SlideShare a Scribd company logo
Copyright(c) SCSK Corporation
2018年8月
DLLAB分科会の募集説明
Copyright(c) SCSK Corporation
Agenda
1.DLLAB分科会の概要
2.スケジュール及び募集要綱
1
Copyright(c) SCSK Corporation2
1.DLLAB分科会の概要
Copyright(c) SCSK Corporation
DLLAB:実践の場
AIビジネス推進の課題
3
ユーザー企業 パートナー企業
・ビジネス課題詳細が分からない
・学習データが揃わない
・技術力をアピールしきれない
・研究開発の方向性に迷っている
・実プロジェクト経験が不足している
・ビジネス課題への適用技術が不明
・社内でAI技術を評価しきれない
・ベンチャー企業との取引には慎重
・現段階で大きな予算を付けられない
・実プロジェクト経験が不足している
DLLAB分科会で共同実験の場を提供!
実証機会
プレPoC
Copyright(c) SCSK Corporation
DLLAB分科会:前回参考
4
• 実施期間 2017年10月~2019年3月(6ヶ月)
• テーマ 第一弾「製造業×画像認識」
• 実験課題 ①製造現場の紙帳票の帳票層別と手書き文字認識
②利用者情報を組み合わせた車への乗降姿勢の解析
③製造ラインでの作業サイクルの取得と異常作業検知
• 参加社
4
SCSK株式会社
株式会社キスモ 株式会社3AS
日本マイクロソフト株式会社
トヨタ紡織株式会社
サイオステクノロジー株式会社
Copyright(c) SCSK Corporation
DLLAB分科会:実施概要
5
コンセプト
「実ビジネス課題に対し、オープンイノベーションの場を提供する」
• 実施期間 2018年8月~2019年2月(7ヶ月)
• 参加資格 DLLAB参加の「ユーザー企業」と「パートナー企業」
• 参加費用 無料
• テーマ 第二弾「製造業×画像認識・センサーデータ分析技術」
※ 本分化会の成果は参加各社にて共有し、結果サマリーは
DLLAB本体ミーティングにて発表予定
Copyright(c) SCSK Corporation
DLLAB分科会:環境
Azure上のAI/DL実行環境 (https://azure.microsoft.com/ja-jp/free/)
6
Copyright(c) SCSK Corporation7
2.スケジュール及び募集要綱
Copyright(c) SCSK Corporation
実施スケジュール(予定)
8
Copyright(c) SCSK Corporation
ユーザー企業への依頼事項
• 実現課題
• データの提供
• 評価
9
・深層学習のビジネス課題をもっており、画像認識技術、及びセンサー
データ解析について研究開発を行いたい企業であること
・適用候補領域で画像/映像データを取得しており、提供可能なこと
(機械学習・ディープラーニングの学習に活用しやすいデータで
あることが望ましい)
・共同実験結果に対し、業務的な評価ができること
Copyright(c) SCSK Corporation
パートナー企業への依頼事項
• AI技術ソリューションの提案
• 実験提供
• 評価
10
・機械学習・深層学習アルゴリズムなどの人工知能要素技術を持つ
企業であること
・課題テーマに対する解決策を提案できること
・共同実験結果に対し、技術的な評価できること
・トライアルフェーズにおいて、Azure環境上での学習や実験提供を
パートナー自らの負担で持ち出しが可能であること
Copyright(c) SCSK Corporation
事務局による支援
• 推進支援
• 環境提供
11
・全体プロジェクト推進を支援する
・データ管理環境/コミュニケーション手段を提供する
・定例会議の場所を提供する
Copyright(c) SCSK Corporation
その他(留意事項)
• 参加社は、申込み時に本分科会の指定する機密保持契約を締結する。
• 共同実験の学習データ/課題などの権利は、ユーザー企業に帰属する。
• AIアルゴリズム/ソリューションの権利はパートナーに帰属する。
• 共同実験研究の結果は、分科会参加社にて共有するものとする。
• 共同実験後にさらに研究推進や本格実証に進む場合は、
個別に協議し書面合意をもって個社で推進するものとする。
• 学習データの管理・廃棄は、実験終了後に事務局が責任をもって行う。
(基本的に、Azureデータ管理層以外への学習データの複製はNG)
13
Copyright(c) SCSK Corporation
運営体制
22
DLLAB体制 運営メンバー
 事務局
SCSK株式会社
日本マイクロソフト株式会社
 ユーザー企業
DLL会員の分科会参加企業
 パートナー企業
DLL会員の分科会参加企業
 リーダー企業
TBD
(トライアルフェーズ以降に
チーム単位で検討)
リーダー企業
ユーザー
企業
パートナー
企業
リーダー企業
ユーザー
企業
パートナー
企業
リーダー企業
ユーザー
企業
パートナー
企業
事務局
Copyright(c) SCSK Corporation
照会窓口
24
申し込み期間 8月9日~8月31日
お問い合わせ先:
DLL-Subcommittee-seminar@ml.scsk.jp

