SlideShare a Scribd company logo
BỘ GIÁO DỤC VÀ ĐÀO TẠO
ĐỀ CHÍNH THỨC
ĐÁP ÁN - THANG ĐIỂM
ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008
Môn: TOÁN, khối D
(Đáp án - Thang điểm gồm 04 trang)
Nội dungCâu Điểm
I 2,00
1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1,00 điểm)
• Tập xác định : D = .
• Sự biến thiên : ,2
y' 3x 6x= −
x 0
y' 0
x 2
=⎡
= ⇔ ⎢ =⎣ .
0,25
• yCĐ = ( ) ( )CTy 0 4, y y 2 0.= = = 0,25
• Bảng biến thiên :
0,25
• Đồ thị :
Trang 1/4
0,25
2 Chứng minh rằng mọi đường thẳng … (1,00 điểm)
Gọi là đồ thị hàm số (1). Ta thấy thuộc Đường thẳng d đi
qua với hệ số góc k (k > – 3) có phương trình : y = kx – k + 2.
(C) I(1;2) (C).
I(1;2)
Hoành độ giao điểm của và d là nghiệm của phương trình(C)
3 2
x 3x 4 k(x 1) 2− + = − + ⇔ 2
(x 1) x 2x (k 2) 0⎡ ⎤− − − + =⎣ ⎦
⇔ 2
x 1
x 2x (k 2) 0 (*)
=⎡
⎢
− − + =⎣ .
0,50
Do nên phương trình (*) có biệt thức Δ = và không
là nghiệm của (*). Suy ra d luôn cắt tại ba điểm phân biệt I(
với là nghiệm của (*).
k > −
x −∞ 0 2 +∞
y’ + 0 − 0
y
4
0−∞
+
+∞
4
−1
O
y
2 x
(ứng với giao điểm I)
3 + >
x ;y ),
I
' 3 k 0 x 1=
(C) I I
A A B BA(x ;y ),B(x ;y ) A Bx ,x
Vì và I, A, B cùng thuộc d nên I là trung điểm của đoạn
thẳng AB (đpcm).
A Bx x 2 2x+ = =
0,50
II 2,00
1 Giải phương trình lượng giác (1,00 điểm)
Phương trình đã cho tương đương với
2
4sinx cos x sin2x = 1 + 2cosx+ ⇔ (2cosx 1)(sin2x 1) 0.+ − =
0,50
1 2
cosx x k2 .
2 3
π
• = − ⇔ = ± + π
sin2x 1 x k .
4
π
• = ⇔ = + π
Nghiệm của phương trình đã cho là
2
x k2 ,
3
π
= ± + π x k
4
π
= + ).∈π (k
0,50
2 Giải hệ phương trình (1,00 điểm)
Điều kiện : x ≥ 1, y ≥ 0.
Hệ phương trình đã cho tương đương với
(x y)(x 2y 1) 0 (1)
x 2y y x 1 2x 2y (2)
+ − − =⎧⎪
⎨
− − = −⎪⎩
Từ điều kiện ta có x + y > 0 nên (1) ⇔ x = 2y + 1 (3).
Trang 2/4
0,50
Thay (3) vào (2) ta được
(y 1) 2y 2(y 1)+ = + ⇔ y = 2 (do ) ⇒ x = 5.y 1 0+ >
Nghiệm của hệ là (x;y) (5;2).=
0,50
III 2,00
1 Viết phương trình mặt cầu đi qua các điểm A, B, C, D (1,00 điểm)
Phương trình mặt cầu cần tìm có dạng
trong đó2 2 2
x y z 2ax 2by 2cz d 0 (*),+ + + + + + = 2 2 2
a b c d 0 (**).+ + − >
Thay tọa độ của các điểm A, B, C, D vào (*) ta được hệ phương trình
6a 6b d 18
6a 6c d 18
6b 6c d 18
6a 6b 6c d 27.
+ + = −⎧
⎪ + + = −⎪
⎨
+ + = −⎪
⎪ + + + = −⎩
0,50
Giải hệ trên và đối chiếu với điều kiện (**) ta được phương trình mặt cầu là
2 2 2
x y z 3x 3y 3z = 0.+ + − − −
0,50
2 Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC (1,00 điểm)
Mặt cầu đi qua A, B, C, D có tâm
3 3 3
I ; ;
2 2 2
⎛ ⎞
⎜ ⎟
⎝ ⎠
.
Gọi phương trình mặt phẳng đi qua ba điểm A, B, C là
mx ny pz q 0+ + + = 2 2 2
(m n p 0).+ + >
Thay tọa độ các điểm A, B, C vào phương trình trên ta được
3m 3n q 0
3m 3p q 0 6m 6n 6p q 0.
3n 3p q 0.
+ + =⎧
⎪
+ + = ⇒ = = = − ≠⎨
⎪ + + =⎩
Do đó phương trình mặt phẳng (ABC) là x y z 6 0.+ + − =
0,50
