples there of, some additional charges are imposed. 
• A discount may be allowed in case the power factor is above 0.8. 
Types of Tariff cntd …
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 165
 DEPRECIATION:
It is the deterioration of equipment's and decrease in 
its value due to corrosion, weathering, and wear and 
tear with use.
 Improvements in design and construction, obsolesce 
factor rates the plants.
 Availability of better models with lesser over all cost in 
generation, forces the old model to replace.
 Hence over all life span reduces, from what would be 
normally expected.
Types of Tariff cntd …
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 166
 Methods used to calculate depreciation cost: 
 Straight line method
 it is assumed that the property losses its value by the same 
amount every year. 
Types of Tariff cntd …
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 167
 A fixed amount of the original cost is deducted every year, so 
that at the end of the utility period, only the scrap value is 
left.
** Annual Depreciation, D = (original cost of the asset – Scrap 
Value)/life in years
 Percentage method
 the property will lose its value by a constant percentage at 
the beginning of every year.
** Annual Depreciation, D = 1‐(scrap value/original value)1/life in 
year
Types of Tariff cntd …
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 168
 Sinking fund method
 the depreciation of a property is assumed to be equal to the annual 
sinking fund plus the interest on the fund for that year.
 Unit method
 the property is studied in detail and loss in value due to life, wear 
and tear, decay, obsolescence etc, worked out. 
 Not calculating any fixed percentage of the cost of the property. 
 Only experimental value can work out the amount of depreciation.
Types of Tariff cntd …
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 169
 The advantages of improved power factor:‐
 (i) reduction in load current 
 (ii) increase in voltage level across the load, 
 (iii) reduction in energy loss in the system (generators, 
transformers, transmission lines and distributors) due to 
reduction in load current.
 (iv) reduction in KVA loading of the generators and the 
transformers which may relieve an over loaded system 
or release capacity for additional growth of load
 (v) reduction in KVA demand charge for large 
consumers.
Types of Tariff cntd …
ECONOMICS OF PF IMPROVEMENT
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 170
 ECONOMICS OF PF IMPROVEMENT
 Reduce expenditure on the power factor correcting 
equipment.
 Result in reduction of maximum demand.
 thus affect an annual saving over the maximum 
demand charge.
 the economical limit of power factor correction is 
governed by the relative costs of the supply and power 
factor correcting equipment.
Types of Tariff cntd …
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 171
 What is Power Factor ‐ and Why is it Important to My 
Bottom Line: 
 Electrical power is comprised of three components:
 real power (P), 
 reactive power (Q) 
 apparent power (S).
 Power factor is a measure of how 
effectively electrical power is 
being used. 
Types of Tariff cntd …
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 172
 Reactive power, does not do any work but is 
nonetheless needed to operate equipment. 
 when a utility serves a facility that has poor power 
factor, the utility must be capable of supplying higher 
current levels to serve a given load.
 When a customer's power factor drops below the 
minimum value, the utility collects a low power factor 
revenue premium on their bill. Typically the lower the 
power factor, the higher the premium. 
 The most economical way to improve power factor is 
by adding capacitors. 
Types of Tariff cntd …
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 173
 capacitors serve as a leading reactive current 
generator to counter the lagging reactive current in a 
system.
 Maintaining a high power factor in a facility will yield 
direct savings.
 As power factor of the system is improved, the total 
current flow will be reduced ‐ which permits 
additional loads to be added and served by the 
existing system.
 Distribution losses can be reduced by the addition of 
capacitors. 
 Capacitors will also raise a circuit's voltage.
Types of Tariff cntd …
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 174
 capacitors act as a kVAR generator.
 the most efficient place to install them is usually 
directly at an inductive load.
 Improvement of pf of 1 motor improves the plant's 
overall reactive requirement.
Types of Tariff cntd …
KN. Chandra Bose, Asst. Professor, GECT
Sunday, August 05, 2012 175
THANKS
KN. Chandra Bose, Asst. Professor, GECT

More Related Content

What's hot

Renewable energy sector and its environmental impact
Renewable energy sector and its environmental impactRenewable energy sector and its environmental impact
Renewable energy sector and its environmental impactRANAALIMAJEEDRAJPUT
 
Natural resources renewable and non renewable
Natural resources   renewable and non renewableNatural resources   renewable and non renewable
Natural resources renewable and non renewablePardhu Madipalli
 
Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...researchinventy
 
Environmental impacts of renewable energy production"
Environmental impacts of renewable energy production"Environmental impacts of renewable energy production"
Environmental impacts of renewable energy production"SERC at Carleton College
 
Energy and Environmental Pollution Unit vi
Energy and Environmental Pollution Unit viEnergy and Environmental Pollution Unit vi
Energy and Environmental Pollution Unit viAyub Shaikh
 
Energy presentation
Energy presentationEnergy presentation
Energy presentationzamora2000
 
Physics presentation
Physics presentationPhysics presentation
Physics presentationSagar Bahl
 
Resources [renewable and non renewable]
Resources  [renewable and non renewable]Resources  [renewable and non renewable]
Resources [renewable and non renewable]Pranay jhalani
 
Submarine geothermics. hydrothermal vents and electricity generation
Submarine geothermics. hydrothermal vents and electricity generationSubmarine geothermics. hydrothermal vents and electricity generation
Submarine geothermics. hydrothermal vents and electricity generationjjsoto00
 
Energy resources
Energy resourcesEnergy resources
Energy resourcesLakiBhutia
 

What's hot (19)

Renewable energy sector and its environmental impact
Renewable energy sector and its environmental impactRenewable energy sector and its environmental impact
Renewable energy sector and its environmental impact
 
Natural resources renewable and non renewable
Natural resources   renewable and non renewableNatural resources   renewable and non renewable
Natural resources renewable and non renewable
 
Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...Research Inventy : International Journal of Engineering and Science is publis...
Research Inventy : International Journal of Engineering and Science is publis...
 
Environmental impacts of renewable energy production"
Environmental impacts of renewable energy production"Environmental impacts of renewable energy production"
Environmental impacts of renewable energy production"
 
Energy
EnergyEnergy
Energy
 
Res poly unit i (2)ppt
Res poly unit i (2)pptRes poly unit i (2)ppt
Res poly unit i (2)ppt
 
Energy and Environmental Pollution Unit vi
Energy and Environmental Pollution Unit viEnergy and Environmental Pollution Unit vi
Energy and Environmental Pollution Unit vi
 
Energy presentation
Energy presentationEnergy presentation
Energy presentation
 
natural resources
natural resourcesnatural resources
natural resources
 
Renewable Energy .pptx
Renewable Energy .pptxRenewable Energy .pptx
Renewable Energy .pptx
 
Renewable resources
Renewable resourcesRenewable resources
Renewable resources
 
Physics presentation
Physics presentationPhysics presentation
Physics presentation
 
Renewable energy
Renewable energyRenewable energy
Renewable energy
 
Renewable resources
Renewable resourcesRenewable resources
Renewable resources
 
Earth subsystems
Earth subsystemsEarth subsystems
Earth subsystems
 
Resources [renewable and non renewable]
Resources  [renewable and non renewable]Resources  [renewable and non renewable]
Resources [renewable and non renewable]
 
Lecture 9 energy_sources
Lecture 9 energy_sourcesLecture 9 energy_sources
Lecture 9 energy_sources
 
Submarine geothermics. hydrothermal vents and electricity generation
Submarine geothermics. hydrothermal vents and electricity generationSubmarine geothermics. hydrothermal vents and electricity generation
Submarine geothermics. hydrothermal vents and electricity generation
 
Energy resources
Energy resourcesEnergy resources
Energy resources
 

Viewers also liked

Viewers also liked (8)

Report of Sardar Sarovar Hydro Power Plant
Report of Sardar Sarovar Hydro Power Plant Report of Sardar Sarovar Hydro Power Plant
Report of Sardar Sarovar Hydro Power Plant
 
Presentation=sardar sarovar hydro power plant
Presentation=sardar sarovar hydro power plantPresentation=sardar sarovar hydro power plant
Presentation=sardar sarovar hydro power plant
 
[0] final - report hydroelectric power plant
[0] final - report hydroelectric power plant[0] final - report hydroelectric power plant
[0] final - report hydroelectric power plant
 
Report hydroelectric power plant
Report hydroelectric power plantReport hydroelectric power plant
Report hydroelectric power plant
 
Hydro power plant presentation project by pratik diyora 100420106008
Hydro power plant presentation project by pratik diyora 100420106008Hydro power plant presentation project by pratik diyora 100420106008
Hydro power plant presentation project by pratik diyora 100420106008
 
Hydro power ppt
Hydro power pptHydro power ppt
Hydro power ppt
 
Hydro power-plant
Hydro power-plantHydro power-plant
Hydro power-plant
 
Hydro Power Plant
Hydro Power PlantHydro Power Plant
Hydro Power Plant
 

Similar to Electrical Power Generation, Transmission and Distribution Explained

Unit 1 Introduction to Non-Conventional Energy Resources
Unit 1 Introduction to Non-Conventional Energy ResourcesUnit 1 Introduction to Non-Conventional Energy Resources
Unit 1 Introduction to Non-Conventional Energy ResourcesDr Piyush Charan
 
Unit i solar radiation; its measurement
Unit  i solar radiation; its measurementUnit  i solar radiation; its measurement
Unit i solar radiation; its measurementMadhuriPawar37
 
solar photovoltaic cells-reveiw
solar photovoltaic cells-reveiwsolar photovoltaic cells-reveiw
solar photovoltaic cells-reveiwvagdevi kuntla
 
GENERATING A POWER THROUGH WAVE AND TIDAL ENERGY...-1.pptx
GENERATING A POWER THROUGH WAVE AND TIDAL ENERGY...-1.pptxGENERATING A POWER THROUGH WAVE AND TIDAL ENERGY...-1.pptx
GENERATING A POWER THROUGH WAVE AND TIDAL ENERGY...-1.pptxAniket Gupta
 
Solar radiation Anoop.pptx
Solar radiation Anoop.pptxSolar radiation Anoop.pptx
Solar radiation Anoop.pptxAnoopCadlord1
 
ENERGY CONSERVATION.pptx
ENERGY CONSERVATION.pptxENERGY CONSERVATION.pptx
ENERGY CONSERVATION.pptxYosufshareef
 
Interactive Power Point Presantation Masebidi Ntsie.pptx
Interactive Power Point Presantation Masebidi Ntsie.pptxInteractive Power Point Presantation Masebidi Ntsie.pptx
Interactive Power Point Presantation Masebidi Ntsie.pptxmasebidipatricia
 
