Data Types in
Python
Understanding Python's Built-in Data Types
Your Name
Date
Introduction to Data Types
 - What are data types?
 - Importance of data types in programming
 - Python is dynamically typed
 - Data types determine the kind of operations possible
Numeric Data Types
 - int – Integer numbers (e.g., 5, -10)
 - float – Floating point numbers (e.g., 3.14, -0.001)
 - complex – Complex numbers (e.g., 3+5j)
 Example:
 a = 10
 b = 3.5
 c = 2 + 3j
String Data Type
 - Text data enclosed in quotes
 - Immutable sequences of characters
 - String operations: slicing, concatenation, repetition
 Example:
 name = "Python"
 print(name[0]) # Output: P
Boolean Data Type
 - bool: True or False
 - Used in conditional statements
 - Often results from comparison operators
 Example:
 is_valid = True
 print(5 > 3) # Output: True
List Data Type
 - Ordered, mutable collection
 - Can contain elements of different types
 - Supports indexing, slicing, appending, etc.
 Example:
 fruits = ["apple", "banana", "cherry"]
 fruits.append("mango")
Tuple Data Type
 - Ordered, immutable collection
 - Elements can't be changed
 - Uses parentheses ()
 Example:
 coordinates = (10, 20)
Set Data Type
 - Unordered, unique elements
 - Mutable but no duplicate values
 - Useful for membership tests and set operations
 Example:
 colors = {"red", "blue", "green"}
Dictionary Data Type
 - Unordered collection of key-value pairs
 - Keys must be unique and immutable
 - Uses curly braces {}
 Example:
 person = {"name": "Alice", "age": 25}
Summary
 - Python has rich and flexible data types
 - Common types: int, float, str, bool, list, tuple, set,
dict
 - Choosing the right data type is key to efficient
programming

Data_Types_in_Python_Presentation (1).pptx

  • 1.
    Data Types in Python UnderstandingPython's Built-in Data Types Your Name Date
  • 2.
    Introduction to DataTypes  - What are data types?  - Importance of data types in programming  - Python is dynamically typed  - Data types determine the kind of operations possible
  • 3.
    Numeric Data Types - int – Integer numbers (e.g., 5, -10)  - float – Floating point numbers (e.g., 3.14, -0.001)  - complex – Complex numbers (e.g., 3+5j)  Example:  a = 10  b = 3.5  c = 2 + 3j
  • 4.
    String Data Type - Text data enclosed in quotes  - Immutable sequences of characters  - String operations: slicing, concatenation, repetition  Example:  name = "Python"  print(name[0]) # Output: P
  • 5.
    Boolean Data Type - bool: True or False  - Used in conditional statements  - Often results from comparison operators  Example:  is_valid = True  print(5 > 3) # Output: True
  • 6.
    List Data Type - Ordered, mutable collection  - Can contain elements of different types  - Supports indexing, slicing, appending, etc.  Example:  fruits = ["apple", "banana", "cherry"]  fruits.append("mango")
  • 7.
    Tuple Data Type - Ordered, immutable collection  - Elements can't be changed  - Uses parentheses ()  Example:  coordinates = (10, 20)
  • 8.
    Set Data Type - Unordered, unique elements  - Mutable but no duplicate values  - Useful for membership tests and set operations  Example:  colors = {"red", "blue", "green"}
  • 9.
    Dictionary Data Type - Unordered collection of key-value pairs  - Keys must be unique and immutable  - Uses curly braces {}  Example:  person = {"name": "Alice", "age": 25}
  • 10.
    Summary  - Pythonhas rich and flexible data types  - Common types: int, float, str, bool, list, tuple, set, dict  - Choosing the right data type is key to efficient programming