Tâm đường tròn ngoại tiếp tam giác ABC chính là hình chiếu vuông góc
của điểm I trên mặt phẳng (ABC).
H
Phương trình đường thẳng IH :
3 3
x y z
2 2 .
1 1 1
− − −
= =
3
2
Tọa độ điểm H là nghiệm của hệ phương trình
x y z 6 0
3 3
x y z
2 2
+ + − =⎧
⎪
⎨
− = − = −⎪⎩
3
.
2
Giải hệ trên ta được H(2;2;2).
0,50
IV 2,00
1 Tính tích phân (1,00 điểm)
Đặt vàu ln x= 3
dx
dv
x
=
dx
du
x
⇒ = và 2
1
v .
2x
= − 0,25
Khi đó
2 2
2 3
1 1
ln x dx
I
2x 2x
= − + ∫
2
2
1
ln 2 1
8 4x
= − − 0,50
3 2ln 2
.
16
−
= 0,25
2 Tìm giá trị lớn nhất và nhỏ nhất của biểu thức (1,00 điểm)
Ta có
[ ]
22 2
(x y)(1 xy) (x y)(1 xy) 1 1 1
P P
(1 x) (1 y) 4 4 4(x y) (1 xy)
− − + +
= ≤ ≤ ⇔ − ≤
+ + + + +
Trang 3/4
.≤ 0,50
• Khi thìx 0,y 1= =
1
P .
4
= −
• Khi thìx 1,y 0= =
1
P .
4
=
Giá trị nhỏ nhất của P bằng
1
,
4
− giá trị lớn nhất của P bằng
1
.
4
0,50
V.a 2,00
1 Tìm n biết rằng…(1,00)
Ta có 2n 0 1 2n 1 2n
2n 2n 2n 2n0 (1 1) C C ... C C .−
= − = − + − +
2n 2n 0 1 2n 1 2n
2n 2n 2n 2n2 (1 1) C C ... C C .−
= + = + + + +
0,50
⇒ 1 3 2n 1 2n
2n 2n 2nC C ... C 2 .− −
+ + + = 1
6.Từ giả thiết suy ra 2n 1
2 2048 n−
= ⇔ =
0,50
2 Tìm tọa độ đỉnh C ...(1,00 điểm)
Do B,C thuộc (P), B khác C, B và C khác A nên
2
b
B( ;b),
16
2
c
C( ;c)
16
với b, c
là hai số thực phân biệt, b 4≠ và c 4.≠
2 2
b c
AB 1;b 4 , AC 1;c 4 .
16 16
⎛ ⎞ ⎛
= − − = − −⎜ ⎟ ⎜
⎝ ⎠ ⎝
⎞
⎟
⎠
Góc nêno
BAC 90=
AB.AC 0= ⇔
2 2
b c
1 1 (b 4)(c 4)
16 16
⎛ ⎞⎛ ⎞
− − + − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
0=
⇔ (1).272 4(b c) bc 0+ + + =
0,50
Phương trình đường thẳng BC là:
2
2 2
c
x
y c16
b c b c
16 16
−
−
=
−
−
16x (b c)y bc 0⇔ − + + = (2).
Từ (1), (2) suy ra đường thẳng BC luôn đi qua điểm cố định I(17; 4).−
0,50
V.b 2,00
1 Giải bất phương trình logarit (1,00 điểm)
Bpt đã cho tương đương với
2
x 3x 2
0 1
x
− +
< ≤ . 0,50
2
0 x 1x 3x 2
0
x 2.x
< <⎡− +
• > ⇔ ⎢ >⎣
2 x 0x 4x 2
0
x 2 2 x 2 2
<⎡− +
• ≤ ⇔ ⎢
− ≤ ≤ +⎣ .
Tập nghiệm của bất phương trình là : ) (2 2 ;1 2;2 2 .⎡ ⎤− ∪ +⎣ ⎦
0,50
2 Tính thể tích khối lăng trụ và khoảng cách giữa hai đường thẳng (1,00 điểm)
Từ giả thiết suy ra tam giác ABC vuông cân tại B.
Thể tích khối lăng trụ là 2 3
ABC.A'B'C' ABC
1 2
V AA'.S a 2. .a
2 2
= = =
Trang 4/4
a (đvtt).
0,50
A'
B'
B
M
E
C
A
C'
Gọi E là trung điểm của BB Khi đó mặt phẳng (AME) song song với
nên khoảng cách giữa hai đường thẳng AM, bằng khoảng cách giữa
và mặt phẳng (AME).
'. B'C
B'C
B'C
Nhận thấy khoảng cách từ B đến mặt phẳng (AME) bằng khoảng cách từ C
đến mặt phẳng (AME).
Gọi h là khoảng cách từ B đến mặt phẳng (AME). Do tứ diện BAME có BA,
BM, BE đôi một vuông góc nên
0,50
2 2 2 2
1 1 1 1
h BA BM BE
= + + 2 2 2 2
1 1 4 2
h a a a
= + + = 2
7
a
a 7
h .
7
⇒ =⇒
a 7
.
7
Khoảng cách giữa hai đường thẳng và AM bằngB'C
NÕu thÝ sinh lµm bµi kh«ng theo c¸ch nªu trong ®¸p ¸n mµ vÉn ®óng th× ®−îc ®ñ ®iÓm tõng phÇn
nh− ®¸p ¸n quy ®Þnh.
----------------Hết----------------