WED Student Energy Innovation Challenge - Solar pond technology
WED Student Energy Innovation Challenge - Solar pond technologyWED Student Energy Innovation Challenge - Solar pond technology
WED Student Energy Innovation Challenge - Solar pond technologyEenovators Limited
 
hydro-electric-power-plant-.pptx
hydro-electric-power-plant-.pptxhydro-electric-power-plant-.pptx
hydro-electric-power-plant-.pptxSuryakant Morey
 
GENERATING A POWER THROUGH WAVE AND TIDAL ENERGY... (1) (1).pptx
GENERATING A POWER THROUGH WAVE AND TIDAL ENERGY... (1) (1).pptxGENERATING A POWER THROUGH WAVE AND TIDAL ENERGY... (1) (1).pptx
GENERATING A POWER THROUGH WAVE AND TIDAL ENERGY... (1) (1).pptxAniket Gupta
 
RPGS_complete_Lecture_note.pdf
RPGS_complete_Lecture_note.pdfRPGS_complete_Lecture_note.pdf
RPGS_complete_Lecture_note.pdfSibanandaMeher3
 
Module Computer graphics and visualization.pptx
Module Computer graphics and visualization.pptxModule Computer graphics and visualization.pptx
Module Computer graphics and visualization.pptxRahulBadachi1
 
Renewable sources of energy
Renewable sources of energyRenewable sources of energy
Renewable sources of energyZaeem Naqvi
 
Design and fabrication of solar concentrator
Design and fabrication of solar concentratorDesign and fabrication of solar concentrator
Design and fabrication of solar concentratorKavin Prasath KS
 
Renewable energy sources by Arun Prasath & Dr.S.Selvaperumal
Renewable energy sources by Arun Prasath & Dr.S.SelvaperumalRenewable energy sources by Arun Prasath & Dr.S.Selvaperumal
Renewable energy sources by Arun Prasath & Dr.S.SelvaperumalArunPrasath235
 
Future of renewable energy
Future of renewable energy Future of renewable energy
Future of renewable energy abbas7999
 

Similar to Electrical Power Generation, Transmission and Distribution Explained (20)

Unit 1 Introduction to Non-Conventional Energy Resources
Unit 1 Introduction to Non-Conventional Energy ResourcesUnit 1 Introduction to Non-Conventional Energy Resources
Unit 1 Introduction to Non-Conventional Energy Resources
 
Renewable energy introduction
Renewable energy introductionRenewable energy introduction
Renewable energy introduction
 
Unit i solar radiation; its measurement
Unit  i solar radiation; its measurementUnit  i solar radiation; its measurement
Unit i solar radiation; its measurement
 
solar photovoltaic cells-reveiw
solar photovoltaic cells-reveiwsolar photovoltaic cells-reveiw
solar photovoltaic cells-reveiw
 
GENERATING A POWER THROUGH WAVE AND TIDAL ENERGY...-1.pptx
GENERATING A POWER THROUGH WAVE AND TIDAL ENERGY...-1.pptxGENERATING A POWER THROUGH WAVE AND TIDAL ENERGY...-1.pptx
GENERATING A POWER THROUGH WAVE AND TIDAL ENERGY...-1.pptx
 
Solar radiation Anoop.pptx
Solar radiation Anoop.pptxSolar radiation Anoop.pptx
Solar radiation Anoop.pptx
 
Solar energy
Solar energySolar energy
Solar energy
 
ENERGY CONSERVATION.pptx
ENERGY CONSERVATION.pptxENERGY CONSERVATION.pptx
ENERGY CONSERVATION.pptx
 
Interactive Power Point Presantation Masebidi Ntsie.pptx
Interactive Power Point Presantation Masebidi Ntsie.pptxInteractive Power Point Presantation Masebidi Ntsie.pptx
Interactive Power Point Presantation Masebidi Ntsie.pptx
 
WED Student Energy Innovation Challenge - Solar pond technology
WED Student Energy Innovation Challenge - Solar pond technologyWED Student Energy Innovation Challenge - Solar pond technology
WED Student Energy Innovation Challenge - Solar pond technology
 
hydro-electric-power-plant-.pptx
hydro-electric-power-plant-.pptxhydro-electric-power-plant-.pptx
hydro-electric-power-plant-.pptx
 
GENERATING A POWER THROUGH WAVE AND TIDAL ENERGY... (1) (1).pptx
GENERATING A POWER THROUGH WAVE AND TIDAL ENERGY... (1) (1).pptxGENERATING A POWER THROUGH WAVE AND TIDAL ENERGY... (1) (1).pptx
GENERATING A POWER THROUGH WAVE AND TIDAL ENERGY... (1) (1).pptx
 
RPGS_complete_Lecture_note.pdf
RPGS_complete_Lecture_note.pdfRPGS_complete_Lecture_note.pdf
RPGS_complete_Lecture_note.pdf
 
Module Computer graphics and visualization.pptx
Module Computer graphics and visualization.pptxModule Computer graphics and visualization.pptx
Module Computer graphics and visualization.pptx
 
Renewable sources of energy
Renewable sources of energyRenewable sources of energy
Renewable sources of energy
 
Design and fabrication of solar concentrator
Design and fabrication of solar concentratorDesign and fabrication of solar concentrator
Design and fabrication of solar concentrator
 
Energy forms
Energy forms Energy forms
Energy forms
 
Renewable energy sources by Arun Prasath & Dr.S.Selvaperumal
Renewable energy sources by Arun Prasath & Dr.S.SelvaperumalRenewable energy sources by Arun Prasath & Dr.S.Selvaperumal
Renewable energy sources by Arun Prasath & Dr.S.Selvaperumal
 
Future of renewable energy
Future of renewable energy Future of renewable energy
Future of renewable energy
 
Energy Resources
Energy ResourcesEnergy Resources
Energy Resources
 

Recently uploaded

KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 

Recently uploaded (20)

KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 

Electrical Power Generation, Transmission and Distribution Explained

  • 1. ELECTRICAL POWER GENERATION, TRANSMISSION AND DISTRIBUTION KN. Chandrabose Asst.Professor EEE Dept. GEC Sunday, August 05, 2012 1KN. Chandra Bose, Asst. Professor, GECT
  • 2. Over View of Syllabus Objectives:  To understand the various energy sources.  To understand about transmission and Distribution  schemes.  To evaluate the performance of power system. Sunday, August 05, 2012 2KN. Chandra Bose, Asst. Professor, GECT
  • 3. Sources • Power  generated is the compliments of our  natural resources. • Renewable and Non‐renewable. – A renewable resource is a natural resource with the  ability to reproduce through biological or natural  processes and replenished with the passage of time.  Renewable resources are part of our natural  environment and form our eco‐system. – Solar radiation, tides, winds, geothermal, biomass and other natural  elements.  Sunday, August 05, 2012 3KN. Chandra Bose, Asst. Professor, GECT
  • 4. Sources cntd… • Power  generated is the compliments of our  natural resources. • Non‐renewable. – Nonrenewable energy‐Energy that is impossible to re‐ make. – Natural resources such as coal, petroleum (crude oil)  and natural gas take thousands of years to form  naturally and cannot be replaced as fast as they are  being consumed. Sunday, August 05, 2012 4KN. Chandra Bose, Asst. Professor, GECT
  • 5. Sources cntd… • Eventually natural resources will become too  costly to harvest and humanity will need to find  other sources of energy. • Natural gas is a mixture of gases, the most  common being methane (CH4). It also contains  some ethane (C2H5), propane (C3H8), and  butane (C4H10). Sunday, August 05, 2012 5KN. Chandra Bose, Asst. Professor, GECT
  • 6. MODULE ‐ 1  Hydro electric  Thermal  Diesel  Nuclear  Solar  Wind  Tidal  MHD  Geothermal   Fuel cells   CONVENTIONAL SOURCES OF  ENERGY  NON‐CONVENTIONAL  SOURCES OF ENERGY Sunday, August 05, 2012 6KN. Chandra Bose, Asst. Professor, GECT
  • 8. CONVENTIONAL SOURCES OF ENERGY Hydro electricity: • Hydro‐electric power is the power from the  energy of falling water. • Hydro‐electric plant is the power plant utilizing  the potential energy of water at a height. • Most widely used form of renewable energy and  is produced in about 150 countries. • Accounting for 16% of global electricity consumption,  and 3,427 terawatt‐hours of electricity production in  2010. Sunday, August 05, 2012 8KN. Chandra Bose, Asst. Professor, GECT
  • 9. CONVENTIONAL SOURCES OF ENERGY … • Asia‐Pacific region generating 32% of global hydropower  in 2010. • China is the largest hydroelectricity producer, with 721  terawatt‐hours of production in 2010, representing  around 17 percent of domestic electricity use.  • There are now three hydroelectricity plants larger than  10 GW: the  1. Three Gorges Dam in China (22.5 billion kilowatts) 2. Itaipu Dam in Brazil (14 billion kilowatts) and 3. Guri Dam in Venezuela (10.2 Billion Kilo Watts) Sunday, August 05, 2012 9KN. Chandra Bose, Asst. Professor, GECT
  • 10. CONVENTIONAL SOURCES OF ENERGY … • Reasons for extensive development of water power. – Tremendous increase in demand of electricity – High cost of fuels – Limited resources – Projects are multipurpose • India has hydel potential of 600 billion units of firm  annual energy. • Only 23% of this has been utilized so far. Sunday, August 05, 2012 10KN. Chandra Bose, Asst. Professor, GECT
  • 11. CONVENTIONAL SOURCES OF ENERGY … • The average cost of electricity from a hydro plant, larger  than 10 megawatts is 3 to 5 U.S. cents per kilowatt‐hour. • The water flowing in the river possesses two type of  energy: the kinetic energy due to flow of water and  potential energy due to the height of water.  • In hydroelectric power plant, potential energy of water is  utilized to generate electricity. • The total power that can be generated from water in  hydroelectric power plant is Where     w – specific wt of water in kg/m3 , Q – rate of flow of water in m3/s,  H – Height of fall in meter's ,  – overall efficiency Sunday, August 05, 2012 11KN. Chandra Bose, Asst. Professor, GECT
  • 12. CONVENTIONAL SOURCES OF ENERGY … • In hydro‐electric power station, water head is created by  constructing dam across a river. Factors to be considered:‐ before a project site is  considered. – Capital cost of plant – Capital cost of erecting and maintaining the transmission lines,  and annual energy loss in transformation and transmission of  power. – Energy generation cost compared with those in case of steam,  oil or gas plants, which can be conveniently set up near the load  centre. Sunday, August 05, 2012 12KN. Chandra Bose, Asst. Professor, GECT
  • 13. CONVENTIONAL SOURCES OF ENERGY … SELECTION OF SITE (HYDRO‐ELECTRIC PLANT): • Select site with natural storage and with large catchment  area. • High average rain fall, steep gradients, and suitable place  for constructing reservoir. FACTORS TO BE CONSIDERED: 1. Availability of water: ‐ – Potential energy of water fall or kinetic energy of flowing  stream is utilized for generation of power. – Hence station should construct based on availability of  water head. Sunday, August 05, 2012 13KN. Chandra Bose, Asst. Professor, GECT
  • 14. CONVENTIONAL SOURCES OF ENERGY … – Estimation of availability of energy from a stream or river  is estimated on the discharge flow and its variation with  time over a number of years. 2. Water storage: – Storage of water in a suitable reservoir at a height is  essential in order to have continuous supply during dry  season. – A careful study of geology and topography of the  catchment area is required, before the construction  of  dam. 3. Water Head: – Water head depends on the topography of the area. – Availability of head has considerable effect on the cost and  economy of power generation.Sunday, August 05, 2012 14KN. Chandra Bose, Asst. Professor, GECT
  • 15. CONVENTIONAL SOURCES OF ENERGY … 4. Distance from load centre: – Distance to be considered for economical transmission of  power. 5. Accessibility of the site: – Adequate transportation facilities must be available. 6. Water pollution: – Polluted water must be eliminated from the site. – Pollution may cause excessive corrosion and damage to the  metallic structures.  7. Sedimentation: – Gradual deposition of silt may reduce the capacity of reservoir. – Which may cause damage of turbine blades. Sunday, August 05, 2012 15KN. Chandra Bose, Asst. Professor, GECT
  • 16. CONVENTIONAL SOURCES OF ENERGY … • 8. Large catchment area: – Must have large catchment area, so that level of water in the  reservoir may not fall below the minimum. • 9. Availability of land: – Available land should be cheap in cost. – Rocky in order to withstand the weight of water, large buildings  and machinery. Sunday, August 05, 2012 16KN. Chandra Bose, Asst. Professor, GECT
  • 17. CONVENTIONAL SOURCES OF ENERGY … How it Works:  Build a dam on a large river that has a large drop  in elevation.  The dam stores lots of water behind it in the  reservoir.  Near the bottom of the dam wall, there is a water  intake.  Gravity causes it to fall through the penstock  inside the dam.  At the end of the penstock, there is a turbine  propeller which is turned by the moving water. Sunday, August 05, 2012 17KN. Chandra Bose, Asst. Professor, GECT
  • 18. CONVENTIONAL SOURCES OF ENERGY …  The shaft from the turbine goes up into the  generator, which rotates the armature, producing  power.  Power lines are connected to the generator that carry  electricity.  The water continues past the propeller through the  tail‐race into the river past the dam. Sunday, August 05, 2012 18KN. Chandra Bose, Asst. Professor, GECT
  • 19. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 19 ELEMENTS OF HYDRO PLANT 1.  STORAGE RESERVOIR 2.  DAM 3.  FOREBAY 4.  SPILLWAY 5.  INTAKE 6.  SURGE TANK 7.  PENSTOCK 8.  VALVES AND GATES 9.  TRASH RACKS 10.  TAIL RACE 11.  DRAFT TUBES 12.  PRIME MOVERS/ WATER TURBINES KN. Chandra Bose, Asst. Professor, GECT
  • 20. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 20 1. STORAGE RESERVOIR – Purpose is to store water during excess flow. – Can be of natural and artificial. – Natural reservoir is in the form of lake in high  mountains with large storing capacity. – Capacity of reservoir depends on the difference  between run‐offs during high and lean (dry) flows. 2. DAM – Function of dam is not only to raise the water  head, but also to provide the pondage, storage or  the facility of diversion into conduits. KN. Chandra Bose, Asst. Professor, GECT
  • 21. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 21 – Dam is the most expensive and important part of  hydro project. – Built of concrete, earth or rock fill. – Choice of dam depends upon the foundation  condition, local materials and transportation  availability, occurrence of earth quakes and other  hazards. – Concrete or masonry dams are of three types: • Solid gravity • Buttress • Arch dam KN. Chandra Bose, Asst. Professor, GECT
  • 22. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 22 – Solid gravity dam: • Made of concrete and suitable for most sites. • Height of dam cannot be very high, depends on the  strength of subsoil. – Arch dam: • It is a curved dam and transmits a major portion of its  water pressure horizontally to the abutments by arch  action. • Arch dam is preferred, where eve a narrow canyon  width is available. • It has inherent stability against sliding. KN. Chandra Bose, Asst. Professor, GECT
  • 23. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 23 • Buttress dam:  – Buttress/deck dam has inclined up stream face. – So that water pressure creates a large downward  force, provides stability against over turning or sliding. 3. FOREBAY – Mainly forebay provided before the Penstock, acts as  water reservoir for medium head plants.  – Serves as a regulating reservoir storing water  temporarily during light load period. – Provides same for initial increase on account of  increasing load. – Mainly forebay provided before the Penstock, acts as  water reservoir for medium head plants.  KN. Chandra Bose, Asst. Professor, GECT
  • 24. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 24 • 4.  SPILLWAY – Act as a safety valve. – A spillway is located at the top of the reservoir pool. – Dams may also have bottom outlets with valves or  gates which may be operated to release flood flow. – Two main types of spillways: controlled and  uncontrolled. • A controlled spillway has mechanical structures or gates to regulate the rate of flow.  • An uncontrolled spillway, in contrast, does not have gates;  when the water rises above the lip or crest of the spillway  it begins to be released from the reservoir.  KN. Chandra Bose, Asst. Professor, GECT
  • 25. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 25 5. INTAKE – A penstock is a sluice or gate or intake structure that  controls water flow, or an enclosed pipe that delivers  water to hydraulic turbines. – Intake structures are of two, High Pressure and small  pressure. 6. SURGE TANK – Surge tanks are usually provided in high or medium‐ head plants. – The main functions of the surge tank are:  • 1. When the load decreases, the water moves backwards  and gets stored in it.  • 2. When the load increases, additional supply of water  will be provided by surge tank.KN. Chandra Bose, Asst. Professor, GECT
  • 26. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 26 – Change in load creates a very high pressure in the  penstock. – Results in water hammer phenomenon, which may  leads to penstock bursting.  – Surge Tanks are placed near to the Turbine. – The Height of Surge Tank is generally kept above the  maximum Water Level in the supply Level Reservoir. • There are three important types of Surge Tanks used in  Hydro Electric Power Plant. 01)Simple Surge Tank 02)Restricted Orifice type Surge Tank 03)Differential Surge Tank.  KN. Chandra Bose, Asst. Professor, GECT
