SlideShare a Scribd company logo
1 of 106
Download to read offline
Belief Propagation     Relaxations      MAP-MRF LP      Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions




                     Higher Order Models in Computer Vision:
                                   Inference

                                          Carsten Rother, Sebastian Nowozin

                                               Machine Learning and Perception Group
                                                  Microsoft Research Cambridge


                                              San Francisco, 18th June 2010




Carsten Rother, Sebastian Nowozin                                                                         Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Belief Propagation



Belief Propagation Reminder

             Sum-product belief propagation                                                         rF →Yi
             Max-product/Max-sum/Min-sum belief
                                                                                      .
                                                                                      .                                Yi          .
                                                                                                                                   .
             propagation                                                                             qYi →F
                                                                                             F

     Uses
             Messages: vectors at the factor graph
             edges
                     qYi →F ∈ RYi , the variable-to-factor
                     message, and
                     rF →Yi ∈ RYi , the factor-to-variable
                     message.
             Updates: iteratively recomputing these
             vectors


Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP         Lagrangian Relaxation   Dual Decomposition     Polyhedral Higher-order Interactions

Belief Propagation



Belief Propagation Reminder: Min-Sum Updates (cont)

     Variable-to-factor message
                                                                                                        rA→Yi
                                                                                            A                                  qYi →F
                     qYi →F (yi ) =                   rF    →Yi (yi )
                                                                                                                       Yi
                                            F ∈
                                          M(i){F }                                         B                                  rF →Yi     F
                                                                                                    .   rB→Yi
                                                                                                    .
                                                                                                    .


     Factor-to-variable message
                                                                                            Yj         qYj →F
                                                                                                                            rF →Yi
                                                                                                                                      Yi
     rF →Yi (yi ) = min EF (yF ) +
                                                                      qYj →F (yj )
                                                                                   
                                                                                              Yk
                                                                                                        qYk →F     F        qYi →F
                   y ∈YF    F
                            yi =yi
                                                          j∈                                    .
                                                                                                .
                                                                                                .
                                                       N(F ){i}




Carsten Rother, Sebastian Nowozin                                                                                Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP         Lagrangian Relaxation   Dual Decomposition     Polyhedral Higher-order Interactions

Belief Propagation



Belief Propagation Reminder: Min-Sum Updates (cont)

     Variable-to-factor message
                                                                                                        rA→Yi
                                                                                            A                                  qYi →F
                     qYi →F (yi ) =                   rF    →Yi (yi )
                                                                                                                       Yi
                                            F ∈
                                          M(i){F }                                         B                                  rF →Yi     F
                                                                                                    .   rB→Yi
                                                                                                    .
                                                                                                    .


     Factor-to-variable message
                                                                                            Yj         qYj →F
                                                                                                                            rF →Yi
                                                                                                                                      Yi
     rF →Yi (yi ) = min EF (yF ) +
                                                                      qYj →F (yj )
                                                                                   
                                                                                              Yk
                                                                                                        qYk →F     F        qYi →F
                   y ∈YF    F
                            yi =yi
                                                          j∈                                    .
                                                                                                .
                                                                                                .
                                                       N(F ){i}




Carsten Rother, Sebastian Nowozin                                                                                Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP    Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Belief Propagation



Higher-order Factors

     Factor-to-variable message
                                                                                       Yj
                                                                             
     rF →Yi (yi ) = min EF (yF ) +
                                                                 qYj →F (yj )
                                                                                        Yk
                   y ∈YF    F                                                                                      rF →Yi
                                                        j∈
                            yi =yi                   N(F ){i}                                                                   Yi
                                                                                         Yl                   F
                                                                                         .
                                                                                         .
                                                                                         .
             Minimization becomes intractable for                                        Ym
             general EF
             Tractable for special structure of EF                                       Yn
             See (Felzenszwalb and Huttenlocher,
             CVPR 2004), (Potetz, CVPR 2007), and
             (Tarlow et al., AISTATS 2010)


Carsten Rother, Sebastian Nowozin                                                                       Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP    Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Belief Propagation



Higher-order Factors

     Factor-to-variable message
                                                                                       Yj
                                                                             
     rF →Yi (yi ) = min EF (yF ) +
                                                                 qYj →F (yj )
                                                                                        Yk
                   y ∈YF    F                                                                                      rF →Yi
                                                        j∈
                            yi =yi                   N(F ){i}                                                                   Yi
                                                                                         Yl                   F
                                                                                         .
                                                                                         .
                                                                                         .
             Minimization becomes intractable for                                        Ym
             general EF
             Tractable for special structure of EF                                       Yn
             See (Felzenszwalb and Huttenlocher,
             CVPR 2004), (Potetz, CVPR 2007), and
             (Tarlow et al., AISTATS 2010)


Carsten Rother, Sebastian Nowozin                                                                       Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation       Relaxations    MAP-MRF LP    Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Relaxations



Problem Relaxations
                 Optimization problems (minimizing g : G → R over Y ⊆ G) can
                 become easier if
                          feasible set is enlarged, and/or
                          objective function is replaced with a bound.



                 g(x),
                 h(x)




                                            g(y)

                                                                                       Y
                                                     h(z)

                                                                                     Z⊇Y
                                                             y, z

Carsten Rother, Sebastian Nowozin                                                                       Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Relaxations



Problem Relaxations
                 Optimization problems (minimizing g : G → R over Y ⊆ G) can
                 become easier if
                         feasible set is enlarged, and/or
                         objective function is replaced with a bound.



        Definition (Relaxation (Geoffrion, 1974))
        Given two optimization problems (g , Y, G) and (h, Z, G), the problem
        (h, Z, G) is said to be a relaxation of (g , Y, G) if,
              1. Z ⊇ Y, i.e. the feasible set of the relaxation contains the feasible
                 set of the original problem, and
              2. ∀y ∈ Y : h(y ) ≤ g (y ), i.e. over the original feasible set the objective
                 function h achieves no larger values than the objective function g .
                 (Minimization version)

Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Relaxations



Relaxations

                 Relaxed solution z ∗ provides a bound:

                                        h(z ∗ ) ≥ g (y ∗ ), (maximization: upper bound)
                                        h(z ∗ ) ≤ g (y ∗ ), (minimization: lower bound)

                 Relaxation is typically tractable
                 Evidence that relaxations are “better” for learning (Kulesza and
                 Pereira, 2007), (Finley and Joachims, 2008), (Martins et al., 2009)

                 Drawback: z ∗ ∈ Z  Y possible
                         solution is not integral (but fractional), or
                         solution violates constraints (primal infeasible).
                 To obtain z ∈ Y from y ∗ : rounding, heuristics


Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Relaxations



Relaxations

                 Relaxed solution z ∗ provides a bound:

                                        h(z ∗ ) ≥ g (y ∗ ), (maximization: upper bound)
                                        h(z ∗ ) ≤ g (y ∗ ), (minimization: lower bound)

                 Relaxation is typically tractable
                 Evidence that relaxations are “better” for learning (Kulesza and
                 Pereira, 2007), (Finley and Joachims, 2008), (Martins et al., 2009)

                 Drawback: z ∗ ∈ Z  Y possible
                         solution is not integral (but fractional), or
                         solution violates constraints (primal infeasible).
                 To obtain z ∈ Y from y ∗ : rounding, heuristics


Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Relaxations



Constructing Relaxations




        Principled methods to construct relaxations
                 Linear Programming Relaxations
                 Lagrangian relaxation
                 Lagrangian/Dual decomposition




Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Relaxations



Constructing Relaxations




        Principled methods to construct relaxations
                 Linear Programming Relaxations
                 Lagrangian relaxation
                 Lagrangian/Dual decomposition




Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP       Lagrangian Relaxation   Dual Decomposition    Polyhedral Higher-order Interactions

MAP-MRF LP



MAP-MRF Linear Programming Relaxation


        Simple two variable pairwise MRF

                                                    Y1                                   Y2

                               Y1                                  Y1 × Y2                                  Y2



                        θ1                               θ1,2                                         θ2




Carsten Rother, Sebastian Nowozin                                                                           Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations        MAP-MRF LP       Lagrangian Relaxation        Dual Decomposition        Polyhedral Higher-order Interactions

MAP-MRF LP



MAP-MRF Linear Programming Relaxation

                                                     Y1                                     Y2

                                     Y1                            Y1 × Y2                                   Y2


                        y1 = 2                                                     (y1 , y2 ) = (2, 3)
                                                                                                                   y2 = 3




                 Energy E (y ; x) = θ1 (y1 ; x) + θ1,2 (y1 , y2 ; x) + θ2 (y2 ; x)
                                                         1
                 Probability p(y |x) =                 Z (x)   exp{−E (y ; x)}
                 MAP prediction: argmax p(y |x) = argmin E (y ; x)
                                                    y ∈Y                            y ∈Y




Carsten Rother, Sebastian Nowozin                                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP          Lagrangian Relaxation   Dual Decomposition      Polyhedral Higher-order Interactions

MAP-MRF LP



MAP-MRF Linear Programming Relaxation

                                              Y1                                            Y2

                      Y1                                         Y1 × Y2                                           Y2




             µ1 ∈ {0, 1}Y1                                µ1,2 ∈ {0, 1}Y1 ×Y2                             µ2 ∈ {0, 1}Y2
                     µ1 (y1 ) =         y2 ∈Y2      µ1,2 (y1 , y2 )             y1 ∈Y1   µ1,2 (y1 , y2 ) = µ2 (y2 )
                y1 ∈Y1 µ1 (y1 ) = 1                   (y1 ,y2 )∈Y1 ×Y2 µ1,2 (y1 , y2 ) = 1               y2 ∈Y2   µ2 (y2 ) = 1

                 Energy is now linear: E (y ; x) = θ, µ


Carsten Rother, Sebastian Nowozin                                                                                 Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations       MAP-MRF LP       Lagrangian Relaxation   Dual Decomposition       Polyhedral Higher-order Interactions

MAP-MRF LP



MAP-MRF Linear Programming Relaxation (cont)



                     min                      θi (yi )µi (yi ) +                              θi,j (yi , yj )µi,j (yi , yj )
                       µ
                                i∈V yi ∈Yi                         {i,j}∈E (yi ,yj )∈Yi ×Yj

                     sb.t.               µi (yi ) = 1,     ∀i ∈ V ,
                                yi ∈Yi

                                         µi,j (yi , yj ) = µi (yi ),      ∀{i, j} ∈ E , ∀yi ∈ Yi
                                yj ∈Yj

                                µi (yi ) ∈ {0, 1},         ∀i ∈ V , ∀yi ∈ Yi ,
                                µi,j (yi , yj ) ∈ {0, 1},        ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj .




Carsten Rother, Sebastian Nowozin                                                                               Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations       MAP-MRF LP       Lagrangian Relaxation   Dual Decomposition       Polyhedral Higher-order Interactions

MAP-MRF LP



MAP-MRF Linear Programming Relaxation (cont)


                     min                      θi (yi )µi (yi ) +                              θi,j (yi , yj )µi,j (yi , yj )
                       µ
                                i∈V yi ∈Yi                         {i,j}∈E (yi ,yj )∈Yi ×Yj

                     sb.t.               µi (yi ) = 1,     ∀i ∈ V ,
                                yi ∈Yi

                                         µi,j (yi , yj ) = µi (yi ),      ∀{i, j} ∈ E , ∀yi ∈ Yi
                                yj ∈Yj

                                µi (yi ) ∈ {0, 1},         ∀i ∈ V , ∀yi ∈ Yi ,
                                µi,j (yi , yj ) ∈ {0, 1},        ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj .


                 → NP-hard integer linear program


Carsten Rother, Sebastian Nowozin                                                                               Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations       MAP-MRF LP       Lagrangian Relaxation   Dual Decomposition       Polyhedral Higher-order Interactions

MAP-MRF LP



MAP-MRF Linear Programming Relaxation (cont)


                     min                      θi (yi )µi (yi ) +                              θi,j (yi , yj )µi,j (yi , yj )
                       µ
                                i∈V yi ∈Yi                         {i,j}∈E (yi ,yj )∈Yi ×Yj

                     sb.t.               µi (yi ) = 1,      ∀i ∈ V ,
                                yi ∈Yi

                                         µi,j (yi , yj ) = µi (yi ),      ∀{i, j} ∈ E , ∀yi ∈ Yi
                                yj ∈Yj

                                µi (yi ) ∈ [0, 1],       ∀i ∈ V , ∀yi ∈ Yi ,
                                µi,j (yi , yj ) ∈ [0, 1],      ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj .


                 → linear program
                 → LOCAL polytope

Carsten Rother, Sebastian Nowozin                                                                               Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

MAP-MRF LP



MAP-MRF LP Relaxation, Works

        MAP-MRF LP Analysis
                 (Wainwright et al., Trans. Inf. Tech., 2005), (Weiss et al., UAI
                 2007), (Werner, PAMI 2005)
                 TRW-S (Kolmogorov, PAMI 2006)

        Improving tightness
                 (Komodakis and Paragios, ECCV 2008), (Kumar and Torr, ICML
                 2008), (Sontag and Jaakkola, NIPS 2007), (Sontag et al., UAI
                 2008), (Werner, CVPR 2008), (Kumar et al., NIPS 2007)

        Algorithms based on the LP
                 (Globerson and Jaakkola, NIPS 2007), (Kumar and Torr, ICML
                 2008), (Sontag et al., UAI 2008)

Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP      Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

MAP-MRF LP



MAP-MRF LP Relaxation, General case


                                                                  B
                                                    A


                                     yA ∈YA     µA (yA ) = 1,
                                       yA ∈YA       µA (yA ) = µB (yB ),              ∀yB ∈ YB .
                                     [yA ]B =yB


        Generalization to higher-order factors
                 For B ⊆ A factors: marginalization constraints
                 Defines LOCAL polytope (Wainwright and Jordan, 2008)

Carsten Rother, Sebastian Nowozin                                                                         Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP       Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

MAP-MRF LP



MAP-MRF LP Relaxation, Known results


           1. LOCAL is tight iff the factor graph is a forest (acyclic)
           2. All labelings are vertices of LOCAL (Wainwright and Jordan, 2008)
           3. For cyclic graphs there are additional fractional vertices.
           4. If all factors have regular energies, the fractional solutions are never
              optimal (Wainwright and Jordan, 2008)
           5. For models with only binary states: half-integrality, integral variables
              are certain

                                                    See some examples later...