More Related Content

What's hot

Đề Thi tuyển sinh vào 10 năm 2012 hải dương
Đề Thi tuyển sinh vào 10 năm 2012 hải dươngĐề Thi tuyển sinh vào 10 năm 2012 hải dương
Đề Thi tuyển sinh vào 10 năm 2012 hải dương
diemthic3
 
Khoi d.2011
Khoi d.2011Khoi d.2011
Khoi d.2011
BẢO Hí
 
Tổng hợp kiến thức và bài tập toán lớp 9
Tổng hợp kiến thức và bài tập toán lớp 9Tổng hợp kiến thức và bài tập toán lớp 9
Tổng hợp kiến thức và bài tập toán lớp 9
Vòng Dâu Tằm Việt Nam
 
Cực trị của hàm số, ôn thi đại học môn toán
Cực trị của hàm số, ôn thi đại học môn toánCực trị của hàm số, ôn thi đại học môn toán
Cực trị của hàm số, ôn thi đại học môn toán
hai tran
 
Toan pt.de049.2010
Toan pt.de049.2010Toan pt.de049.2010
Toan pt.de049.2010
BẢO Hí
 
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...
Megabook
 
Mathvn.com 11. toan tran phu lan 12014
Mathvn.com   11. toan tran phu lan 12014Mathvn.com   11. toan tran phu lan 12014
Mathvn.com 11. toan tran phu lan 12014
Miễn Cưỡng
 
De thi-dap-an-tuyen-sinh-vao-lop-10-mon-toan-tinh-hai-duong
De thi-dap-an-tuyen-sinh-vao-lop-10-mon-toan-tinh-hai-duongDe thi-dap-an-tuyen-sinh-vao-lop-10-mon-toan-tinh-hai-duong
De thi-dap-an-tuyen-sinh-vao-lop-10-mon-toan-tinh-hai-duong
Linh Nguyễn
 
Dap an chi tiet cao dang tu 2002-2004
Dap an chi tiet  cao dang tu  2002-2004Dap an chi tiet  cao dang tu  2002-2004
Dap an chi tiet cao dang tu 2002-2004
Thiên Đường Tình Yêu
 
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3
dlinh123
 
ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2012 Môn: TOÁN; Khối A, Khối A1, Khối B và Kh...
ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2012  Môn: TOÁN; Khối A, Khối A1, Khối B và Kh...ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2012  Môn: TOÁN; Khối A, Khối A1, Khối B và Kh...
ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2012 Môn: TOÁN; Khối A, Khối A1, Khối B và Kh...
Anh Pham Duy
 
Toan pt.de051.2012
Toan pt.de051.2012Toan pt.de051.2012
Toan pt.de051.2012BẢO Hí
 
Các dạng bài toán liên quan đến Khảo sát hàm số
Các dạng bài toán liên quan đến Khảo sát hàm số Các dạng bài toán liên quan đến Khảo sát hàm số
Các dạng bài toán liên quan đến Khảo sát hàm số
hai tran
 
Toan pt.de083.2012
Toan pt.de083.2012Toan pt.de083.2012
Toan pt.de083.2012BẢO Hí
 
Đề Thi HK2 Toán 9 - THCS An Nhơn Tây
Đề Thi HK2 Toán 9 - THCS  An Nhơn TâyĐề Thi HK2 Toán 9 - THCS  An Nhơn Tây
Đề Thi HK2 Toán 9 - THCS An Nhơn Tây
Trung Tâm Gia Sư Việt Trí
 
De va dap an thi thu lan 01 2015 khoi a a1
De va dap an thi thu lan 01 2015 khoi a a1De va dap an thi thu lan 01 2015 khoi a a1
De va dap an thi thu lan 01 2015 khoi a a1
Đăng Hoàng
 
Khoi a.2011
Khoi a.2011Khoi a.2011
Khoi a.2011
BẢO Hí
 

What's hot (18)

Đề Thi tuyển sinh vào 10 năm 2012 hải dương
Đề Thi tuyển sinh vào 10 năm 2012 hải dươngĐề Thi tuyển sinh vào 10 năm 2012 hải dương
Đề Thi tuyển sinh vào 10 năm 2012 hải dương
 
Khoi d.2011
Khoi d.2011Khoi d.2011
Khoi d.2011
 
Da toan a-cd
Da toan a-cdDa toan a-cd
Da toan a-cd
 
Tổng hợp kiến thức và bài tập toán lớp 9
Tổng hợp kiến thức và bài tập toán lớp 9Tổng hợp kiến thức và bài tập toán lớp 9
Tổng hợp kiến thức và bài tập toán lớp 9
 
Cực trị của hàm số, ôn thi đại học môn toán
Cực trị của hàm số, ôn thi đại học môn toánCực trị của hàm số, ôn thi đại học môn toán
Cực trị của hàm số, ôn thi đại học môn toán
 
Toan pt.de049.2010
Toan pt.de049.2010Toan pt.de049.2010
Toan pt.de049.2010
 
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...
Đề thi thử ĐH và đáp án môn Toán học lần 2 (2013) trường THPT chuyên Nguyễn H...
 