More Related Content

Similar to DLL製造分科会からの告知

モデリングの彼方に未来を見た
モデリングの彼方に未来を見たモデリングの彼方に未来を見た
モデリングの彼方に未来を見た
Hagimoto Junzo
 
Developers Summit 2018: ストリームとバッチを融合したBigData Analytics ~事例とデモから見えてくる、これからのデー...
Developers Summit 2018: ストリームとバッチを融合したBigData Analytics ~事例とデモから見えてくる、これからのデー...Developers Summit 2018: ストリームとバッチを融合したBigData Analytics ~事例とデモから見えてくる、これからのデー...
Developers Summit 2018: ストリームとバッチを融合したBigData Analytics ~事例とデモから見えてくる、これからのデー...
オラクルエンジニア通信
 
リクルートのビッグデータ活用基盤とデータ活用に向けた取組み
リクルートのビッグデータ活用基盤とデータ活用に向けた取組みリクルートのビッグデータ活用基盤とデータ活用に向けた取組み
リクルートのビッグデータ活用基盤とデータ活用に向けた取組み
Recruit Technologies
 
SpotBugs(FindBugs)による 大規模ERPのコード品質改善
SpotBugs(FindBugs)による 大規模ERPのコード品質改善SpotBugs(FindBugs)による 大規模ERPのコード品質改善
SpotBugs(FindBugs)による 大規模ERPのコード品質改善
Works Applications
 
AITCオープンラボ 2018年5月度(2)
AITCオープンラボ 2018年5月度(2)AITCオープンラボ 2018年5月度(2)
AITCオープンラボ 2018年5月度(2)
aitc_jp
 
2017spring jjug ccc_f2
2017spring jjug ccc_f22017spring jjug ccc_f2
2017spring jjug ccc_f2
Kazuhiro Wada
 
スマートデバイスSIの落とし穴と適した開発手法とは?
スマートデバイスSIの落とし穴と適した開発手法とは?スマートデバイスSIの落とし穴と適した開発手法とは?
スマートデバイスSIの落とし穴と適した開発手法とは?
Takuya Kitamura
 
【Ltech#8】技術的負債返済・実装改善に関する事例紹介
【Ltech#8】技術的負債返済・実装改善に関する事例紹介【Ltech#8】技術的負債返済・実装改善に関する事例紹介
【Ltech#8】技術的負債返済・実装改善に関する事例紹介
LIFULL Co., Ltd.
 
AR/VR seminar
AR/VR seminarAR/VR seminar
AR/VR seminar
Kaoru NAKAMURA
 
ものつくりでのAI活用 2020
ものつくりでのAI活用 2020ものつくりでのAI活用 2020
ものつくりでのAI活用 2020
Ikuo Misao
 
デブサミ2020 事業グロースを加速させる「分析基盤」の作り方 japantaxi
デブサミ2020 事業グロースを加速させる「分析基盤」の作り方 japantaxiデブサミ2020 事業グロースを加速させる「分析基盤」の作り方 japantaxi
デブサミ2020 事業グロースを加速させる「分析基盤」の作り方 japantaxi
Masatoshi Ida
 