Carsten Rother, Sebastian Nowozin                                                                          Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Constructing Relaxations




        Principled methods to construct relaxations
                 Linear Programming Relaxations
                 Lagrangian relaxation
                 Lagrangian/Dual decomposition




Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP      Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Lagrangian Relaxation, Motivation

                                          B
                                                                A

                                        yA ∈YA      µA (yA ) = µB (yB ),              ∀yB ∈ YB .
                                      [yA ]B =yB


        MAP-MRF LP with higher-order factors problematic:
                 Number of LP variables grows with |YA | → exponential in MRF
                 variables
                 But: number of constraints stays small (|YB |)
        Lagrangian Relaxation allows one to solve the LP by treating the
        constraints implicitly

Carsten Rother, Sebastian Nowozin                                                                         Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Lagrangian Relaxation

                                                        min        g (y )
                                                          y
                                                       sb.t. y ∈ D,
                                                                   y ∈ C.

        Assumption
                 Optimizing g (y ) over y ∈ D is “easy”.
                 Optimizing over y ∈ D ∩ C is hard.

        High-level idea
                 Incorporate y ∈ C constraint into objective function
        For an excellent introduction, see (Guignard, “Lagrangean Relaxation”,
        TOP 2003) and (Lemar´chal, “Lagrangian Relaxation”, 2001).
                                e

Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP        Lagrangian Relaxation   Dual Decomposition    Polyhedral Higher-order Interactions

Lagrangian Relaxation



Lagrangian Relaxation (cont)
        Recipe
           1. Express C in terms of equalities and inequalities

                     C = {y ∈ G : ui (y ) = 0, ∀i = 1, . . . , I , vj (y ) ≤ 0, ∀j = 1, . . . , J},

                         ui : G → R differentiable, typically affine,
                         vj : G → R differentiable, typically convex.
           2. Introduce Lagrange multipliers, yielding

                                                    min   g (y )
                                                     y
                                                sb.t. y ∈ D,
                                                          ui (y ) = 0 : λ,         i = 1, . . . , I ,
                                                          vj (y ) ≤ 0 : µ,         j = 1, . . . , J.


Carsten Rother, Sebastian Nowozin                                                                            Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP           Lagrangian Relaxation   Dual Decomposition    Polyhedral Higher-order Interactions

Lagrangian Relaxation



Lagrangian Relaxation (cont)

           2. Introduce Lagrange multipliers, yielding

                                                    min      g (y )
                                                     y
                                                sb.t. y ∈ D,
                                                             ui (y ) = 0 : λ,         i = 1, . . . , I ,
                                                             vj (y ) ≤ 0 : µ,         j = 1, . . . , J.

           3. Build partial Lagrangian

                                                     min       g (y ) + λ u(y ) + µ v (y )                                      (1)
                                                         y
                                                    sb.t. y ∈ D.



Carsten Rother, Sebastian Nowozin                                                                               Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP        Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Lagrangian Relaxation (cont)


           3. Build partial Lagrangian

                                                    min     g (y ) + λ u(y ) + µ v (y )                                     (1)
                                                     y
                                                    sb.t. y ∈ D.

        Theorem (Weak Duality of Lagrangean Relaxation)
        For differentiable functions ui : G → R and vj : G → R, and for any
        λ ∈ RI and any non-negative µ ∈ RJ , µ ≥ 0, problem (1) is a relaxation
        of the original problem: its value is lower than or equal to the optimal
        value of the original problem.




Carsten Rother, Sebastian Nowozin                                                                           Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Lagrangian Relaxation (cont)

           3. Build partial Lagrangian

                                      q(λ, µ) :=     min        g (y ) + λ u(y ) + µ v (y )                            (1)
                                                       y
                                                     sb.t.      y ∈ D.

           4. Maximize lower bound wrt λ, µ

                                                            max         q(λ, µ)
                                                             λ,µ
                                                           sb.t.        µ≥0


                         → efficiently solvable if q(λ, µ) can be evaluated



Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Optimizing Lagrangian Dual Functions
           4. Maximize lower bound wrt λ, µ
                                                            max         q(λ, µ)                                        (2)
                                                             λ,µ
                                                           sb.t.        µ≥0

        Theorem (Lagrangean Dual Function)
           1. q is concave in λ and µ, Problem (2) is a concave maximization
              problem.
           2. If q is unbounded above, then the original problem is infeasible.
           3. For any λ, µ ≥ 0, let
                                      y (λ, µ) = argminy ∈D g (y ) + λ u(y ) + µ v (u)

                 Then, a supergradient of q can be constructed by evaluating the
                 constraint functions at y (λ, µ) as
                                    ∂                                  ∂
                     u(y (λ, µ)) ∈     q(λ, µ),    and v (y (λ, µ)) ∈    q(λ, µ).
                                   ∂λ                                 ∂µ
Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Subgradients, Supergradients


                                                                                       f (x)




                 Subgradients for convex functions: global affine underestimators
                 Supergradients for concave functions: global affine overestimators


Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Subgradients, Supergradients

                                                                                       f (x)




                                                                                x

                 Subgradients for convex functions: global affine underestimators
                 Supergradients for concave functions: global affine overestimators

Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP      Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Subgradients, Supergradients

                                                                                          f (x)




                                                    x
                                        f (y) ≥ f (x) + g (y − x), ∀y

                 Subgradients for convex functions: global affine underestimators
                 Supergradients for concave functions: global affine overestimators
Carsten Rother, Sebastian Nowozin                                                                         Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Subgradients, Supergradients

                                                                                       f (x)




                                                                         x
                                                                             ∂
                                                                      0∈     ∂x
                                                                                f (x)

                 Subgradients for convex functions: global affine underestimators
                 Supergradients for concave functions: global affine overestimators
Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation          Relaxations   MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition    Polyhedral Higher-order Interactions

Lagrangian Relaxation



Example behaviour of objectives
        (from a 10-by-10 pairwise binary MRF relaxation, submodular)
                      10
                                                                                                    Dual objective
                       0
                                                                                                    Primal objective


                     −10
         Objective




                     −20


                     −30


                     −40


                     −50
                        0                 50             100                   150                  200                  250
                                                                  Iteration

Carsten Rother, Sebastian Nowozin                                                                         Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP   Lagrangian Relaxation     Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Primal Solution Recovery
        Assume we solved the dual problem for (λ∗ , µ∗ )
           1. Can we obtain a primal solution y ∗ ?
           2. Can we say something about the relaxation quality?

        Theorem (Sufficient Optimality Conditions)
        If for a given λ, µ ≥ 0, we have u(y (λ, µ)) = 0 and v (y (λ, µ)) ≤ 0
        (primal feasibility) and further we have

                                λ u(y (λ, µ)) = 0,            and            µ v (y (λ, µ)) = 0,

        (complementary slackness), then
                 y (λ, µ) is an optimal primal solution to the original problem, and
                 (λ, µ) is an optimal solution to the dual problem.


Carsten Rother, Sebastian Nowozin                                                                        Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP   Lagrangian Relaxation     Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Primal Solution Recovery
        Assume we solved the dual problem for (λ∗ , µ∗ )
           1. Can we obtain a primal solution y ∗ ?
           2. Can we say something about the relaxation quality?

        Theorem (Sufficient Optimality Conditions)
        If for a given λ, µ ≥ 0, we have u(y (λ, µ)) = 0 and v (y (λ, µ)) ≤ 0
        (primal feasibility) and further we have

                                λ u(y (λ, µ)) = 0,            and            µ v (y (λ, µ)) = 0,

        (complementary slackness), then
                 y (λ, µ) is an optimal primal solution to the original problem, and
                 (λ, µ) is an optimal solution to the dual problem.


Carsten Rother, Sebastian Nowozin                                                                        Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP        Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Primal Solution Recovery (cont)
        But,
                 we might never see a solution satisfying the optimality condition
                 is the case only if there is no duality gap, i.e. q(λ∗ , µ∗ ) = g (x, y ∗ )

        Special case: integer linear programs
            we can always reconstruct a primal solution to
                                                           min         g (y )                                               (3)
                                                             y
                                                          sb.t.        y ∈ conv(D),
                                                                       y ∈ C.
                 For example for subgradient method updates it is known that
                 (Anstreicher and Wolsey, MathProg 2009)
                                                             T
                                                    1
                                                    lim           y (λt , µt ) → y ∗ of (3).
                                               T →∞ T
                                                           t=1

Carsten Rother, Sebastian Nowozin                                                                           Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP      Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Application to higher-order factors

                                          B
                                                                A

                                        yA ∈YA      µA (yA ) = µB (yB ),              ∀yB ∈ YB .
                                      [yA ]B =yB


                 (Komodakis and Paragios, CVPR 2009) propose a MAP inference
                 algorithm suitable for higher-order factors
                 Can be seen as Lagrangian relaxation of the marginalization
                 constraint of the MAP-MRF LP
                 See also (Johnson et al., ACCC 2007), (Schlesinger and Giginyak,
                 CSC 2007), (Wainwright and Jordan, 2008, Sect. 4.1.3), (Werner,
                 PAMI 2005), (Werner, TechReport 2009), (Werner, CVPR 2008)
Carsten Rother, Sebastian Nowozin                                                                         Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP          Lagrangian Relaxation      Dual Decomposition       Polyhedral Higher-order Interactions

Lagrangian Relaxation



Komodakis MAP-MRF Decomposition

                          min                       θi (yi )µi (yi ) +                        θi,j (yi , yj )µi,j (yi , yj )
                            µ
                                      i∈V yi ∈Yi                          {i,j}∈ (yi ,yj )∈
                                                                             E   Yi ×Yj

                          sb.t.                µi (yi ) = 1,       ∀i ∈ V ,
                                      yi ∈Yi

                                                         µi,j (yi , yj ) = 1,         ∀{i, j} ∈ E ,
                                      (yi ,yj )∈Yi ×Yj

                                               µi,j (yi , yj ) = µi (yi ),          ∀{i, j} ∈ E , ∀yi ∈ Yi
                                      yj ∈Yj

                                      µi (yi ) ∈ {0, 1},          ∀i ∈ V , ∀yi ∈ Yi ,
                                      µi,j (yi , yj ) ∈ {0, 1},         ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj .




Carsten Rother, Sebastian Nowozin                                                                                    Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP          Lagrangian Relaxation      Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Komodakis MAP-MRF Decomposition

                           min                 θi , µ i +            θi,j , µi,j
                             µ
                                      i∈V                   {i,j}∈
                                                               E

                          sb.t.                µi (yi ) = 1,         ∀i ∈ V ,
                                      yi ∈Yi

                                                         µi,j (yi , yj ) = 1,         ∀{i, j} ∈ E ,
                                      (yi ,yj )∈Yi ×Yj

                                               µi,j (yi , yj ) = µi (yi ),          ∀{i, j} ∈ E , ∀yi ∈ Yi
                                      yj ∈Yj

                                      µi (yi ) ∈ {0, 1},          ∀i ∈ V , ∀yi ∈ Yi ,
                                      µi,j (yi , yj ) ∈ {0, 1},          ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj .




Carsten Rother, Sebastian Nowozin                                                                                Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP          Lagrangian Relaxation      Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Komodakis MAP-MRF Decomposition
                           min                 θi , µ i +            θi,j , µi,j +             θA (yA )µA (yA )
                             µ
                                      i∈V                   {i,j}∈                    yA ∈YA
                                                               E

                          sb.t.                µi (yi ) = 1,         ∀i ∈ V ,
                                      yi ∈Yi

                                                         µi,j (yi , yj ) = 1,         ∀{i, j} ∈ E ,
                                      (yi ,yj )∈Yi ×Yj

                                               µi,j (yi , yj ) = µi (yi ),          ∀{i, j} ∈ E , ∀yi ∈ Yi
                                      yj ∈Yj

                                                            µA (yA ) = µB (yB ),            ∀B ⊂ A, yB ∈ YB ,
                                      yA ∈YA ,[yA ]B =yB

                                                µA (yA ) = 1,
                                      yA ∈YA

                                      µi (yi ) ∈ {0, 1},          ∀i ∈ V , ∀yi ∈ Yi ,
                                      µi,j (yi , yj ) ∈ {0, 1},          ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj ,
                                      µA (yA ) ∈ {0, 1},             ∀yA ∈ YA .
Carsten Rother, Sebastian Nowozin                                                                                 Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation       Relaxations      MAP-MRF LP         Lagrangian Relaxation     Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Komodakis MAP-MRF Decomposition
                     min               θi , µ i +            θi,j , µi,j +             θA (yA )µA (yA )
                     µ
                              i∈V                   {i,j}∈                    yA ∈YA
                                                       E

                 sb.t.                 µi (yi ) = 1,         ∀i ∈ V ,
                              yi ∈Yi

                                                 µi,j (yi , yj ) = 1,        ∀{i, j} ∈ E ,
                              (yi ,yj )∈Yi ×Yj

                                       µi,j (yi , yj ) = µi (yi ),       ∀{i, j} ∈ E , ∀yi ∈ Yi
                              yj ∈Yj

                                                    µA (yA ) = µB (yB ) : φA→B (yB ),                 ∀B ⊂ A, yB ∈ YB ,
                              yA ∈YA ,[yA ]B =yB

                                        µA (yA ) = 1,
                              yA ∈YA

                              µi (yi ) ∈ {0, 1},         ∀i ∈ V , ∀yi ∈ Yi ,
                              µi,j (yi , yj ) ∈ {0, 1},          ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj ,
                              µA (yA ) ∈ {0, 1},             ∀yA ∈ YA .
Carsten Rother, Sebastian Nowozin                                                                                Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations       MAP-MRF LP        Lagrangian Relaxation     Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Komodakis MAP-MRF Decomposition
               q(φ) :=           min                 θi , µ i +            θi,j , µi,j +            θA (yA )µA (yA )
                                      µ
                                            i∈V                   {i,j}∈                   yA ∈YA
                                                                     E
                                                                                                                         

                                            +            φA→B (yB )                              µA (yA ) − µB (yB )
                                                 B⊂A,                        yA ∈YA ,[yA ]B =yB
                                                yB ∈YB

                                sb.t.                µi (yi ) = 1,         ∀i ∈ V ,
                                            yi ∈Yi

                                                               µi,j (yi , yj ) = 1,      ∀{i, j} ∈ E ,
                                            (yi ,yj )∈Yi ×Yj

                                                      µA (yA ) = 1,
                                            yA ∈YA

                                                     µi,j (yi , yj ) = µi (yi ),      ∀{i, j} ∈ E , ∀yi ∈ Yi
                                            yj ∈Yj

                                            µi (yi ) ∈ {0, 1},          ∀i ∈ V , ∀yi ∈ Yi ,
                                            µi,j (yi , yj ) ∈ {0, 1},          ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj ,
Carsten Rother, Sebastian Nowozin           µA (yA ) ∈ {0, 1},             ∀yA ∈ YA .                           Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP           Lagrangian Relaxation      Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Komodakis MAP-MRF Decomposition
        q(φ) :=            min                 θi , µ i +             θi,j , µi,j +              θA (yA )µA (yA )
                             µ
                                      i∈V                   {i,j}∈                      yA ∈YA
                                                               E

                                      +             φA→B (yB )                            µA (yA ) −              φA→B (yB )µB (yB )
                                           B⊂A,                      yA ∈YA ,[yA ]B =yB                   B⊂A,
                                          yB ∈YB                                                         yB ∈YB

                          sb.t.                µi (yi ) = 1,         ∀i ∈ V ,
                                      yi ∈Yi

                                                         µi,j (yi , yj ) = 1,          ∀{i, j} ∈ E ,
                                      (yi ,yj )∈Yi ×Yj

                                                µA (yA ) = 1,
                                      yA ∈YA

                                               µi,j (yi , yj ) = µi (yi ),           ∀{i, j} ∈ E , ∀yi ∈ Yi
                                      yj ∈Yj

                                      µi (yi ) ∈ {0, 1},           ∀i ∈ V , ∀yi ∈ Yi ,
                                      µi,j (yi , yj ) ∈ {0, 1},           ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj ,
                                      µA (yA ) ∈ {0, 1},             ∀yA ∈ YA .
Carsten Rother, Sebastian Nowozin                                                                                  Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP          Lagrangian Relaxation      Dual Decomposition       Polyhedral Higher-order Interactions

Lagrangian Relaxation



Komodakis MAP-MRF Decomposition
        q(φ) :=            min                 θi , µ i +            θi,j , µi,j −              φA→B (yB )µB (yB )
                             µ
                                      i∈V                   {i,j}∈                      B⊂A,
                                                               E                       yB ∈YB

                                      +             φA→B (yB )                            µA (yA ) +                 θA (yA )µA (yA )
                                           B⊂A,                      yA ∈YA ,[yA ]B =yB                     yA ∈YA
                                          yB ∈YB

                          sb.t.                µi (yi ) = 1,         ∀i ∈ V ,
                                      yi ∈Yi

                                                         µi,j (yi , yj ) = 1,         ∀{i, j} ∈ E ,
                                      (yi ,yj )∈Yi ×Yj

                                                µA (yA ) = 1,
                                      yA ∈YA

                                               µi,j (yi , yj ) = µi (yi ),          ∀{i, j} ∈ E , ∀yi ∈ Yi
                                      yj ∈Yj

                                      µi (yi ) ∈ {0, 1},          ∀i ∈ V , ∀yi ∈ Yi ,
                                      µi,j (yi , yj ) ∈ {0, 1},          ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj ,
                                      µA (yA ) ∈ {0, 1},             ∀yA ∈ YA .
Carsten Rother, Sebastian Nowozin                                                                                     Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP          Lagrangian Relaxation      Dual Decomposition       Polyhedral Higher-order Interactions

Lagrangian Relaxation



Komodakis MAP-MRF Decomposition
        q(φ) :=            min                 θi , µ i +            θi,j , µi,j −              φA→B (yB )µB (yB )
                             µ
                                      i∈V                   {i,j}∈                      B⊂A,
                                                               E                       yB ∈YB

                                      +             φA→B (yB )                            µA (yA ) +                 θA (yA )µA (yA )
                                           B⊂A,                      yA ∈YA ,[yA ]B =yB                     yA ∈YA
                                          yB ∈YB

                          sb.t.                µi (yi ) = 1,         ∀i ∈ V ,
                                      yi ∈Yi

                                                         µi,j (yi , yj ) = 1,         ∀{i, j} ∈ E ,
                                      (yi ,yj )∈Yi ×Yj

                                                µA (yA ) = 1,
                                      yA ∈YA

                                               µi,j (yi , yj ) = µi (yi ),          ∀{i, j} ∈ E , ∀yi ∈ Yi
                                      yj ∈Yj

                                      µi (yi ) ∈ {0, 1},          ∀i ∈ V , ∀yi ∈ Yi ,
                                      µi,j (yi , yj ) ∈ {0, 1},          ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj ,
                                      µA (yA ) ∈ {0, 1},             ∀yA ∈ YA .
Carsten Rother, Sebastian Nowozin                                                                                     Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP          Lagrangian Relaxation      Dual Decomposition       Polyhedral Higher-order Interactions

Lagrangian Relaxation



Komodakis MAP-MRF Decomposition
        q(φ) :=            min                 θi , µ i +            θi,j , µi,j −              φA→B (yB )µB (yB )
                             µ
                                      i∈V                   {i,j}∈                      B⊂A,
                                                               E                       yB ∈YB

                                      +             φA→B (yB )                            µA (yA ) +                 θA (yA )µA (yA )
                                           B⊂A,                      yA ∈YA ,[yA ]B =yB                     yA ∈YA
                                          yB ∈YB

                          sb.t.                µi (yi ) = 1,         ∀i ∈ V ,
                                      yi ∈Yi

                                                         µi,j (yi , yj ) = 1,         ∀{i, j} ∈ E ,
                                      (yi ,yj )∈Yi ×Yj

                                                µA (yA ) = 1,
                                      yA ∈YA

                                               µi,j (yi , yj ) = µi (yi ),          ∀{i, j} ∈ E , ∀yi ∈ Yi
                                      yj ∈Yj

                                      µi (yi ) ∈ {0, 1},          ∀i ∈ V , ∀yi ∈ Yi ,
                                      µi,j (yi , yj ) ∈ {0, 1},          ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj ,
                                      µA (yA ) ∈ {0, 1},             ∀yA ∈ YA .
Carsten Rother, Sebastian Nowozin                                                                                     Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Message passing

                                B                                                                 D

                                 φA→B                                                      φA→D

                                 φA→C                         A                            φA→E


                                C                                                                 E
                 Maximizing q(φ) corresponds to message passing from the
                 higher-order factor to the unary factors



Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation       Relaxations    MAP-MRF LP      Lagrangian Relaxation      Dual Decomposition      Polyhedral Higher-order Interactions

Lagrangian Relaxation



The higher-order subproblem



                        min                φA→B (yB )                           µA (yA ) +              θA (yA )µA (yA )
                         µA
                                   B⊂A,                 yA ∈YA ,[yA ]B =yB                   yA ∈YA
                                  yB ∈YB

                        sb.t.              µA (yA ) = 1,
                                  yA ∈YA

                                  µA (yA ) ∈ {0, 1},       ∀yA ∈ YA .


                 Simple structure: select one element
                 Simplify to an optimization problem over yA ∈ YA



Carsten Rother, Sebastian Nowozin                                                                               Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP         Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



The higher-order subproblem




                                      min           θA (yA ) +            I ([yA ]B = yB )φA→B (yB )
                                      yA ∈YA
                                                                  B⊂A,
                                                                 yB ∈YB



                 Solvability depends on structure of θA as function of yA
                                                    ∗
                 (For now) assume we can solve for yA ∈ YA
                 How can we use this to solve the original large LP?




Carsten Rother, Sebastian Nowozin                                                                            Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP       Lagrangian Relaxation    Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Maximizing the dual function: Subgradient Method
        Maximizing q(φ):
         1. Initialize φ
         2. Iterate
                     2.1 Given φ solve pairwise MAP subproblem, obtain µ∗ , µ∗
                                                                        1     2
                     2.2 Given φ solve higher-order MAP subproblem, obtain y∗A
                     2.3 Update φ
                                    Supergradient
                                                       ∂                           ∗
                                                                             (I ([yA ]B = yB ) − µB (yB ))
                                                    ∂φB (yB )       B⊂A,
                                                                   yB ∈YB

                                    Supergradient ascent, step size αt > 0
                                                                                           ∗
                                           φB (yB ) ← φB (yB ) + αt                  (I ([yA ]B = yB ) − µB (yB ))
                                                                             B⊂A,
                                                                            yB ∈YB

                         The step size αt must satisfy the “diminishing step size conditions”,
                         i) limt→∞ αt → 0, and ii) ∞ αt → ∞.
                                                      t=0

Carsten Rother, Sebastian Nowozin                                                                           Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP     Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Subgradient Method (cont)

        Typical step size choices
           1. Simple diminishing step size,
                                                                       1+m
                                                            αt =            ,
                                                                       t +m
              where m > 0 is an arbitrary constant.
           2. Polyak’s step size,

                                                                 q − q(λt , µt )
                                                                 ¯
                                       αt = β t             t , µt )) 2 + v (y (λt , µt ))          2
                                                                                                        ,
                                                     u(y (λ

                 where
                         0 < β t < 2 is a diminishing step size, and
                         q ≥ q(λ∗ , µ∗ ) is an upper bound on the optimal dual objective.
                         ¯


Carsten Rother, Sebastian Nowozin                                                                           Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP           Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Subgradient Method (cont)

        Primal solution recovery
                 Uniform average
                                                                      T
                                                          1
                                                       lim                 y (λt , µt ) → y ∗ .
                                                     T →∞ T
                                                                    t=1

                 Geometric series (volume algorithm)

                                                    y t = γy (λt , µt ) + (1 − γ)¯ t−1 ,
                                                    ¯                            y

                 where 0 < γ < 1 is a small constant such as γ = 0.1, and y t might
                                                                          ¯
                 be slightly primal infeasible.



Carsten Rother, Sebastian Nowozin                                                                              Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations     MAP-MRF LP    Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Pattern-based higher order potentials


        Example (Pattern-based potentials)
        Given a small set of patterns P = {y1 , y2 , . . . , yK }, define

                                                             CyA          if yA ∈ P,
                                             θA (yA ) =
                                                            Cmax          otherwise.


                 (Rother et al, CVPR 2009), (Komodakis and Paragios, CVPR 2009)
                 Generalizes P n -Potts model (Kohli et al., CVPR 2007)
                 “Patterns have low energies”: Cy ≤ Cmax for all y ∈ P




Carsten Rother, Sebastian Nowozin                                                                       Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation      Relaxations      MAP-MRF LP    Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Lagrangian Relaxation



Pattern-based higher order potentials
        Example (Pattern-based potentials)
        Given a small set of patterns P = {y1 , y2 , . . . , yK }, define

                                                              CyA          if yA ∈ P,
                                             θA (yA ) =
                                                             Cmax          otherwise.