Mathvn.com 11. toan tran phu lan 12014
Mathvn.com   11. toan tran phu lan 12014Mathvn.com   11. toan tran phu lan 12014
Mathvn.com 11. toan tran phu lan 12014
 
De thi-dap-an-tuyen-sinh-vao-lop-10-mon-toan-tinh-hai-duong
De thi-dap-an-tuyen-sinh-vao-lop-10-mon-toan-tinh-hai-duongDe thi-dap-an-tuyen-sinh-vao-lop-10-mon-toan-tinh-hai-duong
De thi-dap-an-tuyen-sinh-vao-lop-10-mon-toan-tinh-hai-duong
 
Dap an chi tiet cao dang tu 2002-2004
Dap an chi tiet  cao dang tu  2002-2004Dap an chi tiet  cao dang tu  2002-2004
Dap an chi tiet cao dang tu 2002-2004
 
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3
Đề thi thử Toán - Chuyên Nguyễn Huệ 2014 lần 3
 
ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2012 Môn: TOÁN; Khối A, Khối A1, Khối B và Kh...
ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2012  Môn: TOÁN; Khối A, Khối A1, Khối B và Kh...ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2012  Môn: TOÁN; Khối A, Khối A1, Khối B và Kh...
ĐỀ THI TUYỂN SINH CAO ĐẲNG NĂM 2012 Môn: TOÁN; Khối A, Khối A1, Khối B và Kh...
 
Toan pt.de051.2012
Toan pt.de051.2012Toan pt.de051.2012
Toan pt.de051.2012
 
Các dạng bài toán liên quan đến Khảo sát hàm số
Các dạng bài toán liên quan đến Khảo sát hàm số Các dạng bài toán liên quan đến Khảo sát hàm số
Các dạng bài toán liên quan đến Khảo sát hàm số
 
Toan pt.de083.2012
Toan pt.de083.2012Toan pt.de083.2012
Toan pt.de083.2012
 
Đề Thi HK2 Toán 9 - THCS An Nhơn Tây
Đề Thi HK2 Toán 9 - THCS  An Nhơn TâyĐề Thi HK2 Toán 9 - THCS  An Nhơn Tây
Đề Thi HK2 Toán 9 - THCS An Nhơn Tây
 
De va dap an thi thu lan 01 2015 khoi a a1
De va dap an thi thu lan 01 2015 khoi a a1De va dap an thi thu lan 01 2015 khoi a a1
De va dap an thi thu lan 01 2015 khoi a a1
 
Khoi a.2011
Khoi a.2011Khoi a.2011
Khoi a.2011
 

Viewers also liked

Intervento Marco Treichler Direttore SCuDo
Intervento Marco Treichler Direttore SCuDoIntervento Marco Treichler Direttore SCuDo
Intervento Marco Treichler Direttore SCuDo
Margherita Maffeis
 
2 Grado
2 Grado2 Grado
2 Grado
guest9ffa658
 
Juan cayambe
Juan cayambeJuan cayambe
Juan cayambe
089119321
 
PR in socialna omrežja - mira črešnar
PR in socialna omrežja - mira črešnarPR in socialna omrežja - mira črešnar
PR in socialna omrežja - mira črešnar
Rotary Slovenija
 
Ascolto e scrittura
Ascolto e scritturaAscolto e scrittura
Ascolto e scrittura
Anna Turchet
 
Argon Academy
Argon AcademyArgon Academy
Argon AcademyAlessio_
 
Voluntariado WiT Perú - v1
Voluntariado WiT Perú - v1Voluntariado WiT Perú - v1
Voluntariado WiT Perú - v1
witperu
 
Interrogazionebiondelli e risposta fazio
Interrogazionebiondelli e risposta fazioInterrogazionebiondelli e risposta fazio
Interrogazionebiondelli e risposta fazio
penelope61
 
Syllabus 320132108
Syllabus 320132108Syllabus 320132108
Syllabus 320132108
ing_eliali4748
 
1) 6 12 anni versione tutto insieme
1) 6   12 anni versione tutto insieme1) 6   12 anni versione tutto insieme
1) 6 12 anni versione tutto insiemeimartini
 
Gregor Virant - Miha Brejc
Gregor Virant - Miha BrejcGregor Virant - Miha Brejc
Gregor Virant - Miha Brejc
Lom Buchela
 
TWT Trendradar: FingerReader liest laut vor
TWT Trendradar: FingerReader liest laut vor TWT Trendradar: FingerReader liest laut vor
TWT Trendradar: FingerReader liest laut vor
TWT
 
Img 20140606 091305_397
Img 20140606 091305_397Img 20140606 091305_397
Img 20140606 091305_397Cindy Cowan
 
LUH Beamer
LUH BeamerLUH Beamer
LUH Beamer
Hirwanto Iwan
 
Artifact #5 Jean Piaget PP
Artifact #5 Jean Piaget PPArtifact #5 Jean Piaget PP
Artifact #5 Jean Piaget PP
Aly Coker
 
Information signage
Information signageInformation signage
Information signageEvon Coleman
 
Blue roses
Blue rosesBlue roses
Blue roses
Josephine Cañada
 
Pps berlusconi e_il_diavolo
Pps berlusconi e_il_diavoloPps berlusconi e_il_diavolo
Pps berlusconi e_il_diavolo
Antonio Nini
 