【Azureデータ分析シリーズ】非専門家向け/利用部門主導で始めるデータ分析_ナレッジコミュニケーション公開資料
【Azureデータ分析シリーズ】非専門家向け/利用部門主導で始めるデータ分析_ナレッジコミュニケーション公開資料【Azureデータ分析シリーズ】非専門家向け/利用部門主導で始めるデータ分析_ナレッジコミュニケーション公開資料
【Azureデータ分析シリーズ】非専門家向け/利用部門主導で始めるデータ分析_ナレッジコミュニケーション公開資料
Takaya Nakanishi
 
BtoB×SaaS×CSのLT大会#1オープニングトーク
BtoB×SaaS×CSのLT大会#1オープニングトークBtoB×SaaS×CSのLT大会#1オープニングトーク
BtoB×SaaS×CSのLT大会#1オープニングトーク
Toru Komaya
 
え?まだフルスクラッチで開発してるの!?Power Platform をフル活用すると普通にシステムができるんですよ
え?まだフルスクラッチで開発してるの!?Power Platform をフル活用すると普通にシステムができるんですよえ?まだフルスクラッチで開発してるの!?Power Platform をフル活用すると普通にシステムができるんですよ
え?まだフルスクラッチで開発してるの!?Power Platform をフル活用すると普通にシステムができるんですよ
Yugo Shimizu
 
失敗しないパッケージ導入1
失敗しないパッケージ導入1失敗しないパッケージ導入1
失敗しないパッケージ導入1
小島 規彰
 
リクルーティングパートナーシップのご提案
リクルーティングパートナーシップのご提案リクルーティングパートナーシップのご提案
リクルーティングパートナーシップのご提案
DIVE INTO CODE Corp.
 
【2017年5月時点】セルフサービスBIからエンタープライズまで展開できるOracle Business Analytics クラウドプラットフォームのご紹介
【2017年5月時点】セルフサービスBIからエンタープライズまで展開できるOracle Business Analytics クラウドプラットフォームのご紹介【2017年5月時点】セルフサービスBIからエンタープライズまで展開できるOracle Business Analytics クラウドプラットフォームのご紹介
【2017年5月時点】セルフサービスBIからエンタープライズまで展開できるOracle Business Analytics クラウドプラットフォームのご紹介
オラクルエンジニア通信
 
DeNA のデータ活用を支える BigQuery データの民主化とガバナンス強化の軌跡 | Google Cloud INSIDE Games & App...
DeNA のデータ活用を支える BigQuery データの民主化とガバナンス強化の軌跡 | Google Cloud INSIDE Games & App...DeNA のデータ活用を支える BigQuery データの民主化とガバナンス強化の軌跡 | Google Cloud INSIDE Games & App...
DeNA のデータ活用を支える BigQuery データの民主化とガバナンス強化の軌跡 | Google Cloud INSIDE Games & App...
Google Cloud Platform - Japan
 
PCCC21:株式会社日立製作所 「研究開発力向上のための研究DXソリューション」
PCCC21:株式会社日立製作所 「研究開発力向上のための研究DXソリューション」PCCC21:株式会社日立製作所 「研究開発力向上のための研究DXソリューション」
PCCC21:株式会社日立製作所 「研究開発力向上のための研究DXソリューション」
PC Cluster Consortium
 
タクシーxAIを支えるKubernetesとAIデータパイプラインの信頼性の取り組みについて [SRE NEXT 2020]
タクシーxAIを支えるKubernetesとAIデータパイプラインの信頼性の取り組みについて [SRE NEXT 2020]タクシーxAIを支えるKubernetesとAIデータパイプラインの信頼性の取り組みについて [SRE NEXT 2020]
タクシーxAIを支えるKubernetesとAIデータパイプラインの信頼性の取り組みについて [SRE NEXT 2020]
DeNA
 

Similar to DLL製造分科会からの告知 (20)

モデリングの彼方に未来を見た
モデリングの彼方に未来を見たモデリングの彼方に未来を見た
モデリングの彼方に未来を見た
 
Developers Summit 2018: ストリームとバッチを融合したBigData Analytics ~事例とデモから見えてくる、これからのデー...
Developers Summit 2018: ストリームとバッチを融合したBigData Analytics ~事例とデモから見えてくる、これからのデー...Developers Summit 2018: ストリームとバッチを融合したBigData Analytics ~事例とデモから見えてくる、これからのデー...
Developers Summit 2018: ストリームとバッチを融合したBigData Analytics ~事例とデモから見えてくる、これからのデー...
 