          Can solve

                                      min θA (yA ) +             I ([yA ]B = yB )φA→B (yB )
                                    yA ∈YA
                                                        B⊂A,
                                                       yB ∈YB

        by
           1. Testing all yA ∈ P, and
           2. Fixing θA (yA ) = Cmax and solving for the minimum of the second
              term.
Carsten Rother, Sebastian Nowozin                                                                        Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition



Constructing Relaxations




        Principled methods to construct relaxations
                 Linear Programming Relaxations
                 Lagrangian relaxation
                 Lagrangian/Dual decomposition




Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP      Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition



Dual/Lagrangian Decomposition
        Additive structure
                                                        K
                                               min            gk (y )
                                                    y
                                                        k=1
                                               sb.t. y ∈ Yk ,            ∀k = 1, . . . , K ,
                               K
        such that              k=1   gk (y ) is hard, but for any k,

                                                            min       gk (y )
                                                              y
                                                            sb.t. y ∈ Yk

        is tractable.
                 (Guignard, “Lagrangean Decomposition”, MathProg 1987)
                 (Conejo et al., “Decomposition Techniques in Mathematical
                 Programming”, 2006)

Carsten Rother, Sebastian Nowozin                                                                         Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP          Lagrangian Relaxation     Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition



Dual/Lagrangian Decomposition
        Idea
           1. Selectively duplicate variables (“variable splitting”)
                                                             K
                                              min                 gk (yk )
                                          y1 ,...,yK ,y
                                                            k=1
                                             sb.t.          y ∈Y ,
                                                            yk ∈ Yk ,               k = 1, . . . , K ,
                                                            y = yk : λk ,                 k = 1, . . . , K ,                    (4)

                 where Y ⊇                k=1,...,K       Yk .
           2. Add coupling equality constraints between duplicated variables
           3. Apply Lagrangian relaxation to the coupling constraint

        Also known as dual decomposition and variable splitting.

Carsten Rother, Sebastian Nowozin                                                                               Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP         Lagrangian Relaxation    Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition



Dual/Lagrangian Decomposition (cont)



                                                       K
                                          min                gk (yk )
                                      y1 ,...,yK ,y
                                                      k=1
                                         sb.t.        y ∈Y ,
                                                      yk ∈ Yk ,                k = 1, . . . , K ,
                                                      y = yk : λk ,                 k = 1, . . . , K .                        (5)




Carsten Rother, Sebastian Nowozin                                                                             Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP      Lagrangian Relaxation       Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition



Dual/Lagrangian Decomposition (cont)




                                                        K                       K
                                           min               gk (yk ) +             λk (y − yk )
                                       y1 ,...,yK ,y
                                                       k=1                  k=1
                                          sb.t.        y ∈Y ,
                                                       yk ∈ Yk ,                k = 1, . . . , K ,




Carsten Rother, Sebastian Nowozin                                                                             Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP        Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition



Dual/Lagrangian Decomposition (cont)



                                                     K                                       K
                                     min                  gk (yk ) − λk yk +                      λk      y
                                y1 ,...,yK ,y
                                                    k=1                                    k=1
                                     sb.t.          y ∈Y ,
                                                    yk ∈ Yk ,           k = 1, . . . , K ,


                 Problem is decomposed
                 There can be multiple possible decompositions of different quality




Carsten Rother, Sebastian Nowozin                                                                             Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP      Lagrangian Relaxation       Dual Decomposition    Polyhedral Higher-order Interactions

Dual Decomposition



Dual/Lagrangian Decomposition (cont)
        Dual function
                                                        K                                            K
                     q(λ) :=               min                  gk (yk ) − λk yk +                        λk        y
                                       y1 ,...,yK ,y
                                                       k=1                                          k=1
                                          sb.t.        y ∈Y ,
                                                       yk ∈ Yk ,                k = 1, . . . , K ,


        Dual maximization problem

                                                        max        q(λ)
                                                            λ
                                                                    K
                                                       sb.t.             λk = 0,
                                                                   k=1

                               K
        where {λ|              k=1    λk = 0} is the domain where q(λ) > −∞.
Carsten Rother, Sebastian Nowozin                                                                              Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP     Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition



Dual/Lagrangian Decomposition (cont)

        Dual maximization problem

                                                     max          q(λ)
                                                        λ
                                                                   K
                                                     sb.t.              λk = 0,
                                                                  k=1

        Projected subgradient method, using
                                                              K                           K
                             ∂                          1                           1
                                         (y − yk ) −               (y − y ) =                  y − yk .
                            ∂λk                         K                           K
                                                              =1                          =1




Carsten Rother, Sebastian Nowozin                                                                        Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition




        Example (Connectivity, Vicente et al., CVPR 2008)




Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition




        Example (Connectivity, Vicente et al., CVPR 2008)




Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP       Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition




        Example (Connectivity, Vicente et al., CVPR 2008)

                                                        min E (y ) + C (y ),
                                                         y

        where E (y ) is a normal binary pairwise segmentation energy, and

                                                    0 if marked points are connected,
                             C (y ) =
                                                    ∞ otherwise.




Carsten Rother, Sebastian Nowozin                                                                          Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP     Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition




        Example (Connectivity, Vicente et al., CVPR 2008)


                                                     miny ,z      E (y ) + C (z)
                                                      sb.t.       y = z.




Carsten Rother, Sebastian Nowozin                                                                        Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP     Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition




        Example (Connectivity, Vicente et al., CVPR 2008)


                                                     miny ,z      E (y ) + C (z)
                                                      sb.t.       y = z : λ.




Carsten Rother, Sebastian Nowozin                                                                        Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP     Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition




        Example (Connectivity, Vicente et al., CVPR 2008)


                                             miny ,z   E (y ) + C (z) + λ (y − z)




Carsten Rother, Sebastian Nowozin                                                                        Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition




        Example (Connectivity, Vicente et al., CVPR 2008)


                                 q(λ) := miny ,z          E (y ) + λ y + C (z) − λ z
                                                           Subproblem 1           Subproblem 2



                 Subproblem 1: normal binary image segmentation energy
                 Subproblem 2: shortest path problem (no pairwise terms)
                 → Maximize q(λ) to find best lower bound
                 Above derivation simplified, see (Vicente et al., CVPR 2008) for a
                 more sophisticated decomposition using three subproblems




Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition




        Example (Connectivity, Vicente et al., CVPR 2008)


                                 q(λ) := miny ,z          E (y ) + λ y + C (z) − λ z
                                                           Subproblem 1           Subproblem 2



                 Subproblem 1: normal binary image segmentation energy
                 Subproblem 2: shortest path problem (no pairwise terms)
                 → Maximize q(λ) to find best lower bound
                 Above derivation simplified, see (Vicente et al., CVPR 2008) for a
                 more sophisticated decomposition using three subproblems




Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition



Other examples


        Plenty of applications of decomposition:
                 (Komodakis et al., ICCV 2007)
                 (Strandmark and Kahl, CVPR 2010)
                 (Torresani et al., ECCV 2008)
                 (Werner, TechReport 2009)
                 (Strandmark and Kahl, CVPR 2010)
                 (Kumar and Koller, CVPR 2010)
                 (Woodford et al., ICCV 2009)
                 (Vicente et al., ICCV 2009)




Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP        Lagrangian Relaxation      Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition



Geometric Interpretation

        Theorem (Lagrangian Decomposition Primal)
        Let Yk be finite sets and g (y ) = c y a linear objective function. Then
        the optimal solution of the Lagrangian decomposition obtains the value
        of the following relaxed primal optimization problem.
                                                     K
                                          min             gk (y )
                                            y
                                                    k=1
                                         sb.t. y ∈ conv(Yk ),                     ∀k = 1, . . . , K .


        Therefore, optimizing the Lagrangian decomposition dual is equivalent to
                 optimizing the primal objective,
                 on the intersection of the convex hulls of the individual feasible sets.

Carsten Rother, Sebastian Nowozin                                                                              Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP        Lagrangian Relaxation      Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition



Geometric Interpretation

        Theorem (Lagrangian Decomposition Primal)
        Let Yk be finite sets and g (y ) = c y a linear objective function. Then
        the optimal solution of the Lagrangian decomposition obtains the value
        of the following relaxed primal optimization problem.
                                                     K
                                          min             gk (y )
                                            y
                                                    k=1
                                         sb.t. y ∈ conv(Yk ),                     ∀k = 1, . . . , K .


        Therefore, optimizing the Lagrangian decomposition dual is equivalent to
                 optimizing the primal objective,
                 on the intersection of the convex hulls of the individual feasible sets.

Carsten Rother, Sebastian Nowozin                                                                              Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP     Lagrangian Relaxation   Dual Decomposition    Polyhedral Higher-order Interactions

Dual Decomposition



Geometric Interpretation (cont)


                                                              yD
                                                                                 y∗
                                                     conv(Y1 )∩
                                                      conv(Y2 )                    conv(Y2)
                                conv(Y1)

                                                                                                    c y


Carsten Rother, Sebastian Nowozin                                                                         Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP    Lagrangian Relaxation   Dual Decomposition    Polyhedral Higher-order Interactions

Dual Decomposition



Geometric Interpretation (cont)


                                                             yD
                                                                                 y∗
                                                     conv(Y1 )∩
                                                      conv(Y2 )                   conv(Y2)
                                    conv(Y1)

                                                                                                   c y


Carsten Rother, Sebastian Nowozin                                                                        Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP    Lagrangian Relaxation   Dual Decomposition    Polyhedral Higher-order Interactions

Dual Decomposition



Geometric Interpretation (cont)


                                                              yD
                                                                                  y∗
                                                     conv(Y1 )∩
                                                      conv(Y2 )                    conv(Y2)
                                    conv(Y1)

                                                                                                   c y


Carsten Rother, Sebastian Nowozin                                                                        Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP    Lagrangian Relaxation   Dual Decomposition    Polyhedral Higher-order Interactions

Dual Decomposition



Geometric Interpretation (cont)


                                                               yD
                                                                                  y∗
                                                     conv(Y1 )∩
                                                      conv(Y2 )                     conv(Y2)
                                     conv(Y1)

                                                                                                   c y


Carsten Rother, Sebastian Nowozin                                                                        Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition



Lagrangian Relaxation vs. Decomposition



        Lagrangian Relaxation
                 Needs explicit complicating constraints

        Lagrangian/Dual Decomposition
                 Can work with black-box solver for subproblem (implicit)
                 Can yield stronger bounds




Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation     Relaxations      MAP-MRF LP    Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Dual Decomposition



Lagrangian Relaxation vs. Decomposition


              Y1 ⊇ conv(Y1 )
                                                     yD          yR

                                                                       y∗
                                             conv(Y1 )∩
                                              conv(Y2 )                 conv(Y2)
                      conv(Y1)

                                                                                    c y


Carsten Rother, Sebastian Nowozin                                                                       Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation       Relaxations    MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Polyhedral Higher-order Interactions



Polyhedral View on Higher-order Interactions



        Idea
                 MAP-MRF LP relaxation: LOCAL polytope
                 Incorporate higher-order interactions directly by constraining LOCAL
                 Techniques from polyhedral combinatorics
                 See (Werner, CVPR 2008), (Nowozin and Lampert, CVPR 2009),
                 (Lempitsky et al., ICCV 2009)




Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation       Relaxations    MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Polyhedral Higher-order Interactions



Representation of Polytopes

     Convex polytopes have two equivalent
     representations
                                                                                                           d3 y ≤ 1
              As a convex combination of extreme                                 d2 y ≤ 1
              points
              As a set of facet-defining linear
              inequalities                                                                        Z
     A linear inequality with respect to a
     polytope can be                                                                                               d1 y ≤ 1
              valid, does not cut off the polytope,
              representing a face, valid and touching,
              facet-defining, representing a face of
              dimension one less than the polytope.

Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation       Relaxations    MAP-MRF LP   Lagrangian Relaxation       Dual Decomposition   Polyhedral Higher-order Interactions

Polyhedral Higher-order Interactions



Intersecting Polytopes
       Construction

        1. Consider marginal polytope
           M(G ) of a discrete graphical
           model
                                                                                                             M(G)
        2. Vertices of M(G ) are feasible
           labelings
        3. Add linear inequalities d µ ≤ b
           that cut off vertices
        4. Optimize over resulting                                           µ
           intersection M (G ),

                                       0 if µ is valid,
              EA (µA ) =
                                       ∞ otherwise.


Carsten Rother, Sebastian Nowozin                                                                          Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation       Relaxations    MAP-MRF LP   Lagrangian Relaxation       Dual Decomposition   Polyhedral Higher-order Interactions

Polyhedral Higher-order Interactions



Intersecting Polytopes
       Construction

        1. Consider marginal polytope
           M(G ) of a discrete graphical
           model
        2. Vertices of M(G ) are feasible                                                                   M(G)
           labelings
        3. Add linear inequalities d µ ≤ b
           that cut off vertices
        4. Optimize over resulting                                           µ
           intersection M (G ),

                                       0 if µ is valid,
              EA (µA ) =
                                       ∞ otherwise.


Carsten Rother, Sebastian Nowozin                                                                          Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation       Relaxations    MAP-MRF LP   Lagrangian Relaxation       Dual Decomposition   Polyhedral Higher-order Interactions

Polyhedral Higher-order Interactions



Intersecting Polytopes
       Construction

        1. Consider marginal polytope                                  d µ≤b
           M(G ) of a discrete graphical
           model
        2. Vertices of M(G ) are feasible
           labelings                                                                                        M(G)
        3. Add linear inequalities d µ ≤ b
           that cut off vertices
        4. Optimize over resulting
           intersection M (G ),
                                                                             µ
                                       0 if µ is valid,
              EA (µA ) =
                                       ∞ otherwise.


Carsten Rother, Sebastian Nowozin                                                                          Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation       Relaxations    MAP-MRF LP   Lagrangian Relaxation       Dual Decomposition   Polyhedral Higher-order Interactions

Polyhedral Higher-order Interactions



Intersecting Polytopes
       Construction

        1. Consider marginal polytope
           M(G ) of a discrete graphical
           model
        2. Vertices of M(G ) are feasible                                                                   M (G)
           labelings
        3. Add linear inequalities d µ ≤ b
           that cut off vertices
        4. Optimize over resulting                                           µ
           intersection M (G ),

                                       0 if µ is valid,
              EA (µA ) =
                                       ∞ otherwise.