Viewers also liked (20)

Intervento Marco Treichler Direttore SCuDo
Intervento Marco Treichler Direttore SCuDoIntervento Marco Treichler Direttore SCuDo
Intervento Marco Treichler Direttore SCuDo
 
2 Grado
2 Grado2 Grado
2 Grado
 
Juan cayambe
Juan cayambeJuan cayambe
Juan cayambe
 
PR in socialna omrežja - mira črešnar
PR in socialna omrežja - mira črešnarPR in socialna omrežja - mira črešnar
PR in socialna omrežja - mira črešnar
 
Ascolto e scrittura
Ascolto e scritturaAscolto e scrittura
Ascolto e scrittura
 
Argon Academy
Argon AcademyArgon Academy
Argon Academy
 
Voluntariado WiT Perú - v1
Voluntariado WiT Perú - v1Voluntariado WiT Perú - v1
Voluntariado WiT Perú - v1
 
Interrogazionebiondelli e risposta fazio
Interrogazionebiondelli e risposta fazioInterrogazionebiondelli e risposta fazio
Interrogazionebiondelli e risposta fazio
 
Syllabus 320132108
Syllabus 320132108Syllabus 320132108
Syllabus 320132108
 
1) 6 12 anni versione tutto insieme
1) 6   12 anni versione tutto insieme1) 6   12 anni versione tutto insieme
1) 6 12 anni versione tutto insieme
 
Energeticamente
EnergeticamenteEnergeticamente
Energeticamente
 
Gregor Virant - Miha Brejc
Gregor Virant - Miha BrejcGregor Virant - Miha Brejc
Gregor Virant - Miha Brejc
 
TWT Trendradar: FingerReader liest laut vor
TWT Trendradar: FingerReader liest laut vor TWT Trendradar: FingerReader liest laut vor
TWT Trendradar: FingerReader liest laut vor
 
Img 20140606 091305_397
Img 20140606 091305_397Img 20140606 091305_397
Img 20140606 091305_397
 
LUH Beamer
LUH BeamerLUH Beamer
LUH Beamer
 
Osn hitung
Osn hitungOsn hitung
Osn hitung
 
Artifact #5 Jean Piaget PP
Artifact #5 Jean Piaget PPArtifact #5 Jean Piaget PP
Artifact #5 Jean Piaget PP
 
Information signage
Information signageInformation signage
Information signage
 
Blue roses
Blue rosesBlue roses
Blue roses
 
Pps berlusconi e_il_diavolo
Pps berlusconi e_il_diavoloPps berlusconi e_il_diavolo
Pps berlusconi e_il_diavolo
 

Similar to Da toan d_2

Tai lieu luyen thi mon toan de thi dh mon toan khoi d - nam 2008
Tai lieu luyen thi mon toan   de thi dh mon toan khoi d - nam 2008Tai lieu luyen thi mon toan   de thi dh mon toan khoi d - nam 2008
Tai lieu luyen thi mon toan de thi dh mon toan khoi d - nam 2008
Trungtâmluyệnthi Qsc
 
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Jo Calderone
 
BỘ ĐỀ THI QUỐC GIA DANAMATH
BỘ ĐỀ THI QUỐC GIA DANAMATHBỘ ĐỀ THI QUỐC GIA DANAMATH
BỘ ĐỀ THI QUỐC GIA DANAMATH
DANAMATH
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
Trungtâmluyệnthi Qsc
 
Toan pt.de025.2011
Toan pt.de025.2011Toan pt.de025.2011
Toan pt.de025.2011BẢO Hí
 
De thi thu dai hoc so 88
De thi thu dai hoc so 88De thi thu dai hoc so 88
De thi thu dai hoc so 88
Trần Văn Khoa Tieuphong
 
Toan pt.de049.2012
Toan pt.de049.2012Toan pt.de049.2012
Toan pt.de049.2012BẢO Hí
 
Toan pt.de046.2012
Toan pt.de046.2012Toan pt.de046.2012
Toan pt.de046.2012BẢO Hí
 
Khoi a.2010
Khoi a.2010Khoi a.2010
Khoi a.2010
BẢO Hí
 
Toan pt.de031.2010
Toan pt.de031.2010Toan pt.de031.2010
Toan pt.de031.2010
BẢO Hí
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009Trungtâmluyệnthi Qsc
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009Trungtâmluyệnthi Qsc
 
[Vnmath.com] de-thi-lan5-chuyen-vinhphuc-a
[Vnmath.com] de-thi-lan5-chuyen-vinhphuc-a[Vnmath.com] de-thi-lan5-chuyen-vinhphuc-a
[Vnmath.com] de-thi-lan5-chuyen-vinhphuc-a
Nam Hoài
 
Tai lieu luyen thi mon toan de thi dh mon toan khoi a - nam 2008
Tai lieu luyen thi mon toan   de thi dh mon toan khoi a - nam 2008Tai lieu luyen thi mon toan   de thi dh mon toan khoi a - nam 2008
Tai lieu luyen thi mon toan de thi dh mon toan khoi a - nam 2008
Trungtâmluyệnthi Qsc
 