リクルートのビッグデータ活用基盤とデータ活用に向けた取組み
リクルートのビッグデータ活用基盤とデータ活用に向けた取組みリクルートのビッグデータ活用基盤とデータ活用に向けた取組み
リクルートのビッグデータ活用基盤とデータ活用に向けた取組み
 
SpotBugs(FindBugs)による 大規模ERPのコード品質改善
SpotBugs(FindBugs)による 大規模ERPのコード品質改善SpotBugs(FindBugs)による 大規模ERPのコード品質改善
SpotBugs(FindBugs)による 大規模ERPのコード品質改善
 
AITCオープンラボ 2018年5月度(2)
AITCオープンラボ 2018年5月度(2)AITCオープンラボ 2018年5月度(2)
AITCオープンラボ 2018年5月度(2)
 
2017spring jjug ccc_f2
2017spring jjug ccc_f22017spring jjug ccc_f2
2017spring jjug ccc_f2
 
スマートデバイスSIの落とし穴と適した開発手法とは?
スマートデバイスSIの落とし穴と適した開発手法とは?スマートデバイスSIの落とし穴と適した開発手法とは?
スマートデバイスSIの落とし穴と適した開発手法とは?
 
【Ltech#8】技術的負債返済・実装改善に関する事例紹介
【Ltech#8】技術的負債返済・実装改善に関する事例紹介【Ltech#8】技術的負債返済・実装改善に関する事例紹介
【Ltech#8】技術的負債返済・実装改善に関する事例紹介
 
AR/VR seminar
AR/VR seminarAR/VR seminar
AR/VR seminar
 
ものつくりでのAI活用 2020
ものつくりでのAI活用 2020ものつくりでのAI活用 2020
ものつくりでのAI活用 2020
 
デブサミ2020 事業グロースを加速させる「分析基盤」の作り方 japantaxi
デブサミ2020 事業グロースを加速させる「分析基盤」の作り方 japantaxiデブサミ2020 事業グロースを加速させる「分析基盤」の作り方 japantaxi
デブサミ2020 事業グロースを加速させる「分析基盤」の作り方 japantaxi
 
【Azureデータ分析シリーズ】非専門家向け/利用部門主導で始めるデータ分析_ナレッジコミュニケーション公開資料
【Azureデータ分析シリーズ】非専門家向け/利用部門主導で始めるデータ分析_ナレッジコミュニケーション公開資料【Azureデータ分析シリーズ】非専門家向け/利用部門主導で始めるデータ分析_ナレッジコミュニケーション公開資料
【Azureデータ分析シリーズ】非専門家向け/利用部門主導で始めるデータ分析_ナレッジコミュニケーション公開資料
 
BtoB×SaaS×CSのLT大会#1オープニングトーク
BtoB×SaaS×CSのLT大会#1オープニングトークBtoB×SaaS×CSのLT大会#1オープニングトーク
BtoB×SaaS×CSのLT大会#1オープニングトーク
 
え?まだフルスクラッチで開発してるの!?Power Platform をフル活用すると普通にシステムができるんですよ
え?まだフルスクラッチで開発してるの!?Power Platform をフル活用すると普通にシステムができるんですよえ?まだフルスクラッチで開発してるの!?Power Platform をフル活用すると普通にシステムができるんですよ
え?まだフルスクラッチで開発してるの!?Power Platform をフル活用すると普通にシステムができるんですよ
 
