SlideShare a Scribd company logo
Beverage Production



C IP  lean        n          lace


 for
   Profit

Haselden Recovery Systems
Prepared by Kent Haselden and Alan Sheppard
Beverage Production                                                                                                                     CIP for Profit 



                                                                   Table of Contents 
Cleaning In Place............................................................................................................................................... 2 
1  Introduction ............................................................................................................................................... 2 
  1.1  Where We’ve Been ............................................................................................................................ 2 
  1.2  Where We Are ................................................................................................................................... 2 
  1.3  Where We Should Be ......................................................................................................................... 3 
2  CIP System Design and Programming........................................................................................................ 3 
  2.1  Water Consumption............................................................................................................................ 3 
  2.2  Energy Consumption.......................................................................................................................... 4 
  2.3  Production Efficiencies ...................................................................................................................... 4 
  2.4  Wearable Parts ................................................................................................................................... 4 
  2.5  Downtime .......................................................................................................................................... 5 
  2.6  Benefits.............................................................................................................................................. 5 
3  Tracking Savings ....................................................................................................................................... 5 
  3.1  Savings can be tracking using the following methods: ........................................................................ 5 
4  Conclusion................................................................................................................................................. 6




                                                                                1 
Beverage Production                                                                             CIP for Profit 


                                   Cleaning In Place for Profit 
1  Introduction 
Cleaning in Place (CIP) processes currently used to sanitize beverage bottling equipment are inefficient, 
outdated and very costly.  These cleansing processes, which have been virtually unchanged for years, involve 
running a hot CIP program multiple times per week putting tremendous stress on the bottling equipment.  But 
times have changed.  With technological advancements in cleansing chemicals, equipment and programming 
capabilities the CIP process is being re­evaluated in a new light, paving the way for significant cost saving 
opportunities. 

Chemical companies, because of their proven expertise within the beverage bottling industry have an 
opportunity to benefit from these process and product improvements.  After reviewing, researching and 
validating the information provided below it should be apparent that there will be a significant savings potential 
that can be passed on to the customer through established and trusted consulting services. 


1.1  Where We’ve Been 

In the past, the CIP process was labor intensive and required many hours of downtime to disassemble the piping 
and machinery, wash each piece by hand and reassemble.  Eventually chemical sanitizers were introduced 
allowing processors to flood the piping and machinery with water and chlorine­based chemicals that would kill 
bacteria upon contact, making it unnecessary to disassemble the piping and machinery. 

With the acquisition of fruit­based beverages, it became necessary to take further steps to control microbes so 
heat was introduced. In this new process, the system had water and detergent circulated through it at 145° F for 
15 minutes, was rinsed and refilled with water, which had been heated to 185°F.  This hot water was then 
circulated, cooled down and drained.  The system was again refilled with water and sanitizer, circulated, and 
followed by a final rinse. 

Heat was added to the process to kill any microbes that the detergent may have missed. The introduction of heat 
increased the sanitation quality but also made the process so complicated and labor intensive that it necessitated 
the development of a CIP system.  The first CIP systems were hard wired, making the program very difficult to 
manipulate. With the introduction of micro­processors and new electronic sensors, it is now much easier to 
change and adapt the programming to meet evolving process requirements. 


1.2  Where We Are 

Most plants still run the original CIP programs that were established 35 years ago.  These programs were run 
with detergents that could not exceed 145° F because they would scale the inside of the equipment.  The 
programs took this into consideration and were designed to take the wash step to 145°F for 15 minutes.  After 
this step was completed, the detergent would then be rinsed to drain and then water was added back into the 
equipment and reheated to 185° F.  This particular step became known as the “Hot Program” and was necessary 
to achieve the required sanitizing temperature.  Cold water would then be added to the hot sanitize step to bring


                                                        2 
Beverage Production                                                                               CIP for Profit 

the water temperature back to ambient.  At this time a contact cleaner or chemical sanitizer would be added and 
circulated through the equipment to kill any potential bacteria that had been missed by the prior methods of 
sanitation.  The final step is then to rinse the equipment with water until all of the chemical sanitizer is removed. 

The hot program with the chemical sanitizer is the most common program run for sanitation purposes.  When 
factoring in that not only the bottling lines, but also the bulk syrup tanks needed to be sanitized up to three times 
a day, there could potentially be as many as 45 hot CIP programs run daily. 


1.3  Where We Should Be 

New sanitation chemicals have allowed the industry to re­evaluate the needs and expense of the existing CIP 
protocol.  A new cold sanitation protocol was established to use a cold CIP program daily with a hot program 
weekly.  It has been successfully proven in plant quality control labs that a sanitizer or parasitic cold acid wash, 
along with a 5 step hot program once a week, will control microbes to within company standards on most 
category bottling lines. 

As documented below, the elimination of daily hot CIP runs will equate to both immediate and long term 
savings over the production life cycle.  Therefore, it can be concluded that the chemical manufacturer that can 
successfully market its chemicals for parasitic cold acid wash programs, by demonstrating the cost savings, 
would gain not only market share, but also the credibility of the industry. However, for this to happen the 
industry must change protocol, the chemical manufacturers must develop improved chemical sanitizers, and 
machinery must be properly programmed to provide sufficient contact to all areas to be cleaned. 