3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/
Vui Lên Bạn Nhé
 
3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/
Vui Lên Bạn Nhé
 
Dap an chuan toan thptqg2015 bgd
Dap an chuan toan thptqg2015 bgdDap an chuan toan thptqg2015 bgd
Dap an chuan toan thptqg2015 bgd
kennyback209
 

Similar to Da toan d_2 (20)

Tai lieu luyen thi mon toan de thi dh mon toan khoi d - nam 2008
Tai lieu luyen thi mon toan   de thi dh mon toan khoi d - nam 2008Tai lieu luyen thi mon toan   de thi dh mon toan khoi d - nam 2008
Tai lieu luyen thi mon toan de thi dh mon toan khoi d - nam 2008
 
Da toan b_2
Da toan b_2Da toan b_2
Da toan b_2
 
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
Đề thi thử ĐH Toán Chuyên Quốc Học Huế 2014 - Khối D - Lần 1
 
BỘ ĐỀ THI QUỐC GIA DANAMATH
BỘ ĐỀ THI QUỐC GIA DANAMATHBỘ ĐỀ THI QUỐC GIA DANAMATH
BỘ ĐỀ THI QUỐC GIA DANAMATH
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2010
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2010
 
Toan pt.de025.2011
Toan pt.de025.2011Toan pt.de025.2011
Toan pt.de025.2011
 
De thi thu dai hoc so 88
De thi thu dai hoc so 88De thi thu dai hoc so 88
De thi thu dai hoc so 88
 
Toan pt.de049.2012
Toan pt.de049.2012Toan pt.de049.2012
Toan pt.de049.2012
 
Toan pt.de046.2012
Toan pt.de046.2012Toan pt.de046.2012
Toan pt.de046.2012
 
Khoi a.2010
Khoi a.2010Khoi a.2010
Khoi a.2010
 
Da toan b-cd
Da toan b-cdDa toan b-cd
Da toan b-cd
 
Toan pt.de031.2010
Toan pt.de031.2010Toan pt.de031.2010
Toan pt.de031.2010
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
 
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009Tai lieu luyen thi dai hoc   de thi dh mon toan khoi a - nam 2009
Tai lieu luyen thi dai hoc de thi dh mon toan khoi a - nam 2009
 
Da toan a
Da toan aDa toan a
Da toan a
 
[Vnmath.com] de-thi-lan5-chuyen-vinhphuc-a
[Vnmath.com] de-thi-lan5-chuyen-vinhphuc-a[Vnmath.com] de-thi-lan5-chuyen-vinhphuc-a
[Vnmath.com] de-thi-lan5-chuyen-vinhphuc-a
 
Tai lieu luyen thi mon toan de thi dh mon toan khoi a - nam 2008
Tai lieu luyen thi mon toan   de thi dh mon toan khoi a - nam 2008Tai lieu luyen thi mon toan   de thi dh mon toan khoi a - nam 2008
Tai lieu luyen thi mon toan de thi dh mon toan khoi a - nam 2008
 
3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/
 
3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/3 Đề thi thử môn toán 2015 from http://toanphothong.com/
3 Đề thi thử môn toán 2015 from http://toanphothong.com/
 
Dap an chuan toan thptqg2015 bgd
Dap an chuan toan thptqg2015 bgdDap an chuan toan thptqg2015 bgd
Dap an chuan toan thptqg2015 bgd
 

More from dominhvuong

Da toan cd_ct_14
Da toan cd_ct_14Da toan cd_ct_14
Da toan cd_ct_14dominhvuong
 
Da toan aa1_bd-cd_4
Da toan aa1_bd-cd_4Da toan aa1_bd-cd_4
Da toan aa1_bd-cd_4dominhvuong
 
Da toan aa1_bd-cd_3
Da toan aa1_bd-cd_3Da toan aa1_bd-cd_3
Da toan aa1_bd-cd_3dominhvuong
 
Da toan aa1_bd-cd_2
Da toan aa1_bd-cd_2Da toan aa1_bd-cd_2
Da toan aa1_bd-cd_2dominhvuong
 
Da toan aa1_bd-cd
Da toan aa1_bd-cdDa toan aa1_bd-cd
Da toan aa1_bd-cddominhvuong
 
Toan dh aa1_ct_14_da_2
Toan dh aa1_ct_14_da_2Toan dh aa1_ct_14_da_2
Toan dh aa1_ct_14_da_2dominhvuong
 

More from dominhvuong (8)

Da toan cd_ct_14
Da toan cd_ct_14Da toan cd_ct_14
Da toan cd_ct_14
 
Da toan b_4
Da toan b_4Da toan b_4
Da toan b_4
 
Da toan b_3
Da toan b_3Da toan b_3
Da toan b_3
 
Da toan aa1_bd-cd_4
Da toan aa1_bd-cd_4Da toan aa1_bd-cd_4
Da toan aa1_bd-cd_4
 
Da toan aa1_bd-cd_3
Da toan aa1_bd-cd_3Da toan aa1_bd-cd_3
Da toan aa1_bd-cd_3
 
Da toan aa1_bd-cd_2
Da toan aa1_bd-cd_2Da toan aa1_bd-cd_2
Da toan aa1_bd-cd_2
 
Da toan aa1_bd-cd
Da toan aa1_bd-cdDa toan aa1_bd-cd
Da toan aa1_bd-cd
 
Toan dh aa1_ct_14_da_2
Toan dh aa1_ct_14_da_2Toan dh aa1_ct_14_da_2
Toan dh aa1_ct_14_da_2
 