  • 27. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 27 – simple surge tank is of uniform cross section and is  open to atmosphere. – Directly connected to penstock. – Large in size with expensive proportions and sluggish. – Not common in common practice. – Restricted orifice surge tank is more efficient and  economical. – Drawback is the sudden creation of accelerating and  retarding heads in the conduits, results in proportional  sudden fluctuations on the turbine. – Differential surge tank is the best suited for practical  case. KN. Chandra Bose, Asst. Professor, GECT
  • 28. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 28 7. PENSTOCK – A closed conduit for carrying water to turbine. – Penstocks are built of steel or reinforced concrete. – Thickness must be adequate to withstand the  pressure. 8. Valves and gates – Control the flow of water into turbine. KN. Chandra Bose, Asst. Professor, GECT
  • 29. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 29 9. TRASH RACKS – Built up from long, flat bars set vertically spaced in  accordance with minimum width of water passage  through the turbine. – Prevent the ingress of floating and other material to  the turbine. 10. TAIL RACE – Tail race is the path through which water is pumped  out of the hydro power plant after power generation. 11. Draft Tubes – An air tight pipe of suitable diameter attached to the  runner outlet and conducting water down from the  wheel. KN. Chandra Bose, Asst. Professor, GECT
  • 30. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 30 12. PRIME MOVERS/ WATER TURBINES – Hydro plants uses water turbine as prime movers. – Converting one form of energy into other. – Turbines are of mainly three types • Pelton wheel ‐ Impulse type • Francis turbine ‐ Radial Flow • Kaplan turbine ‐ Axial Flow – Pelton wheel is an impulse turbine, suited for high head  and low flow plants – Francis turbine is a reaction turbine, suited for medium  head and medium flow plants. – Kaplan is a special type of propeller turbine having  adjustable blades and suited for low head and high flow  plants. KN. Chandra Bose, Asst. Professor, GECT
  • 31. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 31 • Hydro‐electric Generator – A low‐speed generator driven by water turbines. – Hydrogenerators may have a horizontal or vertical  shaft. – The horizontal units are usually small with speeds of  300–1200 revolutions per minute (rpm). – The vertical units are usually larger and more easily  adapted to small hydraulic heads. The rotor  diameters range from 2 to 62 ft (0.6 to 19 m) and  capacities from 50 to 900,000 kVA. KN. Chandra Bose, Asst. Professor, GECT
  • 32. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 32 Hydro‐electric Generator cntd… – The generators are rated in kVA (kilovolts times  amperes).  – The normal power‐factor rating of small synchronous  generators is between 0.8 and 1.0 with 0.9 being  common.  – For large generators a rating of 0.9–0.95 is common  with the machines able to operate up to 1.0 when  the load requires. – Fields are connected in series, supplied from a dc  source at 110/220/300 V. KN. Chandra Bose, Asst. Professor, GECT
  • 33. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 33 Hydro‐electric Generator cntd… – Recent generators uses static excitation system. KN. Chandra Bose, Asst. Professor, GECT
  • 34. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 34 Hydro‐electric Generator cntd… KN. Chandra Bose, Asst. Professor, GECT
  • 35. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 35 Hydro‐electric Generator cntd… KN. Chandra Bose, Asst. Professor, GECT
  • 36. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 36 Hydro‐electric Generator cntd… KN. Chandra Bose, Asst. Professor, GECT
  • 37. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 37 Hydro‐electric Generator cntd… KN. Chandra Bose, Asst. Professor, GECT
  • 38. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 38 Hydro‐electric Generator cntd… KN. Chandra Bose, Asst. Professor, GECT
  • 39. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 39 Hydro‐electric Generator cntd… KN. Chandra Bose, Asst. Professor, GECT
  • 40. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 40 Hydro‐electric Generator cntd… KN. Chandra Bose, Asst. Professor, GECT
  • 41. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 41 Hydro‐electric Generator cntd… KN. Chandra Bose, Asst. Professor, GECT
  • 42. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 42 KERALA PROJECTS: • KSEB has 23 Hydro Electric Projects, two Diesel power  plants and one Wind Farm . The total installed capacity  is 2229.6 MW. They are • Hydro Electric Projects (1940.2MW) – Idukki (780MW) – Sabarigiri (335MW) – Idamalayar (75MW) – Sholayar (54MW) – Pallivasal (37.5MW) – Kuttiyadi (225MW) – Panniar (30MW) – Neriamangalam (77.65MW) – Lower Periyar (180MW) – Poringalkuthu & PLBE (48MW) – Sengulam (48MW) – Kakkad (50MW)KN. Chandra Bose, Asst. Professor, GECT
  • 43. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 43 • Small Hydro Electric Projects(52.85MW) – Kallada (15MW) – Peppara (3MW) – Malankara (10.5MW) – Madupatty (2MW) – Malampuzha (2.5MW) – Lower Meenmutty (3.5MW) – Chembukadavu ‐ 1 (2.7MW) – Chembukadavu ‐ 2 (3.7MW) – Urumi ‐1 (3.75MW) – Urumi ‐2 (2.4MW) – Kuttiyadi Tail Race (3.75MW) • Thermal Projects (234.6MW) – Brahmapuram Diesel Power Plant (106.6MW) – Kozhikode Diesel Power Plant (128MW) • Non‐conventional energy (2MW) – Kanjikode Wind Farm (2MW) KN. Chandra Bose, Asst. Professor, GECT
  • 44. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 44 Biggest Kerala project: (An Over view) • The 'Idukki Dam' ‐ Asia's biggest Arch Dam of 555  feet height. • Between the two mountains ‐ 'Kuravanmala' (839  meters) and 'Kurathimala' (925 meters ).  • Consists of three major dams. • Idukki Dam was commissioned in 1976. • Thickness of 19.81 m, at the deepest foundation &  7.62 m at top. • Power House is located at Moolamattom which is  about 43 kms away from Idukki. KN. Chandra Bose, Asst. Professor, GECT
  • 45. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 45 • A single reservoir spread over 36 miles on a  height of 2300 ft. m.s.l.  • falls through a drop of about 669.2 metres (2195 feet) to the underground power. • The Idukki Project was completed with the  economic and technological assistance of  Canada in accordance with the Colombo Plan of  Commonwealth Countries.  • Turbines, 6 x 130 MW Pelton‐type. • Technically, the dam type is a concrete double,  curvature parabolic, thin arc.KN. Chandra Bose, Asst. Professor, GECT
  • 46. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 46KN. Chandra Bose, Asst. Professor, GECT
  • 47. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 47 • KN. Chandra Bose, Asst. Professor, GECT
  • 48. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 48KN. Chandra Bose, Asst. Professor, GECT
  • 49. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 49KN. Chandra Bose, Asst. Professor, GECT
  • 50. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 50KN. Chandra Bose, Asst. Professor, GECT
  • 51. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 51KN. Chandra Bose, Asst. Professor, GECT
  • 52. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 52 Hydro Electric Projects of Kerala under KSEB  • Pallivasal Hydro Electtic Project‐ Dams‐Kandla,Madupetty River‐Palar/Periyar • Sengulam HEP‐ Shengulam Dam River‐Mudriapuzha/Periyar • Neriyamangalam HEP‐ Kallarkutty Dam River‐Mudriapuzha/Periyar • Panniyar HEP‐ Dams‐Ponmudi,Anayirangal Rivers‐ Panniar/Periyar • Idukki HEP‐ Dams‐ Idukki,Cheruthoni,Kulamavu Rivers‐ Periyar, Cheruthoni/Periyar, Kilivillithode • Idukki Augmentation‐ Dams‐ Kallar, Erattayar, Azhutha, Vadakkepuzha, Vazhikkadavu Rivers‐ Perinjankutty/Periyar,Perinjankutty, Periyar.. • ldamalayar HEP‐ Idamalayar Dam‐ Rivers‐ldamalayar/Periyar • Lower Periyar HEP‐ Dam‐ Lower Periyar‐ River‐Periyar • Poringalkuttu HEP‐ Dam‐Poringalkuttu‐ River‐ Chalakudy • Sholayar HEP‐ Dams‐ Sholayar‐Main Dam,Sholayar‐Flanking,Sholayar‐ Saddle Dam River‐ Chalakudy • Sabarigiri HEP‐ Dams‐Kakki,Anathodu,Pampa Rivers‐ Kakki/Pamba, Anathodu/Pamba,Pampa • Sabarigiri Augmentation‐ Dams‐ Upper Moozhiyar, Gavi, Kallar, Meenar I,Meenar II Rivers‐ Moozhiyar/Pamba,Gavi Ar/Pamba, Kallar/Pamba, Minar/Pamba, Minar/Pamba • Kakkad HEP‐ Dams‐Veluthodu, Moozhiyar Rivers‐ Veluthodu/Pamba, Moozhiyar/Pamba • Kuttiyadi HEP‐ Dams‐Kuttiyadi River‐Kuttiyadi • Kuttiyadi Augmentation‐ Dams‐ Kuttiyadi Augn, Kosani Saddle,Near Kottagiri Saddle, Kottagiri Saddle,Kuttiyadi Saddle River‐ Karamanthodu/KabaniKN. Chandra Bose, Asst. Professor, GECT
  • 53. CONVENTIONAL SOURCES OF ENERGY … • Sizes and capacities of hydroelectric facilities Sunday, August 05, 2012 53KN. Chandra Bose, Asst. Professor, GECT
  • 54. CONVENTIONAL SOURCES OF ENERGY … •Major Hydro‐electric Plants Sunday, August 05, 2012 54KN. Chandra Bose, Asst. Professor, GECT
  • 55. CONVENTIONAL SOURCES OF ENERGY … Sunday, August 05, 2012 55 Position of Country in hydro‐ generation KN. Chandra Bose, Asst. Professor, GECT
  • 56. Sunday, August 05, 2012 56 THERMAL POWER PLANT KN. Chandra Bose, Asst. Professor, GECT
  • 57. Thermal ENERGY … Sunday, August 05, 2012 57 • A thermal power station is a power plant in which the  prime mover is steam driven.  • Water is heated, turns into steam and spins a steam  turbine which drives an electrical generator.  • After it passes through the turbine, the steam is  condensed in a condenser and recycled to where it was  heated; this is known as a Rankine cycle.  • The greatest variation in the design of thermal power  stations is due to the different fuel sources.  • In India 65% of total power is generated by the Thermal  Power Stations. THERMAL PLANT KN. Chandra Bose, Asst. Professor, GECT
  • 58. Thermal ENERGY … Sunday, August 05, 2012 58 • Almost all coal, nuclear, geothermal, solar thermal  electric, and waste incineration plants, as well as many  natural gas power plants are thermal. • Steam power plants may be either condensing or non‐ condensing type. • According to use, plants can be classified into:‐ – Industrial power plants or captive power plant. – Central power plants or common plants. KN. Chandra Bose, Asst. Professor, GECT
  • 59. Thermal ENERGY … Sunday, August 05, 2012 59 EFFICIENCY OF STEAM POWER PLANTS • Thermal efficiency of plant is defined as the ratio of the  heat equivalent of mechanical energy transmitted to  the turbine and heat of combustion (about 30%). • Over all efficiency is the ratio of heat equivalent of  electrical output to the heat of combustion (29%). Losses in steam plant • a) Boiler house losses – i) dry flue gases 5% – ii) moisture in gases 5% – iii) ash and unburnt carbon 1% – iv) radiation and leakage 2.5% – v) unknown losses 2.5% TOTAL 16%KN. Chandra Bose, Asst. Professor, GECT
  • 60. Thermal ENERGY … Sunday, August 05, 2012 60 • b) Turbine losses – Heat rejected to condenser 54% – Alternator losses 01% – Thus out put is 29% • Thermal efficiency mainly depends on 3 factors – – Pressure – Temperature of the steam entering the turbine – Pressure in the condenser • Thermal efficiency increase with increase in temp and  pressure of steam entering the turbine. KN. Chandra Bose, Asst. Professor, GECT
  • 61. Thermal ENERGY … Sunday, August 05, 2012 61 • Which effectively increased by decreasing the pressure in the  condenser and usually kept very low at 0.04kg/cm2. • It can also increased by re‐heating the steam. Classification • Classified by the type of fuel and the type of prime mover  installed. – By fuel • Fossil‐fuel power stations • Nuclear power plants • Geothermal power • Biomass‐fuelled power plants • In integrated steel mills, blast furnace exhaust gas is a low‐cost, fuel. • Waste heat from industrial processes is occasionally concentrated enough  to use for power generation. • Solar thermal. KN. Chandra Bose, Asst. Professor, GECT
  • 62. Thermal ENERGY … Sunday, August 05, 2012 62 – By prime mover • Steam turbine • Gas turbine • Combined cycle • Internal combustion reciprocating engines • Microturbines, Stirling engine KN. Chandra Bose, Asst. Professor, GECT