失敗しないパッケージ導入1
失敗しないパッケージ導入1失敗しないパッケージ導入1
失敗しないパッケージ導入1
 
リクルーティングパートナーシップのご提案
リクルーティングパートナーシップのご提案リクルーティングパートナーシップのご提案
リクルーティングパートナーシップのご提案
 
【2017年5月時点】セルフサービスBIからエンタープライズまで展開できるOracle Business Analytics クラウドプラットフォームのご紹介
【2017年5月時点】セルフサービスBIからエンタープライズまで展開できるOracle Business Analytics クラウドプラットフォームのご紹介【2017年5月時点】セルフサービスBIからエンタープライズまで展開できるOracle Business Analytics クラウドプラットフォームのご紹介
【2017年5月時点】セルフサービスBIからエンタープライズまで展開できるOracle Business Analytics クラウドプラットフォームのご紹介
 
DeNA のデータ活用を支える BigQuery データの民主化とガバナンス強化の軌跡 | Google Cloud INSIDE Games & App...
DeNA のデータ活用を支える BigQuery データの民主化とガバナンス強化の軌跡 | Google Cloud INSIDE Games & App...DeNA のデータ活用を支える BigQuery データの民主化とガバナンス強化の軌跡 | Google Cloud INSIDE Games & App...
DeNA のデータ活用を支える BigQuery データの民主化とガバナンス強化の軌跡 | Google Cloud INSIDE Games & App...
 
PCCC21:株式会社日立製作所 「研究開発力向上のための研究DXソリューション」
PCCC21:株式会社日立製作所 「研究開発力向上のための研究DXソリューション」PCCC21:株式会社日立製作所 「研究開発力向上のための研究DXソリューション」
PCCC21:株式会社日立製作所 「研究開発力向上のための研究DXソリューション」
 
タクシーxAIを支えるKubernetesとAIデータパイプラインの信頼性の取り組みについて [SRE NEXT 2020]
タクシーxAIを支えるKubernetesとAIデータパイプラインの信頼性の取り組みについて [SRE NEXT 2020]タクシーxAIを支えるKubernetesとAIデータパイプラインの信頼性の取り組みについて [SRE NEXT 2020]
タクシーxAIを支えるKubernetesとAIデータパイプラインの信頼性の取り組みについて [SRE NEXT 2020]
 

More from Deep Learning Lab(ディープラーニング・ラボ)

Edge AI ソリューションを支える Azure IoT サービス
Edge AI ソリューションを支える Azure IoT サービスEdge AI ソリューションを支える Azure IoT サービス
Edge AI ソリューションを支える Azure IoT サービス
Deep Learning Lab(ディープラーニング・ラボ)
 
DLLAB Healthcare Day 2021 Event Report
DLLAB Healthcare Day 2021 Event ReportDLLAB Healthcare Day 2021 Event Report
DLLAB Healthcare Day 2021 Event Report
Deep Learning Lab(ディープラーニング・ラボ)
 
ICTを用いた健康なまちづくりの 取り組みとAI活用への期待​
ICTを用いた健康なまちづくりの 取り組みとAI活用への期待​ICTを用いた健康なまちづくりの 取り組みとAI活用への期待​
ICTを用いた健康なまちづくりの 取り組みとAI活用への期待​
Deep Learning Lab(ディープラーニング・ラボ)
 
医学と工学の垣根を越えた医療AI開発
医学と工学の垣根を越えた医療AI開発医学と工学の垣根を越えた医療AI開発
医学と工学の垣根を越えた医療AI開発
Deep Learning Lab(ディープラーニング・ラボ)
 
Intel AI in Healthcare 各国事例からみるAIとの向き合い方
Intel AI in Healthcare 各国事例からみるAIとの向き合い方Intel AI in Healthcare 各国事例からみるAIとの向き合い方
Intel AI in Healthcare 各国事例からみるAIとの向き合い方
Deep Learning Lab(ディープラーニング・ラボ)
 
厚生労働分野におけるAI技術の利活用について
厚生労働分野におけるAI技術の利活用について厚生労働分野におけるAI技術の利活用について
厚生労働分野におけるAI技術の利活用について
Deep Learning Lab(ディープラーニング・ラボ)
 