Da toan d_2

  • 1. BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐÁP ÁN - THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC, CAO ĐẲNG NĂM 2008 Môn: TOÁN, khối D (Đáp án - Thang điểm gồm 04 trang) Nội dungCâu Điểm I 2,00 1 Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1,00 điểm) • Tập xác định : D = . • Sự biến thiên : ,2 y' 3x 6x= − x 0 y' 0 x 2 =⎡ = ⇔ ⎢ =⎣ . 0,25 • yCĐ = ( ) ( )CTy 0 4, y y 2 0.= = = 0,25 • Bảng biến thiên : 0,25 • Đồ thị : Trang 1/4 0,25 2 Chứng minh rằng mọi đường thẳng … (1,00 điểm) Gọi là đồ thị hàm số (1). Ta thấy thuộc Đường thẳng d đi qua với hệ số góc k (k > – 3) có phương trình : y = kx – k + 2. (C) I(1;2) (C). I(1;2) Hoành độ giao điểm của và d là nghiệm của phương trình(C) 3 2 x 3x 4 k(x 1) 2− + = − + ⇔ 2 (x 1) x 2x (k 2) 0⎡ ⎤− − − + =⎣ ⎦ ⇔ 2 x 1 x 2x (k 2) 0 (*) =⎡ ⎢ − − + =⎣ . 0,50 Do nên phương trình (*) có biệt thức Δ = và không là nghiệm của (*). Suy ra d luôn cắt tại ba điểm phân biệt I( với là nghiệm của (*). k > − x −∞ 0 2 +∞ y’ + 0 − 0 y 4 0−∞ + +∞ 4 −1 O y 2 x (ứng với giao điểm I) 3 + > x ;y ), I ' 3 k 0 x 1= (C) I I A A B BA(x ;y ),B(x ;y ) A Bx ,x Vì và I, A, B cùng thuộc d nên I là trung điểm của đoạn thẳng AB (đpcm). A Bx x 2 2x+ = = 0,50 II 2,00 1 Giải phương trình lượng giác (1,00 điểm) Phương trình đã cho tương đương với 2 4sinx cos x sin2x = 1 + 2cosx+ ⇔ (2cosx 1)(sin2x 1) 0.+ − = 0,50 1 2 cosx x k2 . 2 3 π • = − ⇔ = ± + π sin2x 1 x k . 4 π • = ⇔ = + π Nghiệm của phương trình đã cho là 2 x k2 , 3 π = ± + π x k 4 π = + ).∈π (k 0,50
  • 2. 2 Giải hệ phương trình (1,00 điểm) Điều kiện : x ≥ 1, y ≥ 0. Hệ phương trình đã cho tương đương với (x y)(x 2y 1) 0 (1) x 2y y x 1 2x 2y (2) + − − =⎧⎪ ⎨ − − = −⎪⎩ Từ điều kiện ta có x + y > 0 nên (1) ⇔ x = 2y + 1 (3). Trang 2/4 0,50 Thay (3) vào (2) ta được (y 1) 2y 2(y 1)+ = + ⇔ y = 2 (do ) ⇒ x = 5.y 1 0+ > Nghiệm của hệ là (x;y) (5;2).= 0,50 III 2,00 1 Viết phương trình mặt cầu đi qua các điểm A, B, C, D (1,00 điểm) Phương trình mặt cầu cần tìm có dạng trong đó2 2 2 x y z 2ax 2by 2cz d 0 (*),+ + + + + + = 2 2 2 a b c d 0 (**).+ + − > Thay tọa độ của các điểm A, B, C, D vào (*) ta được hệ phương trình 6a 6b d 18 6a 6c d 18 6b 6c d 18 6a 6b 6c d 27. + + = −⎧ ⎪ + + = −⎪ ⎨ + + = −⎪ ⎪ + + + = −⎩ 0,50 Giải hệ trên và đối chiếu với điều kiện (**) ta được phương trình mặt cầu là 2 2 2 x y z 3x 3y 3z = 0.+ + − − − 0,50 2 Tìm tọa độ tâm đường tròn ngoại tiếp tam giác ABC (1,00 điểm) Mặt cầu đi qua A, B, C, D có tâm 3 3 3 I ; ; 2 2 2 ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ . Gọi phương trình mặt phẳng đi qua ba điểm A, B, C là mx ny pz q 0+ + + = 2 2 2 (m n p 0).+ + > Thay tọa độ các điểm A, B, C vào phương trình trên ta được 3m 3n q 0 3m 3p q 0 6m 6n 6p q 0. 3n 3p q 0. + + =⎧ ⎪ + + = ⇒ = = = − ≠⎨ ⎪ + + =⎩ Do đó phương trình mặt phẳng (ABC) là x y z 6 0.