  • 63. Thermal ENERGY … Sunday, August 05, 2012 63 • Factors to be considered – Nearness to the load Centre – Supply of water – Availability of coal – Land requirement – Type of land – Transportation facilities – Labour supplies – Ash disposal – Distance from polluted area Selection of site for steam power plants KN. Chandra Bose, Asst. Professor, GECT
  • 64. Thermal ENERGY … Sunday, August 05, 2012 64 • 1. Load centre: ‐ – Plant should be as near as possible to the load centre so that the  transmission cost and losses are minimum. • 2. Supply of water: ‐ Large amount of water is required  • to raise the steam in the boiler  • for cooling purpose • As carrying medium for ash disposal • Drinking purpose. – In plants approximately 1.26x106 k cals of heat per MW  per Hour has to be disposed off in the condenser. – In direct circulation from source of water, 120m3 of  water is required per MW per hour. KN. Chandra Bose, Asst. Professor, GECT
  • 65. Thermal ENERGY … Sunday, August 05, 2012 65 – Efficiency of direct cooled plant is 0.5% higher than that of plant  cooled by cooling towers. – Hence saving is Rs.7.5lacs per year in fuel cost for a 2000MW  station. – Hence plant should be located near sea, river or lake. • 3. availability of coal: ‐ – huge amount of coal is required for raising steam – 20,000  tonnes per day for a 2000MW station. – Govt. policy is to use only low grade coal with 30 to 40% ash  content for power generation. • 4. Land requirement: – For coal storage, cottage, and ash disposal etc. – For a 2000MW plant, around 200 to 250 acres land is required. – Consider future expansion while selecting land. KN. Chandra Bose, Asst. Professor, GECT
  • 66. Thermal ENERGY … Sunday, August 05, 2012 66 • 5. Type of land: – Should be of good bearing capacity. – Over all load may come around 7kg per cm2 – Reasonably plain land is suitable. • 6. Transportation • 7. Labour supplies: ‐ skilled and un‐skilled • 8. Ash disposal: – Main waste from plant is ash which may come around 3.5 tonnes per day. – It may be used for building purpose or brick making. KN. Chandra Bose, Asst. Professor, GECT
  • 67. Thermal ENERGY … Sunday, August 05, 2012 67 WORKING OF STEAM PLANT • A coal based thermal power plant converts the chemical  energy of the coal into electrical energy.  • Achieved by raising the steam in the boilers, expanding it  through the turbine and coupling the turbines to the  generators which converts mechanical energy into  electrical energy. • Steam after expansion, condensed and fed into boiler  again. • Coal based thermal power plant works on the principal  of Modified Rankine Cycle. KN. Chandra Bose, Asst. Professor, GECT
  • 68. Thermal ENERGY … Sunday, August 05, 2012 68 WORKING OF STEAM PLANT KN. Chandra Bose, Asst. Professor, GECT
  • 69. Thermal ENERGY … Sunday, August 05, 2012 69 WORKING OF STEAM PLANT KN. Chandra Bose, Asst. Professor, GECT
  • 70. Thermal ENERGY … Sunday, August 05, 2012 70 WORKING OF STEAM PLANT KN. Chandra Bose, Asst. Professor, GECT
  • 71. Thermal ENERGY … Sunday, August 05, 2012 71 • A deaerator is a device used for the removal of oxygen and other  dissolved gases from the feedwater.  • Dissolved oxygen in boiler feed water will cause serious corrosion,  damages the steam systems by attaching to the walls of metal  piping and other metallic equipment and forming oxides (rust).  • Dissolved carbon dioxide combines with water to form carbonic acid that causes further corrosion.  • Most deaerators are designed to remove oxygen down to levels of 7  ppb by weight (0.005 cm³/L) or less as well as essentially eliminating  carbon dioxide. • Types of deaerators:‐ the tray‐type and the spray‐type: • The tray‐type (also called the cascade‐type) includes a vertical  domed deaeration section mounted on top of a horizontal  cylindrical vessel which serves as the deaerated boiler feedwater storage tank. • The spray‐type consists only of a horizontal (or vertical) cylindrical  vessel which serves as both the deaeration section and the boiler  feedwater storage tank. KN. Chandra Bose, Asst. Professor, GECT
  • 72. Thermal ENERGY … Sunday, August 05, 2012 72KN. Chandra Bose, Asst. Professor, GECT
  • 73. Thermal ENERGY … Sunday, August 05, 2012 73 Components of Coal Fired Thermal Power Station: Coal Preparation • i)Fuel preparation system: – The raw feed coal from the coal storage area is first crushed into  small pieces and then conveyed to the coal feed hoppers at the  boilers.  – The coal is next pulverized into a very fine powder, so that coal  will undergo complete combustion during combustion process. • ii)Dryers: – Used in order to remove the excess moisture from coal. – presence of moisture will result in fall in efficiency due  to incomplete combustion and also result in  CO emission. KN. Chandra Bose, Asst. Professor, GECT
  • 74. Thermal ENERGY … Sunday, August 05, 2012 74 • iii)Magnetic separators: – coal may contain iron particles. These iron particles may result in  wear and tear. – so they are removed with the help of magnetic separators. – The coal finally transferred to the storage site. – There are two types of storage: – 1. Live Storage(boiler room storage): • This storage consists of about 24 to 30 hrs. of coal  requirements of the plant.  • The live storage can be provided with bunkers & coal bins.  • Bunkers are enough capacity to store the requisite of coal.  From bunkers coal is transferred to the boiler grates. KN. Chandra Bose, Asst. Professor, GECT
  • 75. Thermal ENERGY … Sunday, August 05, 2012 75 – 2. Dead storage‐ • stored for future use.  • Mainly it is for longer period of time • It is also mandatory to keep a backup of fuel for specified  amount of days depending on the reputation of the company.  Forms of storages are :– • Stacking the coal in heaps over available open ground areas. • Under cover or alternatively in bunkers. • Allocating special areas & surrounding these with high  reinforced concerted retaking walls. • A Boiler or steam generator essentially is a container into which  water can be fed and steam can be taken out at desired pressure,  temperature and flow. Boiler and auxiliaries KN. Chandra Bose, Asst. Professor, GECT
  • 76. Thermal ENERGY … Sunday, August 05, 2012 76 • The boiler should have a facility to burn a fuel and release the heat.  The functions of a boiler:‐ – 1. To convert chemical energy of the fuel into heat energy. – 2. To transfer this heat energy to water for evaporation as well to  steam for superheating. The basic components of Boiler are: ‐ • Furnace and Burners :‐ A furnace is a device used for heating. • Steam and Superheating • Bolilers are classified as: 1. Fire tube boilers :  – In fire tube boilers, hot gases are passed through the tubes and  water surrounds these tubes.  – Simple, compact and rugged in construction.  – Depending on whether the tubes are vertical or horizontal these  are further classified as vertical and horizontal tube boilers. KN. Chandra Bose, Asst. Professor, GECT
  • 77. Sunday, August 05, 2012 77 – In this since the water volume is more, circulation will be poor. – So they can't meet quickly the changes in steam demand. – High pressures of steam are not possible, – Maximum pressure that can be attained is about 17.5kg/cm2.  – Due to large quantity of water in the drain it requires more time  for steam raising. 2. Water tube boilers :  – Here Water is inside the tubes and hot gases are outside the  tubes. – Hot gases which surrounds these tubes will convert the water in  tubes in to steam. – Attain pressure as high as 125 kg/sq cm and temperatures from  315 to 575 centigrade. KN. Chandra Bose, Asst. Professor, GECT
  • 78. Sunday, August 05, 2012 78 • Superheater :  – A device which removes the last traces of moisture from the  saturated steam leaving the boiler tubes and also heated  above its saturation temperature.  – The superheater may consist of one or more stages of tube  banks arranged to effectively transfer heat from the  products of combustion. – Carbon steel – upto 950oF, stainless steel – 1200oF – Superheaters are classified as convection , radiant or  combination of these. Reheater :  – Reheater is also steam boiler component in which heat is  added to the intermediate‐pressure steam. – The steam after reheating is used to rotate the second  steam turbine  KN. Chandra Bose, Asst. Professor, GECT
  • 79. Sunday, August 05, 2012 79 Condenser :  – Steam after passing through turbine comes to condenser. – Condenser refers to the shell and tube heat exchanger installed  at the outlet of every steam turbine.  – These are heat exchangers which convert steam from its gaseous  to its liquid state. – Condensers are classified as (i) Jet condensers or contact  condensers (ii) Surface condensers. Cooling Towers : – The condensate (water) formed in the condenser after  condensation is initially at high temperature. – It is a tower‐ or building‐like device in which atmospheric air  circulates in direct or indirect contact with warmer water. KN. Chandra Bose, Asst. Professor, GECT
  • 80. Sunday, August 05, 2012 80 Economiser : – Flue gases coming out of the boiler carry lot of heat. – Function of economiser is to recover some of the heat from the  heat carried away in the flue gases up the chimney and utilize for  heating the feed water to the boiler. – Placed in the passage of flue gases in between the exit from the  boiler and the entry to the chimney. – The use of economiser results in saving in coal consumption ,  increase in steaming rate and high boiler efficiency by 10 – 12%. Prime Movers: – Converts steam energy into mechanical energy. – Reciprocating type or turbines, (common is turbines). – Turbines gives high speed. KN. Chandra Bose, Asst. Professor, GECT
  • 81. Sunday, August 05, 2012 81 Steam turbines: – There is no pistons, slide valves and no fly wheels. – Classified into impulse and reaction type Turbine. • In an Impulse turbine, steam expands in stationary nozzles and  there is no pressure drop over the blades or runner. • Has high speed and ample clearance between runner and  stationary blades. • In a reaction turbine, the steam does not expands in nozzle but  expands as flows over the blades. • They are of low speed. Control room: – Houses all necessary measuring instruments for each  panel. – Separate battery room and a motor generator set or a  rectifier is installed for control circuit. KN. Chandra Bose, Asst. Professor, GECT
  • 82. Sunday, August 05, 2012 82KN. Chandra Bose, Asst. Professor, GECT
  • 83. Sunday, August 05, 2012 83 Advantages: • The fuel used is quite cheap. • Less initial cost as compared to other generating plants. • It can be installed at any place irrespective of the existence of coal.  • It require less space as compared to Hydro power plants. • Cost of generation is less than that of diesel power plants. • Suitable for rapidly changing loads and can operate under 25% over load  continuously. Disadvantages: • It pollutes the atmosphere due to production of large amount of  smoke and fumes. • It is costlier in running cost as compared to Hydro electric plants. • Requires huge amount of water.  Merits and Demerits of Steam Plant KN. Chandra Bose, Asst. Professor, GECT
  • 84. Sunday, August 05, 2012 84  Diesel oil is used as fuel.  Diesel plants are uneconomical owing to oil cost.  Commonly installed, where other sources of fuel is not  available. Selection of site:  Distance from load centre  Availability of land  Availability of fuel  Transportation facility  Availability of water  Distance from populated area  Types of land Diesel Electric Power Plant KN. Chandra Bose, Asst. Professor, GECT
  • 85. Sunday, August 05, 2012 85  Diesel Engine  Air filter and Supercharger :  Exhaust system :  Fuel System :  Cooling System :  Starting System :  Governing System :  Diesel Engine Generator : Diesel Electric Power Plant Elements of Plant KN. Chandra Bose, Asst. Professor, GECT