先端技術がもたらす「より良いヘルスケアのかたち」
先端技術がもたらす「より良いヘルスケアのかたち」先端技術がもたらす「より良いヘルスケアのかたち」
先端技術がもたらす「より良いヘルスケアのかたち」
Deep Learning Lab(ディープラーニング・ラボ)
 
AIによる細胞診支援技術の紹介と、AI人材が考える医療バイオ領域における参入障壁の乗り越え方
AIによる細胞診支援技術の紹介と、AI人材が考える医療バイオ領域における参入障壁の乗り越え方AIによる細胞診支援技術の紹介と、AI人材が考える医療バイオ領域における参入障壁の乗り越え方
AIによる細胞診支援技術の紹介と、AI人材が考える医療バイオ領域における参入障壁の乗り越え方
Deep Learning Lab(ディープラーニング・ラボ)
 
「言語」×AI Digital Device
「言語」×AI Digital Device「言語」×AI Digital Device
深層強化学習と実装例
深層強化学習と実装例深層強化学習と実装例
深層強化学習を用いた複合機の搬送制御
深層強化学習を用いた複合機の搬送制御深層強化学習を用いた複合機の搬送制御
深層強化学習を用いた複合機の搬送制御
Deep Learning Lab(ディープラーニング・ラボ)
 
Azure ML 強化学習を用いた最新アルゴリズムの活用手法
Azure ML 強化学習を用いた最新アルゴリズムの活用手法Azure ML 強化学習を用いた最新アルゴリズムの活用手法
Azure ML 強化学習を用いた最新アルゴリズムの活用手法
Deep Learning Lab(ディープラーニング・ラボ)
 
Jetson x Azure ハンズオン DeepStream With Azure IoT 事前準備
Jetson x Azure ハンズオン DeepStream With Azure IoT 事前準備Jetson x Azure ハンズオン DeepStream With Azure IoT 事前準備
Jetson x Azure ハンズオン DeepStream With Azure IoT 事前準備
Deep Learning Lab(ディープラーニング・ラボ)
 
Jetson x Azure ハンズオン DeepStream With Azure IoT
Jetson x Azure ハンズオン DeepStream With Azure IoTJetson x Azure ハンズオン DeepStream With Azure IoT
Jetson x Azure ハンズオン DeepStream With Azure IoT
Deep Learning Lab(ディープラーニング・ラボ)
 
Jetson x Azure ハンズオン DeepStream Azure IoT
Jetson x Azure ハンズオン DeepStream Azure IoTJetson x Azure ハンズオン DeepStream Azure IoT
Jetson x Azure ハンズオン DeepStream Azure IoT
Deep Learning Lab(ディープラーニング・ラボ)
 
Jetson 活用による スタートアップ企業支援
Jetson 活用による スタートアップ企業支援Jetson 活用による スタートアップ企業支援
Jetson 活用による スタートアップ企業支援
Deep Learning Lab(ディープラーニング・ラボ)
 
[Track 4-6] ディープラーニングxものづくりが日本を強くする ~高専DCONの挑戦~
[Track 4-6] ディープラーニングxものづくりが日本を強くする ~高専DCONの挑戦~[Track 4-6] ディープラーニングxものづくりが日本を強くする ~高専DCONの挑戦~
[Track 4-6] ディープラーニングxものづくりが日本を強くする ~高専DCONの挑戦~
Deep Learning Lab(ディープラーニング・ラボ)
 
[Track3-2] AI活用人材の社内育成に関する取り組みについて ~ダイキン情報技術大学~
[Track3-2] AI活用人材の社内育成に関する取り組みについて ~ダイキン情報技術大学~[Track3-2] AI活用人材の社内育成に関する取り組みについて ~ダイキン情報技術大学~
[Track3-2] AI活用人材の社内育成に関する取り組みについて ~ダイキン情報技術大学~
Deep Learning Lab(ディープラーニング・ラボ)
 