+ + − = 0,50 Tâm đường tròn ngoại tiếp tam giác ABC chính là hình chiếu vuông góc của điểm I trên mặt phẳng (ABC). H Phương trình đường thẳng IH : 3 3 x y z 2 2 . 1 1 1 − − − = = 3 2 Tọa độ điểm H là nghiệm của hệ phương trình x y z 6 0 3 3 x y z 2 2 + + − =⎧ ⎪ ⎨ − = − = −⎪⎩ 3 . 2 Giải hệ trên ta được H(2;2;2). 0,50 IV 2,00 1 Tính tích phân (1,00 điểm) Đặt vàu ln x= 3 dx dv x = dx du x ⇒ = và 2 1 v . 2x = − 0,25 Khi đó 2 2 2 3 1 1 ln x dx I 2x 2x = − + ∫ 2 2 1 ln 2 1 8 4x = − − 0,50 3 2ln 2 . 16 − = 0,25
  • 3. 2 Tìm giá trị lớn nhất và nhỏ nhất của biểu thức (1,00 điểm) Ta có [ ] 22 2 (x y)(1 xy) (x y)(1 xy) 1 1 1 P P (1 x) (1 y) 4 4 4(x y) (1 xy) − − + + = ≤ ≤ ⇔ − ≤ + + + + + Trang 3/4 .≤ 0,50 • Khi thìx 0,y 1= = 1 P . 4 = − • Khi thìx 1,y 0= = 1 P . 4 = Giá trị nhỏ nhất của P bằng 1 , 4 − giá trị lớn nhất của P bằng 1 . 4 0,50 V.a 2,00 1 Tìm n biết rằng…(1,00) Ta có 2n 0 1 2n 1 2n 2n 2n 2n 2n0 (1 1) C C ... C C .− = − = − + − + 2n 2n 0 1 2n 1 2n 2n 2n 2n 2n2 (1 1) C C ... C C .− = + = + + + + 0,50 ⇒ 1 3 2n 1 2n 2n 2n 2nC C ... C 2 .− − + + + = 1 6.Từ giả thiết suy ra 2n 1 2 2048 n− = ⇔ = 0,50 2 Tìm tọa độ đỉnh C ...(1,00 điểm) Do B,C thuộc (P), B khác C, B và C khác A nên 2 b B( ;b), 16 2 c C( ;c) 16 với b, c là hai số thực phân biệt, b 4≠ và c 4.≠ 2 2 b c AB 1;b 4 , AC 1;c 4 . 16 16 ⎛ ⎞ ⎛ = − − = − −⎜ ⎟ ⎜ ⎝ ⎠ ⎝ ⎞ ⎟ ⎠ Góc nêno BAC 90= AB.AC 0= ⇔ 2 2 b c 1 1 (b 4)(c 4) 16 16 ⎛ ⎞⎛ ⎞ − − + − −⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ 0= ⇔ (1).272 4(b c) bc 0+ + + = 0,50 Phương trình đường thẳng BC là: 2 2 2 c x y c16 b c b c 16 16 − − = − − 16x (b c)y bc 0⇔ − + + = (2). Từ (1), (2) suy ra đường thẳng BC luôn đi qua điểm cố định I(17; 4).− 0,50 V.b 2,00 1 Giải bất phương trình logarit (1,00 điểm) Bpt đã cho tương đương với 2 x 3x 2 0 1 x − + < ≤ . 0,50 2 0 x 1x 3x 2 0 x 2.x < <⎡− + • > ⇔ ⎢ >⎣ 2 x 0x 4x 2 0 x 2 2 x 2 2 <⎡− + • ≤ ⇔ ⎢ − ≤ ≤ +⎣ . Tập nghiệm của bất phương trình là : ) (2 2 ;1 2;2 2 .⎡ ⎤− ∪ +⎣ ⎦ 0,50
  • 4. 2 Tính thể tích khối lăng trụ và khoảng cách giữa hai đường thẳng (1,00 điểm) Từ giả thiết suy ra tam giác ABC vuông cân tại B. Thể tích khối lăng trụ là 2 3 ABC.A'B'C' ABC 1 2 V AA'.S a 2. .a 2 2 = = = Trang 4/4 a (đvtt). 0,50 A' B' B M E C A C' Gọi E là trung điểm của BB Khi đó mặt phẳng (AME) song song với nên khoảng cách giữa hai đường thẳng AM, bằng khoảng cách giữa và mặt phẳng (AME). '. B'C B'C B'C Nhận thấy khoảng cách từ B đến mặt phẳng (AME) bằng khoảng cách từ C đến mặt phẳng (AME). Gọi h là khoảng cách từ B đến mặt phẳng (AME). Do tứ diện BAME có BA, BM, BE đôi một vuông góc nên 0,50 2 2 2 2 1 1 1 1 h BA BM BE = + + 2 2 2 2 1 1 4 2 h a a a = + + = 2 7 a a 7 h . 7 ⇒ =⇒ a 7 . 7 Khoảng cách giữa hai đường thẳng và AM bằngB'C NÕu thÝ sinh lµm bµi kh«ng theo c¸ch nªu trong ®¸p ¸n mµ vÉn ®óng th× ®−îc ®ñ ®iÓm tõng phÇn nh− ®¸p ¸n quy ®Þnh. ----------------Hết----------------