Carsten Rother, Sebastian Nowozin                                                                          Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation       Relaxations    MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Polyhedral Higher-order Interactions



Defining the Inequalities




        Questions
            1. Where do the inequalities come from?
            2. Is this construction always possible?
            3. How to optimize over M (G )?




Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation       Relaxations    MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Polyhedral Higher-order Interactions



1. Deriving Combinatorial Polytopes




                 “Foreground mask must be connected”
                 Global constraint on labelings



Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation       Relaxations    MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Polyhedral Higher-order Interactions



1. Deriving Combinatorial Polytopes




                 “Foreground mask must be connected”
                 Global constraint on labelings



Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
Belief Propagation       Relaxations    MAP-MRF LP   Lagrangian Relaxation   Dual Decomposition   Polyhedral Higher-order Interactions

Polyhedral Higher-order Interactions



Constructing the Inequalities




Carsten Rother, Sebastian Nowozin                                                                      Microsoft Research Cambridge
Higher Order Models in Computer Vision: Inference
CVPR2010: higher order models in computer vision: Part 3
CVPR2010: higher order models in computer vision: Part 3
CVPR2010: higher order models in computer vision: Part 3
CVPR2010: higher order models in computer vision: Part 3
CVPR2010: higher order models in computer vision: Part 3
CVPR2010: higher order models in computer vision: Part 3
CVPR2010: higher order models in computer vision: Part 3
CVPR2010: higher order models in computer vision: Part 3
CVPR2010: higher order models in computer vision: Part 3
CVPR2010: higher order models in computer vision: Part 3
CVPR2010: higher order models in computer vision: Part 3
CVPR2010: higher order models in computer vision: Part 3
CVPR2010: higher order models in computer vision: Part 3
CVPR2010: higher order models in computer vision: Part 3
CVPR2010: higher order models in computer vision: Part 3
CVPR2010: higher order models in computer vision: Part 3

More Related Content

Viewers also liked

14 cv mil_the_pinhole_camera
14 cv mil_the_pinhole_camera14 cv mil_the_pinhole_camera
14 cv mil_the_pinhole_camerazukun
 
Brunelli 2008: template matching techniques in computer vision
Brunelli 2008: template matching techniques in computer visionBrunelli 2008: template matching techniques in computer vision
Brunelli 2008: template matching techniques in computer visionzukun
 
Applying Computer Vision to Art History
Applying Computer Vision to Art HistoryApplying Computer Vision to Art History
Applying Computer Vision to Art Historyjeresig
 
Augmented Reality
Augmented RealityAugmented Reality
Augmented RealityTareq Mulla
 
How Computer Vision is Reshaping Real Estate Search - Andrew Flachner
How Computer Vision is Reshaping Real Estate Search - Andrew FlachnerHow Computer Vision is Reshaping Real Estate Search - Andrew Flachner
How Computer Vision is Reshaping Real Estate Search - Andrew FlachnerInman News
 
"The OpenCV Open Source Computer Vision Library: What’s New and What’s Coming...
"The OpenCV Open Source Computer Vision Library: What’s New and What’s Coming..."The OpenCV Open Source Computer Vision Library: What’s New and What’s Coming...
"The OpenCV Open Source Computer Vision Library: What’s New and What’s Coming...Edge AI and Vision Alliance
 
"Computer Vision 2.0: Where We Are and Where We're Going," a Presentation fro...
"Computer Vision 2.0: Where We Are and Where We're Going," a Presentation fro..."Computer Vision 2.0: Where We Are and Where We're Going," a Presentation fro...
"Computer Vision 2.0: Where We Are and Where We're Going," a Presentation fro...Edge AI and Vision Alliance
 
Video Analysis with Convolutional Neural Networks (Master Computer Vision Bar...
Video Analysis with Convolutional Neural Networks (Master Computer Vision Bar...Video Analysis with Convolutional Neural Networks (Master Computer Vision Bar...
Video Analysis with Convolutional Neural Networks (Master Computer Vision Bar...Universitat Politècnica de Catalunya
 
COM2304: Introduction to Computer Vision & Image Processing
COM2304: Introduction to Computer Vision & Image Processing COM2304: Introduction to Computer Vision & Image Processing
COM2304: Introduction to Computer Vision & Image Processing Hemantha Kulathilake
 
An Introduction to Computer Vision
An Introduction to Computer VisionAn Introduction to Computer Vision
An Introduction to Computer Visionguestd1b1b5
 
Python in Computer Vision
Python in Computer VisionPython in Computer Vision
Python in Computer VisionBrian Thorne
 
"Computer Vision and Artificial Intelligence: Market Trends and Implications,...
"Computer Vision and Artificial Intelligence: Market Trends and Implications,..."Computer Vision and Artificial Intelligence: Market Trends and Implications,...
"Computer Vision and Artificial Intelligence: Market Trends and Implications,...Edge AI and Vision Alliance
 
Cisco Web and Email Security Overview
Cisco Web and Email Security OverviewCisco Web and Email Security Overview
Cisco Web and Email Security OverviewCisco Security
 
Optimization algorithms for solving computer vision problems
Optimization algorithms for solving computer vision problemsOptimization algorithms for solving computer vision problems
Optimization algorithms for solving computer vision problemsKrzysztof Wegner
 

Viewers also liked (19)

14 cv mil_the_pinhole_camera
14 cv mil_the_pinhole_camera14 cv mil_the_pinhole_camera
14 cv mil_the_pinhole_camera
 
Brunelli 2008: template matching techniques in computer vision
Brunelli 2008: template matching techniques in computer visionBrunelli 2008: template matching techniques in computer vision
Brunelli 2008: template matching techniques in computer vision
 
Applying Computer Vision to Art History
Applying Computer Vision to Art HistoryApplying Computer Vision to Art History
Applying Computer Vision to Art History
 
Augmented Reality
Augmented RealityAugmented Reality
Augmented Reality
 
How Computer Vision is Reshaping Real Estate Search - Andrew Flachner
How Computer Vision is Reshaping Real Estate Search - Andrew FlachnerHow Computer Vision is Reshaping Real Estate Search - Andrew Flachner
How Computer Vision is Reshaping Real Estate Search - Andrew Flachner
 
"The OpenCV Open Source Computer Vision Library: What’s New and What’s Coming...
"The OpenCV Open Source Computer Vision Library: What’s New and What’s Coming..."The OpenCV Open Source Computer Vision Library: What’s New and What’s Coming...
"The OpenCV Open Source Computer Vision Library: What’s New and What’s Coming...
 
Towards Embedded Computer Vision - New @ 2013
Towards Embedded Computer Vision - New @ 2013Towards Embedded Computer Vision - New @ 2013
Towards Embedded Computer Vision - New @ 2013
 
"Computer Vision 2.0: Where We Are and Where We're Going," a Presentation fro...
"Computer Vision 2.0: Where We Are and Where We're Going," a Presentation fro..."Computer Vision 2.0: Where We Are and Where We're Going," a Presentation fro...
"Computer Vision 2.0: Where We Are and Where We're Going," a Presentation fro...
 
Video Analysis with Convolutional Neural Networks (Master Computer Vision Bar...
Video Analysis with Convolutional Neural Networks (Master Computer Vision Bar...Video Analysis with Convolutional Neural Networks (Master Computer Vision Bar...
Video Analysis with Convolutional Neural Networks (Master Computer Vision Bar...
 
COM2304: Introduction to Computer Vision & Image Processing
COM2304: Introduction to Computer Vision & Image Processing COM2304: Introduction to Computer Vision & Image Processing
COM2304: Introduction to Computer Vision & Image Processing
 
An Introduction to Computer Vision
An Introduction to Computer VisionAn Introduction to Computer Vision
An Introduction to Computer Vision
 
Computer Vision
Computer VisionComputer Vision
Computer Vision
 
Python in Computer Vision
Python in Computer VisionPython in Computer Vision
Python in Computer Vision
 
Computer Vision Introduction
Computer Vision IntroductionComputer Vision Introduction
Computer Vision Introduction
 
"Computer Vision and Artificial Intelligence: Market Trends and Implications,...
"Computer Vision and Artificial Intelligence: Market Trends and Implications,..."Computer Vision and Artificial Intelligence: Market Trends and Implications,...
"Computer Vision and Artificial Intelligence: Market Trends and Implications,...
 
Computer Vision Crash Course
Computer Vision Crash CourseComputer Vision Crash Course
Computer Vision Crash Course
 
Computer Vision
Computer VisionComputer Vision
Computer Vision
 
Cisco Web and Email Security Overview
Cisco Web and Email Security OverviewCisco Web and Email Security Overview
Cisco Web and Email Security Overview
 
Optimization algorithms for solving computer vision problems
Optimization algorithms for solving computer vision problemsOptimization algorithms for solving computer vision problems
Optimization algorithms for solving computer vision problems
 

More from zukun

My lyn tutorial 2009
My lyn tutorial 2009My lyn tutorial 2009
My lyn tutorial 2009zukun
 
ETHZ CV2012: Tutorial openCV
ETHZ CV2012: Tutorial openCVETHZ CV2012: Tutorial openCV
ETHZ CV2012: Tutorial openCVzukun
 
ETHZ CV2012: Information
ETHZ CV2012: InformationETHZ CV2012: Information
ETHZ CV2012: Informationzukun
 
Siwei lyu: natural image statistics
Siwei lyu: natural image statisticsSiwei lyu: natural image statistics
Siwei lyu: natural image statisticszukun
 
Lecture9 camera calibration
Lecture9 camera calibrationLecture9 camera calibration
Lecture9 camera calibrationzukun
 
Modern features-part-4-evaluation
Modern features-part-4-evaluationModern features-part-4-evaluation
Modern features-part-4-evaluationzukun
 
Modern features-part-3-software
Modern features-part-3-softwareModern features-part-3-software
Modern features-part-3-softwarezukun
 
Modern features-part-2-descriptors
Modern features-part-2-descriptorsModern features-part-2-descriptors
Modern features-part-2-descriptorszukun
 
Modern features-part-1-detectors
Modern features-part-1-detectorsModern features-part-1-detectors
Modern features-part-1-detectorszukun
 
Modern features-part-0-intro
Modern features-part-0-introModern features-part-0-intro
Modern features-part-0-introzukun
 
Lecture 02 internet video search
Lecture 02 internet video searchLecture 02 internet video search
Lecture 02 internet video searchzukun
 
Lecture 01 internet video search
Lecture 01 internet video searchLecture 01 internet video search
Lecture 01 internet video searchzukun
 
Lecture 03 internet video search
Lecture 03 internet video searchLecture 03 internet video search
Lecture 03 internet video searchzukun
 
Icml2012 tutorial representation_learning
Icml2012 tutorial representation_learningIcml2012 tutorial representation_learning
Icml2012 tutorial representation_learningzukun
 
Advances in discrete energy minimisation for computer vision
Advances in discrete energy minimisation for computer visionAdvances in discrete energy minimisation for computer vision
Advances in discrete energy minimisation for computer visionzukun
 
Gephi tutorial: quick start
Gephi tutorial: quick startGephi tutorial: quick start
Gephi tutorial: quick startzukun
 
EM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysisEM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysiszukun
 
Object recognition with pictorial structures
Object recognition with pictorial structuresObject recognition with pictorial structures
Object recognition with pictorial structureszukun
 
Iccv2011 learning spatiotemporal graphs of human activities
Iccv2011 learning spatiotemporal graphs of human activities Iccv2011 learning spatiotemporal graphs of human activities
Iccv2011 learning spatiotemporal graphs of human activities zukun
 
Icml2012 learning hierarchies of invariant features
Icml2012 learning hierarchies of invariant featuresIcml2012 learning hierarchies of invariant features
Icml2012 learning hierarchies of invariant featureszukun
 

More from zukun (20)

My lyn tutorial 2009
My lyn tutorial 2009My lyn tutorial 2009
My lyn tutorial 2009
 
ETHZ CV2012: Tutorial openCV
ETHZ CV2012: Tutorial openCVETHZ CV2012: Tutorial openCV
ETHZ CV2012: Tutorial openCV
 
ETHZ CV2012: Information
ETHZ CV2012: InformationETHZ CV2012: Information
ETHZ CV2012: Information
 
Siwei lyu: natural image statistics
Siwei lyu: natural image statisticsSiwei lyu: natural image statistics
Siwei lyu: natural image statistics
 
Lecture9 camera calibration
Lecture9 camera calibrationLecture9 camera calibration
Lecture9 camera calibration
 
Modern features-part-4-evaluation
Modern features-part-4-evaluationModern features-part-4-evaluation
Modern features-part-4-evaluation
 
Modern features-part-3-software
Modern features-part-3-softwareModern features-part-3-software
Modern features-part-3-software
 
Modern features-part-2-descriptors
Modern features-part-2-descriptorsModern features-part-2-descriptors
Modern features-part-2-descriptors
 
Modern features-part-1-detectors
Modern features-part-1-detectorsModern features-part-1-detectors
Modern features-part-1-detectors
 
Modern features-part-0-intro
Modern features-part-0-introModern features-part-0-intro
Modern features-part-0-intro
 
Lecture 02 internet video search
Lecture 02 internet video searchLecture 02 internet video search
Lecture 02 internet video search
 
Lecture 01 internet video search
Lecture 01 internet video searchLecture 01 internet video search
Lecture 01 internet video search
 