  • 86. Sunday, August 05, 2012 86 Diesel Engine :  which develops power.   They may be 4 strokes or 2 stroke engine.   4 stroke engines has lower fuel consumption, more flexibility, better  scavenging and higher efficiency than 2 stroke.   Cylinders are arranged in V shape to make the engine more  compact.   6 to 8 cylinders are commonly used.   Speed is in the range of 500‐1000 rpm.   The diesel engines are compression ignition type.   Diesel engines are available in sizes from 75kW to 3750kW. Diesel Electric Power Plant KN. Chandra Bose, Asst. Professor, GECT
  • 87. Sunday, August 05, 2012 87 Air filter and Supercharger :  The function of air filter is to remove the dust from the air.  The function of supercharger is to increase the pressure of air  supplied to the engine to increase the power of the engine.   The supercharger is driven by the engine. Exhaust system :  This includes silencer and connecting ducts.   silencer is required in between the engine and the intake system.  The temperature of exhaust gases are really high.  Which can be used for heating the oil or air supplied to the engine. Diesel Electric Power Plant KN. Chandra Bose, Asst. Professor, GECT
  • 88. Sunday, August 05, 2012 88 Fuel System :  This includes fuel storage tank, fuel pump, fuel transfer pump,  strainers and heaters.   The fuel is supplied according to the load on the plant.   Strainers are provided to remove the suspended impurities.   Heaters are required to heat the oil, especially during winter  seasons. Cooling System :  Includes oil pumps, oil tanks, filters, coolers and connecting pipes.  The function of the lubricating system is to reduce the friction of  moving parts and to reduce the wear and tear of the engine parts.  The life of engine and its efficiency largely depends on the  lubricating system. Diesel Electric Power Plant KN. Chandra Bose, Asst. Professor, GECT
  • 89. Sunday, August 05, 2012 89 Starting System :  Includes compressed air tanks.   Function is to start the engine from cold by supplying the compressed air. Governing System :  Their function is to maintain the speed of the engine constant irrespective  of load on the plant.   Done by varying fuel supply to the engine according to load. Diesel Engine Generator :  The generators is of rotating field, salient pole construction, speed  ranging from 214 to 1000 rpm.  Capacities ranging from 25‐5000 kVA at 0.8 power factor lagging.   Generators are coupled directly to diesel engine.   Provided with voltage regulators to allow voltage regulation.   Excitation is usually at 115 to 230 V from a DC exciter, usually coupled to  the engine shaft through a belt. Diesel Electric Power Plant KN. Chandra Bose, Asst. Professor, GECT
  • 90. Sunday, August 05, 2012 90 • The only purpose of a nuclear power plant is to produce  electricity. • Power plant needs a source of heat to boil the water which  becomes steam and turbine turns an electrical generator. • In a nuclear plant the source of heat is a nuclear reactor. • Fuel for a nuclear reactor is uranium, but not just any  uranium. • Most uranium atoms (99.3%) consist of a nucleus with 146  uncharged neutrons and 92 positively charged protons. • Adding the number of neutrons and protons, these atoms  have a total of 238 neutrons and protons.  NUCLEAR POWER PLANT KN. Chandra Bose, Asst. Professor, GECT
  • 92. Sunday, August 05, 2012 92 • To have U‐235 fission efficiently, the uranium fuel is enriched. • Uranium has gone through a process to increase the content of U‐ 235 from 0.7% to 3 to 4%.  PROCESS: – Energy is released from uranium. – Uranium atom is split into two. – Energy released in the form  of radiation and heat.  – Uranium is first formed into  pellets and then into long rods.  – The uranium rods are kept cool  by submerging them in water.  – While they are remove from the  water, nuclear reaction takes place causing heat.  Nuclear Power Plant KN. Chandra Bose, Asst. Professor, GECT
  • 93. Sunday, August 05, 2012 93  The amount of heat required is controlled by raising and lowering  the rods.   If more heat is required the rods are raised further out of the water  and if less is needed they lower further into it.  The most common  nuclear fuels are 235U and 239Pu. Nuclear Power Plant KN. Chandra Bose, Asst. Professor, GECT
  • 94. Sunday, August 05, 2012 94 Nuclear Power Plant • • U235 + n → fission + 2 or 3 n + 200 MeV    If each neutron releases two or more neutrons, then the  number of fissions doubles in each generation.   In that case, in 10th generations there are 1,024 fissions  and in 80 generations about 6 x 10 23 (a mole) fissions.  KN. Chandra Bose, Asst. Professor, GECT
  • 99. Sunday, August 05, 2012 99 Nuclear Power Plant NUCLEAR REACTOR  A nuclear reactor is a device in which nuclear chain reactions are  initiated, controlled, and sustained at a steady rate. CONTROL RODS   Control rods absorbs neutron's.  The control rods essentially contain neutron absorbers like,  boron, cadmium or indium. STEAM GENERATORS  Convert water into steam from heat produced in reactor core.  Either ordinary water or heavy water is used as the coolant. KN. Chandra Bose, Asst. Professor, GECT
  • 100. Sunday, August 05, 2012 100 STEAM TURBINE   Extracts thermal energy from pressurized steam, and converts it  into useful mechanical power.  Various high‐performance alloys and super alloys have been used  for steam generator turbine. COOLANT PUMP  The coolant pump pressurizes the coolant to155bar.   The pressure of the coolant loop is maintained almost constant. Nuclear Power Plant KN. Chandra Bose, Asst. Professor, GECT
  • 101. Sunday, August 05, 2012 101 FEED PUMP  Steam coming out of the turbine, flows through the condenser for  condensation and recirculate for the next cycle of operation.   The feed pump circulates the condensed water in the working fluid loop. CONDENSER  Used to condense vapour into liquid.  The objective of the condenser are to reduce the turbine exhaust  pressure.  Which increases the efficiency and to recover high quality feed water in  the form of condensate & feed back it to the steam generator without  any further treatment. Nuclear Power Plant KN. Chandra Bose, Asst. Professor, GECT
  • 102. Sunday, August 05, 2012 102 COOLING TOWER  Transfer process waste heat to the atmosphere.  Water circulating through condenser is taken to the cooling tower  for cooling and reuse. Nuclear Power Plant KN. Chandra Bose, Asst. Professor, GECT
  • 103. Sunday, August 05, 2012 103 ADVANTAGES  Fission is the most energy efficient process.  Nuclear power generation does emit relatively low amounts of  carbon dioxide (CO2).   The emissions of green house gases (global warming) relatively  little.  It is possible to generate a high amount of electrical energy. Nuclear Power Plant KN. Chandra Bose, Asst. Professor, GECT
  • 104. Sunday, August 05, 2012 104 DISADVANTAGES   The problem of radioactive waste is still an unsolved one.   High risks: It is technically impossible to build a plant with 100%  security.   Uranium is a scarce resource, its supply is estimated to last only for  the next 30 to 60 years depending on the actual demand. Nuclear Power Plant KN. Chandra Bose, Asst. Professor, GECT
  • 105. Sunday, August 05, 2012 105 DISADVANTAGES   Nuclear power plants as well as nuclear waste could be preferred  targets for terrorist attacks.  During operation radioactive waste is produced, which in turn can  be used for the production of nuclear weapons.  Nuclear Power Plant KN. Chandra Bose, Asst. Professor, GECT
  • 106. Indian Nuclear Program: The Constraints • Uranium ore reserves only for 10,000MW for 40 years • Slow growth of nuclear electric power: ~1000 MW annually • Major dependence on Pu and U233. • Complex fuel technologies. Total capacity limited Nuclear Power Plant KN. Chandra Bose, Asst. Professor, GECT
  • 107. Nuclear Power: The Present Status 0 2000 4000 6000 8000 10000 12000 14000 1969 1973 1981 1984 1986 1991 1992 1993 1995 2000 2005 2006 2015 InstalledCapacity(MW) Planned Presently installed Nuclear Power Plant KN. Chandra Bose, Asst. Professor, GECT
  • 108. Indian Energy Scenarios: 2015 Coal 60.44% Gas 14.49% Diesel 0.48% Nuclear 5.06% Hydro 15.96% Solar thermal 0.40% Biomass 1.19% Wind 1.99% Gas 14.49% Diesel 0.48% Nuclear 14.60% Hydro 15.96% Solar thermal 0.40% Biomass 1.19% Wind 1.99% Coal 50.90% Same Fuel Mix as now Aggressive Nuclear Capacity Addition • Reduction in annual coal consumption ~ 100 Million Tons • Reduction in annual CO2 Emissions > 170 Million Tons • ~ Total present CO2 emissions of Netherlands ! Nuclear Power Plant KN. Chandra Bose, Asst. Professor, GECT
  • 109. Sunday, August 05, 2012 109 Renewable energy The Ultimate Renewable Resources KN. Chandra Bose, Asst. Professor, GECT
  • 110. Sunday, August 05, 2012 110  A renewable resource is a natural resource with the  ability to reproduce through biological or natural  processes and replenished with the passage of time.   Renewable resources are part of our natural  environment and form our eco‐system. Energy generated by using  wind Tides Solar geothermal heat biomass including farm and animal waste as  well as human excreta. Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 111.  All renewable energy, ultimately comes from the sun.  The earth receives 1.74 x 1017 watts of power (per hour) from the  sun.  About one or 2 percent of this energy is converted to wind energy. Sunday, August 05, 2012 111 WIND POWER Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 112. Sunday, August 05, 2012 112 Working:  The terms wind energy or wind power describe the  process by which the wind is used to generate mechanical  power or electricity.   Wind turbines convert  the kinetic energy in the  wind into mechanical  power.   Gross wind power  potential of India is  estimated to be about  20,000 MW, wind power  projects of 970 MW  capacities were installed till March. 1998 Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 113. Sunday, August 05, 2012 113 Consists of three crucial parts:  Rotor blades –  When the wind forces the blades to move, it has transferred some of its  energy to the rotor.  Shaft –  Shaft is connected to the center of the rotor.   When the rotor spins, the rotor transfers its mechanical, rotational energy to  the shaft.  High‐speed shaft: Drives the generator.  Low‐speed shaft: The rotor turns the low‐speed shaft at about 30 to 60  rotations per minute.  Generator • Anemometer: – Measures the wind speed and transmits wind speed data to the  controller. • Brake: – A disc brake, which can be applied mechanically, electrically, or  hydraulically to stop the rotor in emergencies. Parts of Wind Turbines Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 114. Sunday, August 05, 2012 114 • Controller: – The controller starts up the machine at wind speeds of about 8  to 16 miles per hour (mph) and shuts off the machine at about  55 mph.  – Turbines do not operate at wind speeds above about 55 mph  because they might be damaged by the high winds. • Gear box: – Gears connect the low‐speed shaft to the high‐speed shaft and  increase the rotational speeds from about 30 to 60 rotations per  minute (rpm) to about 1000 to 1800 rpm.  • Nacelle: – The nacelle sits at top of the tower and contains the gear box,  low‐ and high‐speed shafts, generator, controller, and brake.  Some nacelles are large enough for a helicopter to land on. Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 115. Sunday, August 05, 2012 115 Pitch: – Blades are turned, or pitched, out of the wind to control the  rotor speed and keep the rotor from turning in winds that are  too high or too low to produce electricity. Rotor: – The blades and the hub together are called the rotor. Tower: – Towers are made from tubular steel, concrete, or steel lattice.  – Because wind speed increases with height, taller towers enable  turbines to capture more energy and generate more electricity. Wind direction: – This is an “upwind” turbine, so‐called because it operates facing  into the wind.  Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 116. Sunday, August 05, 2012 116 Wind vane: – Measures wind direction and communicates with the yaw drive  to orient the turbine properly with respect to the wind. Yaw drive: – Used to keep the rotor facing into the wind as the wind direction  changes Yaw motor: – Powers the yaw drive. Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 117. Sunday, August 05, 2012 117 Wind power – The power in the wind is proportional to: • the area of windmill being swept by the wind • the cube of the wind speed • the air density – which varies with altitude – The formula: Power =½(density of air x swept area x velocity cubed) P = ½.ρ.A.V3 where, P is power in watts (W) ρ is the air density in (kg/m3) A is the swept rotor area in (m2) V is the wind speed in (m/s) Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 119. Sunday, August 05, 2012 119  It is a renewable source of energy.  Wind power systems are non‐polluting.  Wind energy systems avoid fuel provision and transport.  On a small scale up to a few kilowatt, system is small.  Wind energy available is fluctuating  in  nature.  Wind energy needs storage capacity because of its  irregularities.  Wind energy systems are noisy in operation.  Wind power systems have a relatively high overall weight. ADVANTAGES OF WIND ENERGY DISADVANTAGES OF WIND ENERGY Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 120. Sunday, August 05, 2012 120 What is Tidal Energy? – Tidal energy is the utilization of the variations in sea level caused  primarily by the gravitational effects of the moon, combined  with the rotation of the Earth. • Tides generated by the combination of the moon and sun’s  gravitational forces • Greatest affect in spring when moon and sun combine forces • Bays and inlets amplify the height of the tide • For energy production, the height difference needs to be at least 5  meters.   India possesses 8000‐9000 MW of tidal energy potential.  Tidal Energy Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 122. Sunday, August 05, 2012 122 • Two types of tidal plant facilities. – Tidal barrages – Tidal current turbines • Ideal sites are located at narrow channels and  experience high variation in high and low tides. Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 123. Tidal Barrage •Two types: • Single basin system- Ebb generation: During flood tide basin is filled and sluice gates are closed , trapping water. Gates are kept closed until the tide has ebbed sufficiently and thus turbines start spinning and generating electricity. Flood generation: The basin is filled through the turbine which generate at flood tide. Two way generation: Sluice gates and turbines are closed until near the end of the flood tide when water is allowed to flow through the turbines into the basin creating electricity. At the point where the hydrostatic head is insufficient for power generation the sluice gates are opened and kept open until high tide when they are closed. When the tide outside the barrage has dropped sufficiently water is allowed to flow out of the basin through the turbines again creating electricity. Double-basin system: There are two basins, but it operates similar to en ebb generation, single-basin system. The only difference is a proportion of the electricity is used to pump water into the second basin allowing storage. • Utilize potential energy • Tidal barrages are typically dams built across an estuary or bay. • consist of turbines, sluice gates, embankments, and ship locks. Basin KN. Chandra Bose, Asst. Professor, GECT
  • 124. Tidal current turbines • Extracts kinetic energy from moving water generated by tides. • Operate during flood and ebb tides. • Consists of a rotor, gearbox, and a generator. These three parts are mounted onto a support structure. There are three main types: ▫ Gravity structure ▫ Piled structure ▫ Floating structure KN. Chandra Bose, Asst. Professor, GECT
  • 125. -Advantages and Disadvantages- • Advantages – The energy is free – no fuel needed, no waste produced – Not expensive to operate and maintain – Can produce a great deal of energy • Disadvantages – Depends on the waves – sometimes you’ll get loads of energy, sometimes almost nothing – Needs a suitable site, where waves are consistently strong – Some designs are noisy. But then again, so are waves, so any noise is unlikely to be a problem – Must be able to withstand KN. Chandra Bose, Asst. Professor, GECT
  • 126. -Environmental Impact- – Noise pollution – Displace productive fishing sites – Change the pattern of beach sand nourishment – Alter food chains and disrupt migration patterns – Offshore devices will displace bottom- dwelling organisms. KN. Chandra Bose, Asst. Professor, GECT
  • 127. Sunday, August 05, 2012 127 What is Solar Energy?  Originates with the  thermonuclear fusion  reactions occurring in the sun.  Represents the entire  electromagnetic radiation (visible light, infrared,  ultraviolet, x‐rays, and  radio waves). Renewable energy Solar Energy KN. Chandra Bose, Asst. Professor, GECT
  • 128. Sunday, August 05, 2012 128 How much solar energy?  The surface receives about 47% of the total solar energy.  Sun radiates energy of 3.5x1023kW into space and only  2x1014kW reaches the earth.  Photovoltaic cells are capable of directly converting  sunlight into electricity.  A simple silicon  Wafer converts  light energy into    Voltage.  Produced based  on types of silicon  (n‐ and p‐types) used for the layers.   Each cell=0.5 volts. Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 129. Sunday, August 05, 2012 129 • Battery needed as storage. • No moving partsdo not wear out. • Because they are exposed to the weather, their lifespan is  about 20 years.  India gets more than 5,000 trillion kWh of Solar Energy  every year.  Solar Energy is successfully used in residential and  industrial settings for cooking, heating, cooling, lighting,  space technology, and for communications among other  uses.  Solar panels are one of the most important factors in the  generation of Solar Energy.   On an average, 1 Sq. Ft. of Solar Panel generates 10.6 W  of power. Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 130. Sunday, August 05, 2012 130  Efficiency of cells is up to 23%/ improving.  Solar collectors are of mainly two types‐  Flat plate collectors  Focussing or concentrating collectors.  Cylindrical parabolic concentrators  Paraboloids, mirror arrays Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 133. Sunday, August 05, 2012 133 Geo‐Thermal Energy: • Geo‐thermal energy is the heat of the earth's interior. This  energy is manifested in the hot springs.  • India is not very rich in this source. Energy from Biomass: • Biomass refers to all plant material and animal excreta  when considered as an energy source.  • Some important kinds of biomass are inferior wood,  urban waste, farm animal and human waste. Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 136. Sunday, August 05, 2012 136 Advantages of Geothermal Energy • Significant Cost Saving :  • Environmental Benefits :. • Direct Use :  • Job Creation and Economic Benefits :  Disadvantages of Geothermal Energy • Not Widespread Source of Energy : • High Installation Costs :  Can Run Out Of Steam  Suited To Particular Region  May Release Harmful Gases : Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 137. Sunday, August 05, 2012 137  The field of MHD was initiated by Hannes Alfvén , for  which he received the Nobel Prize in Physics in 1970.  Magneto hydrodynamics (MHD) (magneto fluid  dynamics or hydro magnetics) is the academic  discipline which studies the dynamics of electrically  conducting fluids.   Examples of such fluids include plasmas, liquid metals,  and salt water. Renewable energy MAGNETO HYDRO DYNAMIC POWER GENERATION (MHD ) KN. Chandra Bose, Asst. Professor, GECT
  • 138. Sunday, August 05, 2012 138  MHD power generation is a new system of electric power  generation which is said to be of high efficiency and low  pollution.   In advanced countries MHD generators are widely used  but in developing countries like INDIA, it is still under  construction.  An MHD generator is a device for converting heat energy  of a fuel directly into electrical energy without  conventional electric generator. Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 139. Sunday, August 05, 2012 139 • Conventional Gen: ‐ conductor moves across a magnetic  field, a voltage is induced in it. • In MHD generator, the solid conductors are replaced by a  gaseous conductor, an ionized gas.  • If such a gas is passed at a high velocity through a  powerful magnetic field, a current is generated and can be  extracted by placing electrodes in suitable position in the  stream. Renewable energy PRINCIPLES OF MHD POWER GENERATION KN. Chandra Bose, Asst. Professor, GECT
  • 141. Sunday, August 05, 2012 141 • The flow direction is right angles to the magnetic fields  direction.  • An electromotive force (or electric voltage) is induced in  the direction at right angles to both flow and field  directions. Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 142. Sunday, August 05, 2012 142  The conducting flow fluid is forced between the plates  with a kinetic energy and pressure differential sufficient to  over come the magnetic induction force Find.  Ionization is produced either by thermal means.  The atoms of seed element split off electrons.   The presence of the negatively charged electrons makes  the gas an electrical conductor. Renewable energy KN. Chandra Bose, Asst. Professor, GECT
  • 143. Sunday, August 05, 2012 143  The conversion efficiency is around 50%.   Still higher efficiencies are expected in future, around 60 – 65%. • Large amount of power is generated. • It has no moving parts, so more reliable. • The closed cycle system produces power, free of pollution. • It has ability to reach the full power level as soon as  started.  It is possible to use MHD for peak power generations and  emergency service. Renewable energy ADVANTAGES KN. Chandra Bose, Asst. Professor, GECT
  • 144. Economics of Power Generation • The function of a power station is to deliver power  at the lowest possible cost per kilo watt hour. (Practically not possible, explained by Economics of power Generation). • The total cost is made up of fixed and operating  cost. – Fixed cost consists:‐ • interest on the capital,  • taxes, insurance, depreciation • salary of managerial staff – operating expenses • cost of fuels, water, oil, labor, repairs and maintenance  etc.Sunday, August 05, 2012 144KN. Chandra Bose, Asst. Professor, GECT
  • 146. Sunday, August 05, 2012 146  Hence plant selection can be based on fixed and  operating cost.  For nuclear plant fuel cost is relatively low and  fixed, operating, maintenance charges are high.  For diesel, fuel cost is high  For hydro, fixed charges are high  (70 to 80%).  Hence generation must be regulated according to  demand and plant should run at full load at which  they give max.η. KN. Chandra Bose, Asst. Professor, GECT
  • 147. Sunday, August 05, 2012 147  Schedule the units to fit the load curve as  closely as possible.   Demand is varying with time, hence  generation must meet the demand at any  time.  In an electric power plant, the capital cost of  generating equipment's increase with an  increase in efficiency. KN. Chandra Bose, Asst. Professor, GECT
  • 148. Sunday, August 05, 2012 148 General terms in power station practice,  to run efficiently: 1. Load curve : – Load curve is the plot of load in kilowatts versus time usually for a day or a year.  2. Load duration curve : – Is the plot of load in kilowatts versus time duration for  which it occurs. 3. Maximum demand : – Is the greatest of all demands which have occurred during  a given period of time.  4. Average load : – Is the average load on the power station in a given period  (day/month or year) KN. Chandra Bose, Asst. Professor, GECT
  • 149. Sunday, August 05, 2012 149 5. Base load : – Is the minimum load over a given period of time.  6. Connected load : – Is the sum of the continuous ratings of the load  consuming apparatus connected to the system.  7. Peak load : – Is the maximum load consumed or produced by a unit  or group of units in a stated period of time.  – It may be the maximum instantaneous load or the  maximum average load over a designated interval of  time. KN. Chandra Bose, Asst. Professor, GECT
