Transfer Functions
A. Relate _________ input to _____________ output.
B. Represent an _________________ relationship in s
domain.
C. Can be _________________ to give the total system
behavior.
D. Convenient to use with ____________ diagrams.
E. Require initial conditions to be _____________. (use
_________ variables)
F. Additive property (parallel process)
single single
algebraic
combined
block
0
deviation
G1(s)
G2(s)
X2(s)
X1(s)
Y(s)
Y(s) = X1(s) G1(s) + X2(s) G2(s)
Transfer Functions (cont.)
G. Multiplicative property (series process)
H. _______________ is the limit of G(s) as s approaches
0 (for a unit step change) when the ____________
exists (see pg. 84).
I. Find the gain for the following transfer functions:
G2(s)
X2(s)
G1(s)
X1(s) Y(s)
Y(s) = X2(s) G2(s)
X2(s) = X1(s) G1(s)
So Y(s) = X1(s)G1(s) G2(s)
K
limit
G1 s
( ) =
1
τs + 1
G1 s
( ) =
a + bs
τs + 1
( )
( )( )
2
3
2
8
2
+
+
+
=
s
s
s
s
G
= 1
= a
( )( ) 3
4
2
3
8
=
=
Group Activity
1. Find ′
C (s) / ′
Ci(s)
)
(
)
(
)
( s
C
V
q
s
C
V
q
s
C
s i
′
−
′
=
′
)
(
)
( s
C
V
q
s
C
V
q
s i
′
=
′
⎟
⎠
⎞
⎜
⎝
⎛
+
)
(
)
(
1 s
C
s
C
s
q
V
i
′
=
′
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
⎟
⎠
⎞
⎜
⎝
⎛
+
=
′
′
1
1
)
(
)
(
s
q
V
s
C
s
C
i
q
V
p =
τ
1
=
p
K
C
V
q
C
V
q
dt
C
d
i
′
−
′
=
′
Group Activity
2. Find ′
C (s) / ′
Ci(s)
)
(
1
)
(
)
( s
C
s
C
V
q
s
C
s i
′
−
′
=
′
β
( ) )
(
)
(
1 s
C
V
q
s
C
s i
′
=
′
+ β
β
( )
1
)
(
)
(
+
=
′
′
s
V
q
s
C
s
C
i β
β β
τ =
p
V
q
Kp β
=
C
C
k
V
q
C
V
q
dt
C
d
i
′
⎟
⎠
⎞
⎜
⎝
⎛
+
−
′
=
′
2
2
1/β
Group Activity
3. Find and
′
T (s)/ ′
Ti (s) ′
T (s)/ ′
Q (s)
d ′
T
dt
=
q
V
( ′
Ti − ′
T ) +
′
Q
ρVCp V
q
=
β
p
VC
ρ
α
1
=
Q
T
T
dt
T
d
i
′
+
′
−
′
=
′
α
β )
(
( ) ( ) ( ) ( )
s
Q
s
T
s
T
s
T
s i
′
+
′
−
′
=
′ α
β
β
( ) ( ) ( ) ( )
s
Q
s
T
s
T
s i
′
+
′
=
′
+ α
β
β
( ) ( ) ( )
s
Q
s
T
s
T
s i
′
+
′
=
′
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
β
α
β
1
1
( )
( )
⎟
⎠
⎞
⎜
⎝
⎛
+
=
′
′
1
1
1
s
s
T
s
T
i
β
( )
( )
⎟
⎠
⎞
⎜
⎝
⎛
+
=
′
′
1
1
s
s
Q
s
T
β
β
α

Class18(Transfer_Functions).pdf

  • 1.
    Transfer Functions A. Relate_________ input to _____________ output. B. Represent an _________________ relationship in s domain. C. Can be _________________ to give the total system behavior. D. Convenient to use with ____________ diagrams. E. Require initial conditions to be _____________. (use _________ variables) F. Additive property (parallel process) single single algebraic combined block 0 deviation G1(s) G2(s) X2(s) X1(s) Y(s) Y(s) = X1(s) G1(s) + X2(s) G2(s)
  • 2.
    Transfer Functions (cont.) G.Multiplicative property (series process) H. _______________ is the limit of G(s) as s approaches 0 (for a unit step change) when the ____________ exists (see pg. 84). I. Find the gain for the following transfer functions: G2(s) X2(s) G1(s) X1(s) Y(s) Y(s) = X2(s) G2(s) X2(s) = X1(s) G1(s) So Y(s) = X1(s)G1(s) G2(s) K limit G1 s ( ) = 1 τs + 1 G1 s ( ) = a + bs τs + 1 ( ) ( )( ) 2 3 2 8 2 + + + = s s s s G = 1 = a ( )( ) 3 4 2 3 8 = =
  • 3.
    Group Activity 1. Find′ C (s) / ′ Ci(s) ) ( ) ( ) ( s C V q s C V q s C s i ′ − ′ = ′ ) ( ) ( s C V q s C V q s i ′ = ′ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + ) ( ) ( 1 s C s C s q V i ′ = ′ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + = ′ ′ 1 1 ) ( ) ( s q V s C s C i q V p = τ 1 = p K C V q C V q dt C d i ′ − ′ = ′
  • 4.
    Group Activity 2. Find′ C (s) / ′ Ci(s) ) ( 1 ) ( ) ( s C s C V q s C s i ′ − ′ = ′ β ( ) ) ( ) ( 1 s C V q s C s i ′ = ′ + β β ( ) 1 ) ( ) ( + = ′ ′ s V q s C s C i β β β τ = p V q Kp β = C C k V q C V q dt C d i ′ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + − ′ = ′ 2 2 1/β
  • 5.
    Group Activity 3. Findand ′ T (s)/ ′ Ti (s) ′ T (s)/ ′ Q (s) d ′ T dt = q V ( ′ Ti − ′ T ) + ′ Q ρVCp V q = β p VC ρ α 1 = Q T T dt T d i ′ + ′ − ′ = ′ α β ) ( ( ) ( ) ( ) ( ) s Q s T s T s T s i ′ + ′ − ′ = ′ α β β ( ) ( ) ( ) ( ) s Q s T s T s i ′ + ′ = ′ + α β β ( ) ( ) ( ) s Q s T s T s i ′ + ′ = ′ ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + β α β 1 1 ( ) ( ) ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + = ′ ′ 1 1 1 s s T s T i β ( ) ( ) ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + = ′ ′ 1 1 s s Q s T β β α