Lecture 03 internet video search
Lecture 03 internet video searchLecture 03 internet video search
Lecture 03 internet video search
 
Icml2012 tutorial representation_learning
Icml2012 tutorial representation_learningIcml2012 tutorial representation_learning
Icml2012 tutorial representation_learning
 
Advances in discrete energy minimisation for computer vision
Advances in discrete energy minimisation for computer visionAdvances in discrete energy minimisation for computer vision
Advances in discrete energy minimisation for computer vision
 
Gephi tutorial: quick start
Gephi tutorial: quick startGephi tutorial: quick start
Gephi tutorial: quick start
 
EM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysisEM algorithm and its application in probabilistic latent semantic analysis
EM algorithm and its application in probabilistic latent semantic analysis
 
Object recognition with pictorial structures
Object recognition with pictorial structuresObject recognition with pictorial structures
Object recognition with pictorial structures
 
Iccv2011 learning spatiotemporal graphs of human activities
Iccv2011 learning spatiotemporal graphs of human activities Iccv2011 learning spatiotemporal graphs of human activities
Iccv2011 learning spatiotemporal graphs of human activities
 
Icml2012 learning hierarchies of invariant features
Icml2012 learning hierarchies of invariant featuresIcml2012 learning hierarchies of invariant features
Icml2012 learning hierarchies of invariant features
 

Recently uploaded

Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxsocialsciencegdgrohi
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxAnaBeatriceAblay2
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13Steve Thomason
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 

Recently uploaded (20)

Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptxHistory Class XII Ch. 3 Kinship, Caste and Class (1).pptx
History Class XII Ch. 3 Kinship, Caste and Class (1).pptx
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptxENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
ENGLISH5 QUARTER4 MODULE1 WEEK1-3 How Visual and Multimedia Elements.pptx
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13The Most Excellent Way | 1 Corinthians 13
The Most Excellent Way | 1 Corinthians 13
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 