  • 150. Sunday, August 05, 2012 150 8. Demand factor : – Is the ratio of maximum demand to the connected load  of a consumer. 9. Diversity factor : – Is the ratio of sum of individual maximum demands to  the combined maximum demand on power stations  KN. Chandra Bose, Asst. Professor, GECT
  • 152. Sunday, August 05, 2012 152 12 . Plant factor : – Is the ratio of the average load on the plant for the  period of time considered.  13. Capacity factor : – Is the ratio of the average load on the machine for a  period of time considered, to the rating of the machine.  14. Demand factor : – Is the ratio of maximum demand of system or part of  system, to the total connected load of the system. KN. Chandra Bose, Asst. Professor, GECT
  • 153. Sunday, August 05, 2012 153 15. Utilization factor : – Is the ratio of maximum demand of a system or part of the  system, to the rated capacity of the system, or part of the  system, under consideration.  16. Firm power : – Firm power is the power intended always to be available  even under emergency conditions.  17. Prime power : – Prime power is the maximum potential power constantly  available for transformation into electrical power.  18. Cold reserve : – Is the reserve generating capacity that is available for  service but not in operation.  KN. Chandra Bose, Asst. Professor, GECT
  • 154. Sunday, August 05, 2012 154 19. Hot reserve : – Is the reserve generating capacity that is in operation  but not in service.  20. Spinning reserve : – Spinning reserve is the reserve generating capacity that  is connected to the bus and ready to take load.  21. Run of river station : – Run of river station is a hydro‐electric station that  utilizes the stream flow without water storage. KN. Chandra Bose, Asst. Professor, GECT
  • 155. Sunday, August 05, 2012 155 – Split into two parts: fixed costs and variable costs.  (A) Fixed Cost : – Fixed costs are to be borne by the plants irrespective of  the load.  These costs consist:‐ (i) Interest on capital : – Capital includes the cost of land, buildings, equipment  installation, designing, engineering etc.  – Since the capital cost is fixed therefore interest on the  amount is considered as fixed cost. (ii) Taxes : – A power generating and distributing company has to pay  taxes to the Government. – This amount is more or less fixed.  Cost of generation : KN. Chandra Bose, Asst. Professor, GECT
  • 156. Sunday, August 05, 2012 156 (iii) Cost of Transmission and Distribution : – Involves huge capital expenditure.  – This involves cost of transmission lines, transformers,  substations and associated equipment. Interest on the  capital involved is considered as a fixed cost. (iv) Depreciation: – It is, decrease in value, caused by the wear due to  constant use of an equipment. KN. Chandra Bose, Asst. Professor, GECT
  • 157. Sunday, August 05, 2012 157 (v) Insurance : – The plant and also life of some of workers working in  dangerous areas, has to be insured against various risks  involved.  – For this purpose a fixed sum is payable as premium for  the insurance cover. vi) Salary for Managerial Staff : – Irrespective of whether the plant works or not certain  managerial staff has to be retained by the organization. KN. Chandra Bose, Asst. Professor, GECT
  • 158. Sunday, August 05, 2012 158 (B ) Variable Cost : – These costs vary in some proportion of the power  generated in a plant. Consist of:‐ (i) Cost of fuel : – Cost of fuel is directly related with the amount of  power generated.  – For generating more power, more fuel is required.  – Cost of fuel may be 10% to 25% of the total cost of  production.  – In case of hydroelectric plants the cost of fuel is zero.  KN. Chandra Bose, Asst. Professor, GECT
  • 159. Sunday, August 05, 2012 159 (ii) Maintenance and Repair Charges:  – To keep the plant in running condition, certain repairs  are always needed.  – Stock of some consumable and non‐ consumable items  has got to be maintained. All chargers for such staff are  considered as operating costs.  (iii) Wages: – Salaries including allowances bonus, benefits etc. for  the workers. KN. Chandra Bose, Asst. Professor, GECT
  • 160. Sunday, August 05, 2012 160 A tariff is the rate of charge per kilowatt hour of  energy supplied to a consumer. Requirements of a Tariff:  It should be easier to understand  Provides low rate for higher consumption  Encourage the consumers having high load factor.  It should take into account max. demand charges & energy  charges. Tariff: KN. Chandra Bose, Asst. Professor, GECT
  • 161. Sunday, August 05, 2012 161  Flat demand rate  Straight line meter rate  Step meter rate  Block rate tariff  Two part tariff  Three part tariff  Various type of tariffs can be derived from general equation Y = DX+EZ+C  Y = total amount of bill for the period considered  D = Rate per kW of max demand  X = max demand in kW  E = energy rate per kW  Z = Energy consumed in kWh during the given period  C = Constant amount to be charged from consumer during each bill. Types of Tariff: KN. Chandra Bose, Asst. Professor, GECT
  • 162. Sunday, August 05, 2012 162 1. Uniform Rate Tariff : – A fixed rate per unit amount of energy consumed. – This type of tariff accounts for all the costs involved in  the generation of power.  – Simplest tariff easily understood by consumers.  2. Two Part Tariff : • The total charges are split into two parts – – fixed charges based on maximum demand (in kW) plus  the charges based on energy consumption (in kWh).  – Additional provision is to be incorporated for the  measurement of maximum demand.  – Under such tariff, the consumers having 'peaked'  demand for short duration, are discouraged. Types of Tariff cntd … KN. Chandra Bose, Asst. Professor, GECT
  • 163. Sunday, August 05, 2012 163 3. Block Rate Tariff : – The fixed charges are merged into the unit charges for one  or two blocks of consumption. – all units in excess being charged at low or high unit rate.  – Lower rates for higher blocks are fixed in order to  encourage the consumers for more and more  consumptions.  – This is done in case the plant has got larger spare capacity. – Wherever the plant capacity is inadequate, higher blocks  are charged at higher rate in order to discourage the  consumers . 4. Three Part Tariff : – An extension of the two part tariff. – In this even if the consumer has got zero power  consumption, he has to pay some charges merely because a  connection has been provided to him.  Types of Tariff cntd … KN. Chandra Bose, Asst. Professor, GECT
  • 164. Sunday, August 05, 2012 164 5. Power Factor Tariff : – In case the power factor of a consumer installation is low,  the energy consumption in terms of kW will be low.  – In order to discharge such consumers, power factor tariff is  introduced,  • which are of two types:‐ (a) Maximum kVA demand Tariff : • In this instead of kW. the kVA consumption is measured and the  charge are Based partly or fully on this demand.  (b) Sliding Scale : • In this case the average power factor is fixed say at 0.8 lagging. • Now if the power factor of a consumer falls below by 0.01 or  multiples there of, some additional charges are imposed.  • A discount may be allowed in case the power factor is above 0.8.  Types of Tariff cntd … KN. Chandra Bose, Asst. Professor, GECT
  • 165. Sunday, August 05, 2012 165  DEPRECIATION: It is the deterioration of equipment's and decrease in  its value due to corrosion, weathering, and wear and  tear with use.  Improvements in design and construction, obsolesce  factor rates the plants.  Availability of better models with lesser over all cost in  generation, forces the old model to replace.  Hence over all life span reduces, from what would be  normally expected. Types of Tariff cntd … KN. Chandra Bose, Asst. Professor, GECT
  • 166. Sunday, August 05, 2012 166  Methods used to calculate depreciation cost:   Straight line method  it is assumed that the property losses its value by the same  amount every year.  Types of Tariff cntd … KN. Chandra Bose, Asst. Professor, GECT
  • 167. Sunday, August 05, 2012 167  A fixed amount of the original cost is deducted every year, so  that at the end of the utility period, only the scrap value is  left. ** Annual Depreciation, D = (original cost of the asset – Scrap  Value)/life in years  Percentage method  the property will lose its value by a constant percentage at  the beginning of every year. ** Annual Depreciation, D = 1‐(scrap value/original value)1/life in  year Types of Tariff cntd … KN. Chandra Bose, Asst. Professor, GECT
  • 168. Sunday, August 05, 2012 168  Sinking fund method  the depreciation of a property is assumed to be equal to the annual  sinking fund plus the interest on the fund for that year.  Unit method  the property is studied in detail and loss in value due to life, wear  and tear, decay, obsolescence etc, worked out.   Not calculating any fixed percentage of the cost of the property.   Only experimental value can work out the amount of depreciation. Types of Tariff cntd … KN. Chandra Bose, Asst. Professor, GECT
  • 169. Sunday, August 05, 2012 169  The advantages of improved power factor:‐  (i) reduction in load current   (ii) increase in voltage level across the load,   (iii) reduction in energy loss in the system (generators,  transformers, transmission lines and distributors) due to  reduction in load current.  (iv) reduction in KVA loading of the generators and the  transformers which may relieve an over loaded system  or release capacity for additional growth of load  (v) reduction in KVA demand charge for large  consumers. Types of Tariff cntd … ECONOMICS OF PF IMPROVEMENT KN. Chandra Bose, Asst. Professor, GECT
  • 170. Sunday, August 05, 2012 170  ECONOMICS OF PF IMPROVEMENT  Reduce expenditure on the power factor correcting  equipment.  Result in reduction of maximum demand.  thus affect an annual saving over the maximum  demand charge.  the economical limit of power factor correction is  governed by the relative costs of the supply and power  factor correcting equipment. Types of Tariff cntd … KN. Chandra Bose, Asst. Professor, GECT
  • 171. Sunday, August 05, 2012 171  What is Power Factor ‐ and Why is it Important to My  Bottom Line:   Electrical power is comprised of three components:  real power (P),   reactive power (Q)   apparent power (S).  Power factor is a measure of how  effectively electrical power is  being used.  Types of Tariff cntd … KN. Chandra Bose, Asst. Professor, GECT
  • 172. Sunday, August 05, 2012 172  Reactive power, does not do any work but is  nonetheless needed to operate equipment.   when a utility serves a facility that has poor power  factor, the utility must be capable of supplying higher  current levels to serve a given load.  When a customer's power factor drops below the  minimum value, the utility collects a low power factor  revenue premium on their bill. Typically the lower the  power factor, the higher the premium.   The most economical way to improve power factor is  by adding capacitors.  Types of Tariff cntd … KN. Chandra Bose, Asst. Professor, GECT
  • 173. Sunday, August 05, 2012 173  capacitors serve as a leading reactive current  generator to counter the lagging reactive current in a  system.  Maintaining a high power factor in a facility will yield  direct savings.  As power factor of the system is improved, the total  current flow will be reduced ‐ which permits  additional loads to be added and served by the  existing system.  Distribution losses can be reduced by the addition of  capacitors.   Capacitors will also raise a circuit's voltage. Types of Tariff cntd … KN. Chandra Bose, Asst. Professor, GECT
  • 174. Sunday, August 05, 2012 174  capacitors act as a kVAR generator.  the most efficient place to install them is usually  directly at an inductive load.  Improvement of pf of 1 motor improves the plant's  overall reactive requirement. Types of Tariff cntd … KN. Chandra Bose, Asst. Professor, GECT