[Track1-1] AIの売上予測を発注システムに組み込んだリンガーハットのデータ活用戦略
[Track1-1] AIの売上予測を発注システムに組み込んだリンガーハットのデータ活用戦略[Track1-1] AIの売上予測を発注システムに組み込んだリンガーハットのデータ活用戦略
[Track1-1] AIの売上予測を発注システムに組み込んだリンガーハットのデータ活用戦略
Deep Learning Lab(ディープラーニング・ラボ)
 
[Track1-2] ディープラーニングを用いたワインブドウの収穫量予測
[Track1-2] ディープラーニングを用いたワインブドウの収穫量予測[Track1-2] ディープラーニングを用いたワインブドウの収穫量予測
[Track1-2] ディープラーニングを用いたワインブドウの収穫量予測
Deep Learning Lab(ディープラーニング・ラボ)
 

More from Deep Learning Lab(ディープラーニング・ラボ) (20)

Edge AI ソリューションを支える Azure IoT サービス
Edge AI ソリューションを支える Azure IoT サービスEdge AI ソリューションを支える Azure IoT サービス
Edge AI ソリューションを支える Azure IoT サービス
 
DLLAB Healthcare Day 2021 Event Report
DLLAB Healthcare Day 2021 Event ReportDLLAB Healthcare Day 2021 Event Report
DLLAB Healthcare Day 2021 Event Report
 
ICTを用いた健康なまちづくりの 取り組みとAI活用への期待​
ICTを用いた健康なまちづくりの 取り組みとAI活用への期待​ICTを用いた健康なまちづくりの 取り組みとAI活用への期待​
ICTを用いた健康なまちづくりの 取り組みとAI活用への期待​
 
医学と工学の垣根を越えた医療AI開発
医学と工学の垣根を越えた医療AI開発医学と工学の垣根を越えた医療AI開発
医学と工学の垣根を越えた医療AI開発
 
Intel AI in Healthcare 各国事例からみるAIとの向き合い方
Intel AI in Healthcare 各国事例からみるAIとの向き合い方Intel AI in Healthcare 各国事例からみるAIとの向き合い方
Intel AI in Healthcare 各国事例からみるAIとの向き合い方
 
厚生労働分野におけるAI技術の利活用について
厚生労働分野におけるAI技術の利活用について厚生労働分野におけるAI技術の利活用について
厚生労働分野におけるAI技術の利活用について
 
先端技術がもたらす「より良いヘルスケアのかたち」
先端技術がもたらす「より良いヘルスケアのかたち」先端技術がもたらす「より良いヘルスケアのかたち」
先端技術がもたらす「より良いヘルスケアのかたち」
 
AIによる細胞診支援技術の紹介と、AI人材が考える医療バイオ領域における参入障壁の乗り越え方
AIによる細胞診支援技術の紹介と、AI人材が考える医療バイオ領域における参入障壁の乗り越え方AIによる細胞診支援技術の紹介と、AI人材が考える医療バイオ領域における参入障壁の乗り越え方
AIによる細胞診支援技術の紹介と、AI人材が考える医療バイオ領域における参入障壁の乗り越え方
 
「言語」×AI Digital Device
「言語」×AI Digital Device「言語」×AI Digital Device
「言語」×AI Digital Device
 
深層強化学習と実装例
深層強化学習と実装例深層強化学習と実装例
深層強化学習と実装例
 
深層強化学習を用いた複合機の搬送制御
深層強化学習を用いた複合機の搬送制御深層強化学習を用いた複合機の搬送制御
深層強化学習を用いた複合機の搬送制御
 
Azure ML 強化学習を用いた最新アルゴリズムの活用手法
Azure ML 強化学習を用いた最新アルゴリズムの活用手法Azure ML 強化学習を用いた最新アルゴリズムの活用手法
Azure ML 強化学習を用いた最新アルゴリズムの活用手法
 
Jetson x Azure ハンズオン DeepStream With Azure IoT 事前準備
Jetson x Azure ハンズオン DeepStream With Azure IoT 事前準備Jetson x Azure ハンズオン DeepStream With Azure IoT 事前準備
Jetson x Azure ハンズオン DeepStream With Azure IoT 事前準備
 