CVPR2010: higher order models in computer vision: Part 3

  • 1. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Higher Order Models in Computer Vision: Inference Carsten Rother, Sebastian Nowozin Machine Learning and Perception Group Microsoft Research Cambridge San Francisco, 18th June 2010 Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 2. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Belief Propagation Belief Propagation Reminder Sum-product belief propagation rF →Yi Max-product/Max-sum/Min-sum belief . . Yi . . propagation qYi →F F Uses Messages: vectors at the factor graph edges qYi →F ∈ RYi , the variable-to-factor message, and rF →Yi ∈ RYi , the factor-to-variable message. Updates: iteratively recomputing these vectors Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 3. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Belief Propagation Belief Propagation Reminder: Min-Sum Updates (cont) Variable-to-factor message rA→Yi A qYi →F qYi →F (yi ) = rF →Yi (yi ) Yi F ∈ M(i){F } B rF →Yi F . rB→Yi . . Factor-to-variable message   Yj qYj →F rF →Yi   Yi rF →Yi (yi ) = min EF (yF ) +  qYj →F (yj )  Yk qYk →F F qYi →F y ∈YF F yi =yi j∈ . . . N(F ){i} Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 4. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Belief Propagation Belief Propagation Reminder: Min-Sum Updates (cont) Variable-to-factor message rA→Yi A qYi →F qYi →F (yi ) = rF →Yi (yi ) Yi F ∈ M(i){F } B rF →Yi F . rB→Yi . . Factor-to-variable message   Yj qYj →F rF →Yi   Yi rF →Yi (yi ) = min EF (yF ) +  qYj →F (yj )  Yk qYk →F F qYi →F y ∈YF F yi =yi j∈ . . . N(F ){i} Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 5. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Belief Propagation Higher-order Factors Factor-to-variable message   Yj   rF →Yi (yi ) = min EF (yF ) +  qYj →F (yj )  Yk y ∈YF F rF →Yi j∈ yi =yi N(F ){i} Yi Yl F . . . Minimization becomes intractable for Ym general EF Tractable for special structure of EF Yn See (Felzenszwalb and Huttenlocher, CVPR 2004), (Potetz, CVPR 2007), and (Tarlow et al., AISTATS 2010) Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 6. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Belief Propagation Higher-order Factors Factor-to-variable message   Yj   rF →Yi (yi ) = min EF (yF ) +  qYj →F (yj )  Yk y ∈YF F rF →Yi j∈ yi =yi N(F ){i} Yi Yl F . . . Minimization becomes intractable for Ym general EF Tractable for special structure of EF Yn See (Felzenszwalb and Huttenlocher, CVPR 2004), (Potetz, CVPR 2007), and (Tarlow et al., AISTATS 2010) Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 7. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Relaxations Problem Relaxations Optimization problems (minimizing g : G → R over Y ⊆ G) can become easier if feasible set is enlarged, and/or objective function is replaced with a bound. g(x), h(x) g(y) Y h(z) Z⊇Y y, z Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 8. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Relaxations Problem Relaxations Optimization problems (minimizing g : G → R over Y ⊆ G) can become easier if feasible set is enlarged, and/or objective function is replaced with a bound. Definition (Relaxation (Geoffrion, 1974)) Given two optimization problems (g , Y, G) and (h, Z, G), the problem (h, Z, G) is said to be a relaxation of (g , Y, G) if, 1. Z ⊇ Y, i.e. the feasible set of the relaxation contains the feasible set of the original problem, and 2. ∀y ∈ Y : h(y ) ≤ g (y ), i.e. over the original feasible set the objective function h achieves no larger values than the objective function g . (Minimization version) Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 9. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Relaxations Relaxations Relaxed solution z ∗ provides a bound: h(z ∗ ) ≥ g (y ∗ ), (maximization: upper bound) h(z ∗ ) ≤ g (y ∗ ), (minimization: lower bound) Relaxation is typically tractable Evidence that relaxations are “better” for learning (Kulesza and Pereira, 2007), (Finley and Joachims, 2008), (Martins et al., 2009) Drawback: z ∗ ∈ Z Y possible solution is not integral (but fractional), or solution violates constraints (primal infeasible). To obtain z ∈ Y from y ∗ : rounding, heuristics Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 10. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Relaxations Relaxations Relaxed solution z ∗ provides a bound: h(z ∗ ) ≥ g (y ∗ ), (maximization: upper bound) h(z ∗ ) ≤ g (y ∗ ), (minimization: lower bound) Relaxation is typically tractable Evidence that relaxations are “better” for learning (Kulesza and Pereira, 2007), (Finley and Joachims, 2008), (Martins et al., 2009) Drawback: z ∗ ∈ Z Y possible solution is not integral (but fractional), or solution violates constraints (primal infeasible). To obtain z ∈ Y from y ∗ : rounding, heuristics Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 11. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Relaxations Constructing Relaxations Principled methods to construct relaxations Linear Programming Relaxations Lagrangian relaxation Lagrangian/Dual decomposition Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 12. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Relaxations Constructing Relaxations Principled methods to construct relaxations Linear Programming Relaxations Lagrangian relaxation Lagrangian/Dual decomposition Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 13. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions MAP-MRF LP MAP-MRF Linear Programming Relaxation Simple two variable pairwise MRF Y1 Y2 Y1 Y1 × Y2 Y2 θ1 θ1,2 θ2 Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 14. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions MAP-MRF LP MAP-MRF Linear Programming Relaxation Y1 Y2 Y1 Y1 × Y2 Y2 y1 = 2 (y1 , y2 ) = (2, 3) y2 = 3 Energy E (y ; x) = θ1 (y1 ; x) + θ1,2 (y1 , y2 ; x) + θ2 (y2 ; x) 1 Probability p(y |x) = Z (x) exp{−E (y ; x)} MAP prediction: argmax p(y |x) = argmin E (y ; x) y ∈Y y ∈Y Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 15. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions MAP-MRF LP MAP-MRF Linear Programming Relaxation Y1 Y2 Y1 Y1 × Y2 Y2 µ1 ∈ {0, 1}Y1 µ1,2 ∈ {0, 1}Y1 ×Y2 µ2 ∈ {0, 1}Y2 µ1 (y1 ) = y2 ∈Y2 µ1,2 (y1 , y2 ) y1 ∈Y1 µ1,2 (y1 , y2 ) = µ2 (y2 ) y1 ∈Y1 µ1 (y1 ) = 1 (y1 ,y2 )∈Y1 ×Y2 µ1,2 (y1 , y2 ) = 1 y2 ∈Y2 µ2 (y2 ) = 1 Energy is now linear: E (y ; x) = θ, µ Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 16. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions MAP-MRF LP MAP-MRF Linear Programming Relaxation (cont) min θi (yi )µi (yi ) + θi,j (yi , yj )µi,j (yi , yj ) µ i∈V yi ∈Yi {i,j}∈E (yi ,yj )∈Yi ×Yj sb.t. µi (yi ) = 1, ∀i ∈ V , yi ∈Yi µi,j (yi , yj ) = µi (yi ), ∀{i, j} ∈ E , ∀yi ∈ Yi yj ∈Yj µi (yi ) ∈ {0, 1}, ∀i ∈ V , ∀yi ∈ Yi , µi,j (yi , yj ) ∈ {0, 1}, ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj . Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 17. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions MAP-MRF LP MAP-MRF Linear Programming Relaxation (cont) min θi (yi )µi (yi ) + θi,j (yi , yj )µi,j (yi , yj ) µ i∈V yi ∈Yi {i,j}∈E (yi ,yj )∈Yi ×Yj sb.t. µi (yi ) = 1, ∀i ∈ V , yi ∈Yi µi,j (yi , yj ) = µi (yi ), ∀{i, j} ∈ E , ∀yi ∈ Yi yj ∈Yj µi (yi ) ∈ {0, 1}, ∀i ∈ V , ∀yi ∈ Yi , µi,j (yi , yj ) ∈ {0, 1}, ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj . → NP-hard integer linear program Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 18. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions MAP-MRF LP MAP-MRF Linear Programming Relaxation (cont) min θi (yi )µi (yi ) + θi,j (yi , yj )µi,j (yi , yj ) µ i∈V yi ∈Yi {i,j}∈E (yi ,yj )∈Yi ×Yj sb.t. µi (yi ) = 1, ∀i ∈ V , yi ∈Yi µi,j (yi , yj ) = µi (yi ), ∀{i, j} ∈ E , ∀yi ∈ Yi yj ∈Yj µi (yi ) ∈ [0, 1], ∀i ∈ V , ∀yi ∈ Yi , µi,j (yi , yj ) ∈ [0, 1], ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj . → linear program → LOCAL polytope Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 19. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions MAP-MRF LP MAP-MRF LP Relaxation, Works MAP-MRF LP Analysis (Wainwright et al., Trans. Inf. Tech., 2005), (Weiss et al., UAI 2007), (Werner, PAMI 2005) TRW-S (Kolmogorov, PAMI 2006) Improving tightness (Komodakis and Paragios, ECCV 2008), (Kumar and Torr, ICML 2008), (Sontag and Jaakkola, NIPS 2007), (Sontag et al., UAI 2008), (Werner, CVPR 2008), (Kumar et al., NIPS 2007) Algorithms based on the LP (Globerson and Jaakkola, NIPS 2007), (Kumar and Torr, ICML 2008), (Sontag et al., UAI 2008) Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 20. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions MAP-MRF LP MAP-MRF LP Relaxation, General case B A yA ∈YA µA (yA ) = 1, yA ∈YA µA (yA ) = µB (yB ), ∀yB ∈ YB . [yA ]B =yB Generalization to higher-order factors For B ⊆ A factors: marginalization constraints Defines LOCAL polytope (Wainwright and Jordan, 2008) Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 21. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions MAP-MRF LP MAP-MRF LP Relaxation, Known results 1. LOCAL is tight iff the factor graph is a forest (acyclic) 2. All labelings are vertices of LOCAL (Wainwright and Jordan, 2008) 3. For cyclic graphs there are additional fractional vertices. 4. If all factors have regular energies, the fractional solutions are never optimal (Wainwright and Jordan, 2008) 5. For models with only binary states: half-integrality, integral variables are certain See some examples later... Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 22. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Constructing Relaxations Principled methods to construct relaxations Linear Programming Relaxations Lagrangian relaxation Lagrangian/Dual decomposition Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 23. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Lagrangian Relaxation, Motivation B A yA ∈YA µA (yA ) = µB (yB ), ∀yB ∈ YB . [yA ]B =yB MAP-MRF LP with higher-order factors problematic: Number of LP variables grows with |YA | → exponential in MRF variables But: number of constraints stays small (|YB |) Lagrangian Relaxation allows one to solve the LP by treating the constraints implicitly Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 24. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Lagrangian Relaxation min g (y ) y sb.t. y ∈ D, y ∈ C. Assumption Optimizing g (y ) over y ∈ D is “easy”. Optimizing over y ∈ D ∩ C is hard. High-level idea Incorporate y ∈ C constraint into objective function For an excellent introduction, see (Guignard, “Lagrangean Relaxation”, TOP 2003) and (Lemar´chal, “Lagrangian Relaxation”, 2001). e Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 25. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Lagrangian Relaxation (cont) Recipe 1. Express C in terms of equalities and inequalities C = {y ∈ G : ui (y ) = 0, ∀i = 1, . . . , I , vj (y ) ≤ 0, ∀j = 1, . . . , J}, ui : G → R differentiable, typically affine, vj : G → R differentiable, typically convex. 2. Introduce Lagrange multipliers, yielding min g (y ) y sb.t. y ∈ D, ui (y ) = 0 : λ, i = 1, . . . , I , vj (y ) ≤ 0 : µ, j = 1, . . . , J. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 26. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Lagrangian Relaxation (cont) 2. Introduce Lagrange multipliers, yielding min g (y ) y sb.t. y ∈ D, ui (y ) = 0 : λ, i = 1, . . . , I , vj (y ) ≤ 0 : µ, j = 1, . . . , J. 3. Build partial Lagrangian min g (y ) + λ u(y ) + µ v (y ) (1) y sb.t. y ∈ D. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 27. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Lagrangian Relaxation (cont) 3. Build partial Lagrangian min g (y ) + λ u(y ) + µ v (y ) (1) y sb.t. y ∈ D. Theorem (Weak Duality of Lagrangean Relaxation) For differentiable functions ui : G → R and vj : G → R, and for any λ ∈ RI and any non-negative µ ∈ RJ , µ ≥ 0, problem (1) is a relaxation of the original problem: its value is lower than or equal to the optimal value of the original problem. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 28. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Lagrangian Relaxation (cont) 3. Build partial Lagrangian q(λ, µ) := min g (y ) + λ u(y ) + µ v (y ) (1) y sb.t. y ∈ D. 4. Maximize lower bound wrt λ, µ max q(λ, µ) λ,µ sb.t. µ≥0 → efficiently solvable if q(λ, µ) can be evaluated Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 29. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Optimizing Lagrangian Dual Functions 4. Maximize lower bound wrt λ, µ max q(λ, µ) (2) λ,µ sb.t. µ≥0 Theorem (Lagrangean Dual Function) 1. q is concave in λ and µ, Problem (2) is a concave maximization problem. 2. If q is unbounded above, then the original problem is infeasible. 3. For any λ, µ ≥ 0, let y (λ, µ) = argminy ∈D g (y ) + λ u(y ) + µ v (u) Then, a supergradient of q can be constructed by evaluating the constraint functions at y (λ, µ) as ∂ ∂ u(y (λ, µ)) ∈ q(λ, µ), and v (y (λ, µ)) ∈ q(λ, µ). ∂λ ∂µ Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 30. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Subgradients, Supergradients f (x) Subgradients for convex functions: global affine underestimators Supergradients for concave functions: global affine overestimators Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 31. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Subgradients, Supergradients f (x) x Subgradients for convex functions: global affine underestimators Supergradients for concave functions: global affine overestimators Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 32. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Subgradients, Supergradients f (x) x f (y) ≥ f (x) + g (y − x), ∀y Subgradients for convex functions: global affine underestimators Supergradients for concave functions: global affine overestimators Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 33. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Subgradients, Supergradients f (x) x ∂ 0∈ ∂x f (x) Subgradients for convex functions: global affine underestimators Supergradients for concave functions: global affine overestimators Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 34. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Example behaviour of objectives (from a 10-by-10 pairwise binary MRF relaxation, submodular) 10 Dual objective 0 Primal objective −10 Objective −20 −30 −40 −50 0 50 100 150 200 250 Iteration Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 35. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Primal Solution Recovery Assume we solved the dual problem for (λ∗ , µ∗ ) 1. Can we obtain a primal solution y ∗ ? 2. Can we say something about the relaxation quality? Theorem (Sufficient Optimality Conditions) If for a given λ, µ ≥ 0, we have u(y (λ, µ)) = 0 and v (y (λ, µ)) ≤ 0 (primal feasibility) and further we have λ u(y (λ, µ)) = 0, and µ v (y (λ, µ)) = 0, (complementary slackness), then y (λ, µ) is an optimal primal solution to the original problem, and (λ, µ) is an optimal solution to the dual problem. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 36. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Primal Solution Recovery Assume we solved the dual problem for (λ∗ , µ∗ ) 1. Can we obtain a primal solution y ∗ ? 2. Can we say something about the relaxation quality? Theorem (Sufficient Optimality Conditions) If for a given λ, µ ≥ 0, we have u(y (λ, µ)) = 0 and v (y (λ, µ)) ≤ 0 (primal feasibility) and further we have λ u(y (λ, µ)) = 0, and µ v (y (λ, µ)) = 0, (complementary slackness), then y (λ, µ) is an optimal primal solution to the original problem, and (λ, µ) is an optimal solution to the dual problem. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 37. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Primal Solution Recovery (cont) But, we might never see a solution satisfying the optimality condition is the case only if there is no duality gap, i.e. q(λ∗ , µ∗ ) = g (x, y ∗ ) Special case: integer linear programs we can always reconstruct a primal solution to min g (y ) (3) y sb.t. y ∈ conv(D), y ∈ C. For example for subgradient method updates it is known that (Anstreicher and Wolsey, MathProg 2009) T 1 lim y (λt , µt ) → y ∗ of (3). T →∞ T t=1 Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 38. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Application to higher-order factors B A yA ∈YA µA (yA ) = µB (yB ), ∀yB ∈ YB . [yA ]B =yB (Komodakis and Paragios, CVPR 2009) propose a MAP inference algorithm suitable for higher-order factors Can be seen as Lagrangian relaxation of the marginalization constraint of the MAP-MRF LP See also (Johnson et al., ACCC 2007), (Schlesinger and Giginyak, CSC 2007), (Wainwright and Jordan, 2008, Sect. 4.1.3), (Werner, PAMI 2005), (Werner, TechReport 2009), (Werner, CVPR 2008) Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 39. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Komodakis MAP-MRF Decomposition min θi (yi )µi (yi ) + θi,j (yi , yj )µi,j (yi , yj ) µ i∈V yi ∈Yi {i,j}∈ (yi ,yj )∈ E Yi ×Yj sb.t. µi (yi ) = 1, ∀i ∈ V , yi ∈Yi µi,j (yi , yj ) = 1, ∀{i, j} ∈ E , (yi ,yj )∈Yi ×Yj µi,j (yi , yj ) = µi (yi ), ∀{i, j} ∈ E , ∀yi ∈ Yi yj ∈Yj µi (yi ) ∈ {0, 1}, ∀i ∈ V , ∀yi ∈ Yi , µi,j (yi , yj ) ∈ {0, 1}, ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj . Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 40. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Komodakis MAP-MRF Decomposition min θi , µ i + θi,j , µi,j µ i∈V {i,j}∈ E sb.t. µi (yi ) = 1, ∀i ∈ V , yi ∈Yi µi,j (yi , yj ) = 1, ∀{i, j} ∈ E , (yi ,yj )∈Yi ×Yj µi,j (yi , yj ) = µi (yi ), ∀{i, j} ∈ E , ∀yi ∈ Yi yj ∈Yj µi (yi ) ∈ {0, 1}, ∀i ∈ V , ∀yi ∈ Yi , µi,j (yi , yj ) ∈ {0, 1}, ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj . Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 41. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Komodakis MAP-MRF Decomposition min θi , µ i + θi,j , µi,j + θA (yA )µA (yA ) µ i∈V {i,j}∈ yA ∈YA E sb.t. µi (yi ) = 1, ∀i ∈ V , yi ∈Yi µi,j (yi , yj ) = 1, ∀{i, j} ∈ E , (yi ,yj )∈Yi ×Yj µi,j (yi , yj ) = µi (yi ), ∀{i, j} ∈ E , ∀yi ∈ Yi yj ∈Yj µA (yA ) = µB (yB ), ∀B ⊂ A, yB ∈ YB , yA ∈YA ,[yA ]B =yB µA (yA ) = 1, yA ∈YA µi (yi ) ∈ {0, 1}, ∀i ∈ V , ∀yi ∈ Yi , µi,j (yi , yj ) ∈ {0, 1}, ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj , µA (yA ) ∈ {0, 1}, ∀yA ∈ YA . Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 42. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Komodakis MAP-MRF Decomposition min θi , µ i + θi,j , µi,j + θA (yA )µA (yA ) µ i∈V {i,j}∈ yA ∈YA E sb.t. µi (yi ) = 1, ∀i ∈ V , yi ∈Yi µi,j (yi , yj ) = 1, ∀{i, j} ∈ E , (yi ,yj )∈Yi ×Yj µi,j (yi , yj ) = µi (yi ), ∀{i, j} ∈ E , ∀yi ∈ Yi yj ∈Yj µA (yA ) = µB (yB ) : φA→B (yB ), ∀B ⊂ A, yB ∈ YB , yA ∈YA ,[yA ]B =yB µA (yA ) = 1, yA ∈YA µi (yi ) ∈ {0, 1}, ∀i ∈ V , ∀yi ∈ Yi , µi,j (yi , yj ) ∈ {0, 1}, ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj , µA (yA ) ∈ {0, 1}, ∀yA ∈ YA . Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 43. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Komodakis MAP-MRF Decomposition q(φ) := min θi , µ i + θi,j , µi,j + θA (yA )µA (yA ) µ i∈V {i,j}∈ yA ∈YA E   + φA→B (yB )  µA (yA ) − µB (yB ) B⊂A, yA ∈YA ,[yA ]B =yB yB ∈YB sb.t. µi (yi ) = 1, ∀i ∈ V , yi ∈Yi µi,j (yi , yj ) = 1, ∀{i, j} ∈ E , (yi ,yj )∈Yi ×Yj µA (yA ) = 1, yA ∈YA µi,j (yi , yj ) = µi (yi ), ∀{i, j} ∈ E , ∀yi ∈ Yi yj ∈Yj µi (yi ) ∈ {0, 1}, ∀i ∈ V , ∀yi ∈ Yi , µi,j (yi , yj ) ∈ {0, 1}, ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj , Carsten Rother, Sebastian Nowozin µA (yA ) ∈ {0, 1}, ∀yA ∈ YA . Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 44. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Komodakis MAP-MRF Decomposition q(φ) := min θi , µ i + θi,j , µi,j + θA (yA )µA (yA ) µ i∈V {i,j}∈ yA ∈YA E + φA→B (yB ) µA (yA ) − φA→B (yB )µB (yB ) B⊂A, yA ∈YA ,[yA ]B =yB B⊂A, yB ∈YB yB ∈YB sb.t. µi (yi ) = 1, ∀i ∈ V , yi ∈Yi µi,j (yi , yj ) = 1, ∀{i, j} ∈ E , (yi ,yj )∈Yi ×Yj µA (yA ) = 1, yA ∈YA µi,j (yi , yj ) = µi (yi ), ∀{i, j} ∈ E , ∀yi ∈ Yi yj ∈Yj µi (yi ) ∈ {0, 1}, ∀i ∈ V , ∀yi ∈ Yi , µi,j (yi , yj ) ∈ {0, 1}, ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj , µA (yA ) ∈ {0, 1}, ∀yA ∈ YA . Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 45. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Komodakis MAP-MRF Decomposition q(φ) := min θi , µ i + θi,j , µi,j − φA→B (yB )µB (yB ) µ i∈V {i,j}∈ B⊂A, E yB ∈YB + φA→B (yB ) µA (yA ) + θA (yA )µA (yA ) B⊂A, yA ∈YA ,[yA ]B =yB yA ∈YA yB ∈YB sb.t. µi (yi ) = 1, ∀i ∈ V , yi ∈Yi µi,j (yi , yj ) = 1, ∀{i, j} ∈ E , (yi ,yj )∈Yi ×Yj µA (yA ) = 1, yA ∈YA µi,j (yi , yj ) = µi (yi ), ∀{i, j} ∈ E , ∀yi ∈ Yi yj ∈Yj µi (yi ) ∈ {0, 1}, ∀i ∈ V , ∀yi ∈ Yi , µi,j (yi , yj ) ∈ {0, 1}, ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj , µA (yA ) ∈ {0, 1}, ∀yA ∈ YA . Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 46. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Komodakis MAP-MRF Decomposition q(φ) := min θi , µ i + θi,j , µi,j − φA→B (yB )µB (yB ) µ i∈V {i,j}∈ B⊂A, E yB ∈YB + φA→B (yB ) µA (yA ) + θA (yA )µA (yA ) B⊂A, yA ∈YA ,[yA ]B =yB yA ∈YA yB ∈YB sb.t. µi (yi ) = 1, ∀i ∈ V , yi ∈Yi µi,j (yi , yj ) = 1, ∀{i, j} ∈ E , (yi ,yj )∈Yi ×Yj µA (yA ) = 1, yA ∈YA µi,j (yi , yj ) = µi (yi ), ∀{i, j} ∈ E , ∀yi ∈ Yi yj ∈Yj µi (yi ) ∈ {0, 1}, ∀i ∈ V , ∀yi ∈ Yi , µi,j (yi , yj ) ∈ {0, 1}, ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj , µA (yA ) ∈ {0, 1}, ∀yA ∈ YA . Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 47. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Komodakis MAP-MRF Decomposition q(φ) := min θi , µ i + θi,j , µi,j − φA→B (yB )µB (yB ) µ i∈V {i,j}∈ B⊂A, E yB ∈YB + φA→B (yB ) µA (yA ) + θA (yA )µA (yA ) B⊂A, yA ∈YA ,[yA ]B =yB yA ∈YA yB ∈YB sb.t. µi (yi ) = 1, ∀i ∈ V , yi ∈Yi µi,j (yi , yj ) = 1, ∀{i, j} ∈ E , (yi ,yj )∈Yi ×Yj µA (yA ) = 1, yA ∈YA µi,j (yi , yj ) = µi (yi ), ∀{i, j} ∈ E , ∀yi ∈ Yi yj ∈Yj µi (yi ) ∈ {0, 1}, ∀i ∈ V , ∀yi ∈ Yi , µi,j (yi , yj ) ∈ {0, 1}, ∀{i, j} ∈ E , ∀(yi , yj ) ∈ Yi × Yj , µA (yA ) ∈ {0, 1}, ∀yA ∈ YA . Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 48. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Message passing B D φA→B φA→D φA→C A φA→E C E Maximizing q(φ) corresponds to message passing from the higher-order factor to the unary factors Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 49. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation The higher-order subproblem min φA→B (yB ) µA (yA ) + θA (yA )µA (yA ) µA B⊂A, yA ∈YA ,[yA ]B =yB yA ∈YA yB ∈YB sb.t. µA (yA ) = 1, yA ∈YA µA (yA ) ∈ {0, 1}, ∀yA ∈ YA . Simple structure: select one element Simplify to an optimization problem over yA ∈ YA Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 50. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation The higher-order subproblem min θA (yA ) + I ([yA ]B = yB )φA→B (yB ) yA ∈YA B⊂A, yB ∈YB Solvability depends on structure of θA as function of yA ∗ (For now) assume we can solve for yA ∈ YA How can we use this to solve the original large LP? Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 51. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Maximizing the dual function: Subgradient Method Maximizing q(φ): 1. Initialize φ 2. Iterate 2.1 Given φ solve pairwise MAP subproblem, obtain µ∗ , µ∗ 1 2 2.2 Given φ solve higher-order MAP subproblem, obtain y∗A 2.3 Update φ Supergradient ∂ ∗ (I ([yA ]B = yB ) − µB (yB )) ∂φB (yB ) B⊂A, yB ∈YB Supergradient ascent, step size αt > 0 ∗ φB (yB ) ← φB (yB ) + αt (I ([yA ]B = yB ) − µB (yB )) B⊂A, yB ∈YB The step size αt must satisfy the “diminishing step size conditions”, i) limt→∞ αt → 0, and ii) ∞ αt → ∞. t=0 Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 52. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Subgradient Method (cont) Typical step size choices 1. Simple diminishing step size, 1+m αt = , t +m where m > 0 is an arbitrary constant. 2. Polyak’s step size, q − q(λt , µt ) ¯ αt = β t t , µt )) 2 + v (y (λt , µt )) 2 , u(y (λ where 0 < β t < 2 is a diminishing step size, and q ≥ q(λ∗ , µ∗ ) is an upper bound on the optimal dual objective. ¯ Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 53. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Subgradient Method (cont) Primal solution recovery Uniform average T 1 lim y (λt , µt ) → y ∗ . T →∞ T t=1 Geometric series (volume algorithm) y t = γy (λt , µt ) + (1 − γ)¯ t−1 , ¯ y where 0 < γ < 1 is a small constant such as γ = 0.1, and y t might ¯ be slightly primal infeasible. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 54. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Pattern-based higher order potentials Example (Pattern-based potentials) Given a small set of patterns P = {y1 , y2 , . . . , yK }, define CyA if yA ∈ P, θA (yA ) = Cmax otherwise. (Rother et al, CVPR 2009), (Komodakis and Paragios, CVPR 2009) Generalizes P n -Potts model (Kohli et al., CVPR 2007) “Patterns have low energies”: Cy ≤ Cmax for all y ∈ P Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 55. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Lagrangian Relaxation Pattern-based higher order potentials Example (Pattern-based potentials) Given a small set of patterns P = {y1 , y2 , . . . , yK }, define CyA if yA ∈ P, θA (yA ) = Cmax otherwise. Can solve min θA (yA ) + I ([yA ]B = yB )φA→B (yB ) yA ∈YA B⊂A, yB ∈YB by 1. Testing all yA ∈ P, and 2. Fixing θA (yA ) = Cmax and solving for the minimum of the second term. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 56. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Constructing Relaxations Principled methods to construct relaxations Linear Programming Relaxations Lagrangian relaxation Lagrangian/Dual decomposition Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 57. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Dual/Lagrangian Decomposition Additive structure K min gk (y ) y k=1 sb.t. y ∈ Yk , ∀k = 1, . . . , K , K such that k=1 gk (y ) is hard, but for any k, min gk (y ) y sb.t. y ∈ Yk is tractable. (Guignard, “Lagrangean Decomposition”, MathProg 1987) (Conejo et al., “Decomposition Techniques in Mathematical Programming”, 2006) Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 58. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Dual/Lagrangian Decomposition Idea 1. Selectively duplicate variables (“variable splitting”) K min gk (yk ) y1 ,...,yK ,y k=1 sb.t. y ∈Y , yk ∈ Yk , k = 1, . . . , K , y = yk : λk , k = 1, . . . , K , (4) where Y ⊇ k=1,...,K Yk . 2. Add coupling equality constraints between duplicated variables 3. Apply Lagrangian relaxation to the coupling constraint Also known as dual decomposition and variable splitting. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 59. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Dual/Lagrangian Decomposition (cont) K min gk (yk ) y1 ,...,yK ,y k=1 sb.t. y ∈Y , yk ∈ Yk , k = 1, . . . , K , y = yk : λk , k = 1, . . . , K . (5) Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 60. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Dual/Lagrangian Decomposition (cont) K K min gk (yk ) + λk (y − yk ) y1 ,...,yK ,y k=1 k=1 sb.t. y ∈Y , yk ∈ Yk , k = 1, . . . , K , Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 61. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Dual/Lagrangian Decomposition (cont) K K min gk (yk ) − λk yk + λk y y1 ,...,yK ,y k=1 k=1 sb.t. y ∈Y , yk ∈ Yk , k = 1, . . . , K , Problem is decomposed There can be multiple possible decompositions of different quality Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 62. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Dual/Lagrangian Decomposition (cont) Dual function K K q(λ) := min gk (yk ) − λk yk + λk y y1 ,...,yK ,y k=1 k=1 sb.t. y ∈Y , yk ∈ Yk , k = 1, . . . , K , Dual maximization problem max q(λ) λ K sb.t. λk = 0, k=1 K where {λ| k=1 λk = 0} is the domain where q(λ) > −∞. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 63. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Dual/Lagrangian Decomposition (cont) Dual maximization problem max q(λ) λ K sb.t. λk = 0, k=1 Projected subgradient method, using K K ∂ 1 1 (y − yk ) − (y − y ) = y − yk . ∂λk K K =1 =1 Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 64. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Example (Connectivity, Vicente et al., CVPR 2008) Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 65. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Example (Connectivity, Vicente et al., CVPR 2008) Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 66. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Example (Connectivity, Vicente et al., CVPR 2008) min E (y ) + C (y ), y where E (y ) is a normal binary pairwise segmentation energy, and 0 if marked points are connected, C (y ) = ∞ otherwise. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 67. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Example (Connectivity, Vicente et al., CVPR 2008) miny ,z E (y ) + C (z) sb.t. y = z. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 68. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Example (Connectivity, Vicente et al., CVPR 2008) miny ,z E (y ) + C (z) sb.t. y = z : λ. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 69. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Example (Connectivity, Vicente et al., CVPR 2008) miny ,z E (y ) + C (z) + λ (y − z) Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 70. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Example (Connectivity, Vicente et al., CVPR 2008) q(λ) := miny ,z E (y ) + λ y + C (z) − λ z Subproblem 1 Subproblem 2 Subproblem 1: normal binary image segmentation energy Subproblem 2: shortest path problem (no pairwise terms) → Maximize q(λ) to find best lower bound Above derivation simplified, see (Vicente et al., CVPR 2008) for a more sophisticated decomposition using three subproblems Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 71. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Example (Connectivity, Vicente et al., CVPR 2008) q(λ) := miny ,z E (y ) + λ y + C (z) − λ z Subproblem 1 Subproblem 2 Subproblem 1: normal binary image segmentation energy Subproblem 2: shortest path problem (no pairwise terms) → Maximize q(λ) to find best lower bound Above derivation simplified, see (Vicente et al., CVPR 2008) for a more sophisticated decomposition using three subproblems Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 72. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Other examples Plenty of applications of decomposition: (Komodakis et al., ICCV 2007) (Strandmark and Kahl, CVPR 2010) (Torresani et al., ECCV 2008) (Werner, TechReport 2009) (Strandmark and Kahl, CVPR 2010) (Kumar and Koller, CVPR 2010) (Woodford et al., ICCV 2009) (Vicente et al., ICCV 2009) Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 73. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Geometric Interpretation Theorem (Lagrangian Decomposition Primal) Let Yk be finite sets and g (y ) = c y a linear objective function. Then the optimal solution of the Lagrangian decomposition obtains the value of the following relaxed primal optimization problem. K min gk (y ) y k=1 sb.t. y ∈ conv(Yk ), ∀k = 1, . . . , K . Therefore, optimizing the Lagrangian decomposition dual is equivalent to optimizing the primal objective, on the intersection of the convex hulls of the individual feasible sets. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 74. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Geometric Interpretation Theorem (Lagrangian Decomposition Primal) Let Yk be finite sets and g (y ) = c y a linear objective function. Then the optimal solution of the Lagrangian decomposition obtains the value of the following relaxed primal optimization problem. K min gk (y ) y k=1 sb.t. y ∈ conv(Yk ), ∀k = 1, . . . , K . Therefore, optimizing the Lagrangian decomposition dual is equivalent to optimizing the primal objective, on the intersection of the convex hulls of the individual feasible sets. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 75. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Geometric Interpretation (cont) yD y∗ conv(Y1 )∩ conv(Y2 ) conv(Y2) conv(Y1) c y Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 76. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Geometric Interpretation (cont) yD y∗ conv(Y1 )∩ conv(Y2 ) conv(Y2) conv(Y1) c y Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 77. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Geometric Interpretation (cont) yD y∗ conv(Y1 )∩ conv(Y2 ) conv(Y2) conv(Y1) c y Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 78. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Geometric Interpretation (cont) yD y∗ conv(Y1 )∩ conv(Y2 ) conv(Y2) conv(Y1) c y Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 79. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Lagrangian Relaxation vs. Decomposition Lagrangian Relaxation Needs explicit complicating constraints Lagrangian/Dual Decomposition Can work with black-box solver for subproblem (implicit) Can yield stronger bounds Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 80. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Dual Decomposition Lagrangian Relaxation vs. Decomposition Y1 ⊇ conv(Y1 ) yD yR y∗ conv(Y1 )∩ conv(Y2 ) conv(Y2) conv(Y1) c y Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 81. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Polyhedral Higher-order Interactions Polyhedral View on Higher-order Interactions Idea MAP-MRF LP relaxation: LOCAL polytope Incorporate higher-order interactions directly by constraining LOCAL Techniques from polyhedral combinatorics See (Werner, CVPR 2008), (Nowozin and Lampert, CVPR 2009), (Lempitsky et al., ICCV 2009) Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 82. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Polyhedral Higher-order Interactions Representation of Polytopes Convex polytopes have two equivalent representations d3 y ≤ 1 As a convex combination of extreme d2 y ≤ 1 points As a set of facet-defining linear inequalities Z A linear inequality with respect to a polytope can be d1 y ≤ 1 valid, does not cut off the polytope, representing a face, valid and touching, facet-defining, representing a face of dimension one less than the polytope. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 83. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Polyhedral Higher-order Interactions Intersecting Polytopes Construction 1. Consider marginal polytope M(G ) of a discrete graphical model M(G) 2. Vertices of M(G ) are feasible labelings 3. Add linear inequalities d µ ≤ b that cut off vertices 4. Optimize over resulting µ intersection M (G ), 0 if µ is valid, EA (µA ) = ∞ otherwise. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 84. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Polyhedral Higher-order Interactions Intersecting Polytopes Construction 1. Consider marginal polytope M(G ) of a discrete graphical model 2. Vertices of M(G ) are feasible M(G) labelings 3. Add linear inequalities d µ ≤ b that cut off vertices 4. Optimize over resulting µ intersection M (G ), 0 if µ is valid, EA (µA ) = ∞ otherwise. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 85. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Polyhedral Higher-order Interactions Intersecting Polytopes Construction 1. Consider marginal polytope d µ≤b M(G ) of a discrete graphical model 2. Vertices of M(G ) are feasible labelings M(G) 3. Add linear inequalities d µ ≤ b that cut off vertices 4. Optimize over resulting intersection M (G ), µ 0 if µ is valid, EA (µA ) = ∞ otherwise. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 86. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Polyhedral Higher-order Interactions Intersecting Polytopes Construction 1. Consider marginal polytope M(G ) of a discrete graphical model 2. Vertices of M(G ) are feasible M (G) labelings 3. Add linear inequalities d µ ≤ b that cut off vertices 4. Optimize over resulting µ intersection M (G ), 0 if µ is valid, EA (µA ) = ∞ otherwise. Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 87. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Polyhedral Higher-order Interactions Defining the Inequalities Questions 1. Where do the inequalities come from? 2. Is this construction always possible? 3. How to optimize over M (G )? Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 88. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Polyhedral Higher-order Interactions 1. Deriving Combinatorial Polytopes “Foreground mask must be connected” Global constraint on labelings Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 89. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Polyhedral Higher-order Interactions 1. Deriving Combinatorial Polytopes “Foreground mask must be connected” Global constraint on labelings Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference
  • 90. Belief Propagation Relaxations MAP-MRF LP Lagrangian Relaxation Dual Decomposition Polyhedral Higher-order Interactions Polyhedral Higher-order Interactions Constructing the Inequalities Carsten Rother, Sebastian Nowozin Microsoft Research Cambridge Higher Order Models in Computer Vision: Inference