The anatomy of a neural network consists of layers, input data and targets, a loss function, and an optimizer. Layers are the building blocks and include dense, RNN, CNN, and more. Keras is a user-friendly deep learning framework that allows easy construction of neural networks by stacking layers. It supports TensorFlow as a backend and offers pre-trained models, GPU acceleration, and integration with data libraries. To set up a deep learning workstation, software like TensorFlow, Keras, and CUDA must be installed along with a GPU. The hypothesis space refers to all possible models considered by an algorithm. Loss functions measure prediction error while optimizers adjust parameters to minimize loss and improve accuracy. Common examples are described.