Jetson x Azure ハンズオン DeepStream With Azure IoT
Jetson x Azure ハンズオン DeepStream With Azure IoTJetson x Azure ハンズオン DeepStream With Azure IoT
Jetson x Azure ハンズオン DeepStream With Azure IoT
 
Jetson x Azure ハンズオン DeepStream Azure IoT
Jetson x Azure ハンズオン DeepStream Azure IoTJetson x Azure ハンズオン DeepStream Azure IoT
Jetson x Azure ハンズオン DeepStream Azure IoT
 
Jetson 活用による スタートアップ企業支援
Jetson 活用による スタートアップ企業支援Jetson 活用による スタートアップ企業支援
Jetson 活用による スタートアップ企業支援
 
[Track 4-6] ディープラーニングxものづくりが日本を強くする ~高専DCONの挑戦~
[Track 4-6] ディープラーニングxものづくりが日本を強くする ~高専DCONの挑戦~[Track 4-6] ディープラーニングxものづくりが日本を強くする ~高専DCONの挑戦~
[Track 4-6] ディープラーニングxものづくりが日本を強くする ~高専DCONの挑戦~
 
[Track3-2] AI活用人材の社内育成に関する取り組みについて ~ダイキン情報技術大学~
[Track3-2] AI活用人材の社内育成に関する取り組みについて ~ダイキン情報技術大学~[Track3-2] AI活用人材の社内育成に関する取り組みについて ~ダイキン情報技術大学~
[Track3-2] AI活用人材の社内育成に関する取り組みについて ~ダイキン情報技術大学~
 
[Track1-1] AIの売上予測を発注システムに組み込んだリンガーハットのデータ活用戦略
[Track1-1] AIの売上予測を発注システムに組み込んだリンガーハットのデータ活用戦略[Track1-1] AIの売上予測を発注システムに組み込んだリンガーハットのデータ活用戦略
[Track1-1] AIの売上予測を発注システムに組み込んだリンガーハットのデータ活用戦略
 
[Track1-2] ディープラーニングを用いたワインブドウの収穫量予測
[Track1-2] ディープラーニングを用いたワインブドウの収穫量予測[Track1-2] ディープラーニングを用いたワインブドウの収穫量予測
[Track1-2] ディープラーニングを用いたワインブドウの収穫量予測
 

Recently uploaded

生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
Osaka University
 
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
Toru Tamaki
 
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobodyロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
azuma satoshi
 
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
Yuki Miyazaki
 
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
嶋 是一 (Yoshikazu SHIMA)
 
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMMハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
osamut
 
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
sugiuralab
 
Generating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language ModelsGenerating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language Models
harmonylab
 
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライドHumanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
tazaki1
 

Recently uploaded (9)

生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
生成AIがもたらすコンテンツ経済圏の新時代  The New Era of Content Economy Brought by Generative AI
 
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
論文紹介:Deep Learning-Based Human Pose Estimation: A Survey
 
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobodyロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
ロジックから状態を分離する技術/設計ナイト2024 by わいとん @ytnobody
 
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
無形価値を守り育てる社会における「デー タ」の責務について - Atlas, Inc.
 
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
「進化するアプリ イマ×ミライ ~生成AIアプリへ続く道と新時代のアプリとは~」Interop24Tokyo APPS JAPAN B1-01講演
 
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMMハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
ハイブリッドクラウド研究会_Hyper-VとSystem Center Virtual Machine Manager セッションMM
 
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
ヒアラブルへの入力を想定したユーザ定義型ジェスチャ調査と IMUセンサによる耳タッチジェスチャの認識
 
Generating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language ModelsGenerating Automatic Feedback on UI Mockups with Large Language Models
Generating Automatic Feedback on UI Mockups with Large Language Models
 
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライドHumanoid Virtual Athletics Challenge2024 技術講習会 スライド
Humanoid Virtual Athletics Challenge2024 技術講習会 スライド
 

DLL製造分科会からの告知