DIFFERENTIAL EQUATION (MT-202) SYED AZEEM INAM
DIFFERENTIAL EQUATION (MT-202)
LECTURE #14
CAUCHY-EULER EQUATION:
The equation of the form
๐‘Ž0 ๐‘ฅ ๐‘›
๐‘‘ ๐‘›
๐‘ฆ
๐‘‘๐‘ฅ ๐‘›
+ ๐‘Ž1 ๐‘ฅ ๐‘›โˆ’1
๐‘‘ ๐‘›โˆ’1
๐‘ฆ
๐‘‘๐‘ฅ ๐‘›โˆ’1
+ โ‹ฏ + ๐‘Ž ๐‘›โˆ’1 ๐‘ฅ
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
+ ๐‘Ž ๐‘› ๐‘ฆ = ๐น(๐‘ฅ)
Is called Cauchy-Euler equation or equi-dimensional equation.
The equation can be reduced to a linear differential equation with constant
coefficients by the transformation
๐‘ฅ = ๐‘’ ๐‘ก
๐‘œ๐‘Ÿ ๐‘ฆ = ๐‘™๐‘›๐‘ฅ
EXAMPLE #1: Solve: ๐‘ฅ2 ๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฅ2
โˆ’ 2๐‘ฅ
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
+ 2๐‘ฆ = ๐‘ฅ3
EXAMPLE #2: Solve: ๐‘ฅ2 ๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฅ2
+ 7๐‘ฅ
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
+ 5๐‘ฆ = ๐‘ฅ5
EXAMPLE #3: Solve: ๐‘ฅ2 ๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฅ2
โˆ’ 3๐‘ฅ
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
+ 5๐‘ฆ = sin(๐‘™๐‘›๐‘ฅ)
EXAMPLE #4: Solve: ๐‘ฅ3
๐‘ฆโ€ฒโ€ฒโ€ฒ
+ 2๐‘ฅ2
๐‘ฆโ€ฒโ€ฒ
+ ๐‘ฅ๐‘ฆโ€ฒ
โˆ’ ๐‘ฆ = 15๐‘๐‘œ๐‘ (๐‘™๐‘›๐‘ฅ)

differential equation Lecture#14

  • 1.
    DIFFERENTIAL EQUATION (MT-202)SYED AZEEM INAM DIFFERENTIAL EQUATION (MT-202) LECTURE #14 CAUCHY-EULER EQUATION: The equation of the form ๐‘Ž0 ๐‘ฅ ๐‘› ๐‘‘ ๐‘› ๐‘ฆ ๐‘‘๐‘ฅ ๐‘› + ๐‘Ž1 ๐‘ฅ ๐‘›โˆ’1 ๐‘‘ ๐‘›โˆ’1 ๐‘ฆ ๐‘‘๐‘ฅ ๐‘›โˆ’1 + โ‹ฏ + ๐‘Ž ๐‘›โˆ’1 ๐‘ฅ ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ + ๐‘Ž ๐‘› ๐‘ฆ = ๐น(๐‘ฅ) Is called Cauchy-Euler equation or equi-dimensional equation. The equation can be reduced to a linear differential equation with constant coefficients by the transformation ๐‘ฅ = ๐‘’ ๐‘ก ๐‘œ๐‘Ÿ ๐‘ฆ = ๐‘™๐‘›๐‘ฅ EXAMPLE #1: Solve: ๐‘ฅ2 ๐‘‘2 ๐‘ฆ ๐‘‘๐‘ฅ2 โˆ’ 2๐‘ฅ ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ + 2๐‘ฆ = ๐‘ฅ3 EXAMPLE #2: Solve: ๐‘ฅ2 ๐‘‘2 ๐‘ฆ ๐‘‘๐‘ฅ2 + 7๐‘ฅ ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ + 5๐‘ฆ = ๐‘ฅ5 EXAMPLE #3: Solve: ๐‘ฅ2 ๐‘‘2 ๐‘ฆ ๐‘‘๐‘ฅ2 โˆ’ 3๐‘ฅ ๐‘‘๐‘ฆ ๐‘‘๐‘ฅ + 5๐‘ฆ = sin(๐‘™๐‘›๐‘ฅ) EXAMPLE #4: Solve: ๐‘ฅ3 ๐‘ฆโ€ฒโ€ฒโ€ฒ + 2๐‘ฅ2 ๐‘ฆโ€ฒโ€ฒ + ๐‘ฅ๐‘ฆโ€ฒ โˆ’ ๐‘ฆ = 15๐‘๐‘œ๐‘ (๐‘™๐‘›๐‘ฅ)