1.3.1  Less Can Be More 

The extensive variety of flavors and bottling line classifications, and the need for frequent changeovers between 
flavors to keep up with demand, has directly contributed to the need to track microbe counts to maintain the 
highest level of health standards in keeping with plant quality control specifications.  Less hot sanitation by 
taking full advantage of a faster, more energy efficient, water saving, and a seal friendly cold CIP program 
means More cost savings to the customer.  This is not to say that hot sanitation is not necessary; however, it can 
be used in lower increments to help increase plant efficiency and cost savings, while still maintaining these high 
quality control levels. 


2  CIP System Design and Programming 
CIP systems consist of many designs and programs.  The programmer must follow a basic outline of steps, 
programming each step to not only perform the task but also to do it efficiently.  This efficiency must be 
designed into the flow process as well as the programming of the CIP system.  These efficiencies are related to 
the following areas. 


2.1  Water Consumption



                                                          3 
Beverage Production                                                                              CIP for Profit 

  Current CIP programs use and waste too much water.  The goal of decreasing water consumption can be 
  accomplished by recycling the water being used within the system.  CIP systems must be designed with 
  tanks large enough to reclaim water from the prior CIP cycle.  This is done by maintaining low levels in the 
  tanks during the CIP process, and by adding the minimal amount of water necessary to complete the 
  program.  Running these minimal levels in the CIP tanks will allow the optimal amount of room to recapture 
  the water being used to sanitize the equipment.  Using recaptured water from the system should be a clear 
  indicator of cost savings; however, a quantifiable measurement of the savings can be accomplished with the 
  installation of water meters on the old and new CIP systems. 

  The number one mechanical issue directly attributable to the loss of water and chemicals is worn seals, or 
  elastomer failure.  The rubber seals on the center columns on the filler must be maintained and verified to be 
  in good working order when CIPing.  Worn seals on the sniff buttons and CIP cups are also the result of 
  extensive hot CIP and could possibly be preventing the CIP criteria from being achieved.  Water lost during 
  the wash or sanitizing steps must be replaced.  Cold water added to a hot program will require additional 
  heat and the chemical strength that must be replaced to meet the CIP criteria. 


2.2  Energy Consumption 

  A great deal of energy is used to power a boiler to heat the water for the CIP process which is used in all 
  beverage plants.  As previously stated, hot CIP is still necessary, but it can be reduced to weekly intervals if 
  the process of using cold sanitizing chemicals is adequately relayed to customers.  When cold sanitizing 
  chemicals are more regularly used, and hot CIP is done only once a week, less energy will be used to heat 
  the boiler and therefore can be translated to immediate cost savings to customers. 



2.3  Production Efficiencies 

  In the past, more than adequate time was set aside for sanitation purposes.  Now, because of the ever 
  increasing amount of flavors that the industry produces, it is necessary for more frequent changeovers to be 
  done on the bottling lines.  Each additional flavor change added 10 to 20 minutes of downtime to rinse and 
  change to the next flavor.  This efficiency loss is expected and needs to be reclaimed to meet production 
  quotas.  By going to a cold CIP process using new chemical and mechanical technologies, the CIP cycle 
  time is significantly reduced by completely eliminating the heating step from the existing process.  This 
  reduction in time could then be transformed back into production time. 



2.4  Wearable Parts 

  The leading cause of gasket and o­ring failure is heat and cold water administered concurrently over short 
  intervals.  Filler and process valves are manufactured with rubber gaskets and o­rings to create quality seals 
  within those parts.  When these gaskets and o­rings fail, they must be replaced, and the potential for this is 
  greatly increased as the number of hot CIP runs increases.




                                                        4 
Beverage Production                                                                            CIP for Profit 



2.5  Downtime 

   Production, Maintenance and Quality Control managers will attest to the fact that filler valve problems are 
   much more likely to occur at start­up, after a hot CIP program has been performed.  These problems will be 
   attributed to approximately 10 to 20 minutes of downtime, which can be multiplied, depending on the 
   number of valves involved.  Reducing the hot CIP run to only one per week will drastically decrease the 
   wear on these invaluable machine parts.  Maintaining quality seals on the equipment will also decrease or 
   prevent water loss during the CIP process, not to mention product loss during normal runs. 



2.6  Benefits 

If a chemical company can convince bottling plants that they are wasting money due to the five points listed in 
sections 2.1 thru 2.5, the following benefits will be realized: 


   §  Plants would be saving money year­over­year by: 
         o  Using less water 
         o  Using less energy 
         o  Operating more efficiently 
         o  Causing less wear on machine parts 
         o  Experiencing less downtime 

   §  Chemical manufacturers increase revenue and market share by: 
         o  Educating bottling plants about the savings available to them by converting to the new CIP 
            process 
         o  Improving their reputation in the industry by saving customers money 
         o  Selling consulting time to customers for this invaluable knowledge 

   §  It would improve the environment because: 
          o  Bottling plants will be using less non­renewable resources (water) 
          o  Less energy will be used to operate CIP systems using the new process 


3  Tracking Savings 

3.1  Savings Tracking Methods 

   a.  Fewer filler valves will need to be replaced.  Prior records should be available for comparison.  This can 
       be converted to downtime by multiplying the average valve change time by the number of valve failures 
       that occur during hot CIP programs.  Although harder to prove, once these findings are confirmed, it can



                                                       5 
Beverage Production                                                                            CIP for Profit 

       also be related to the amount of wear that the valve seats encounter, and further related process 
       efficiencies. 
   b.  Water savings can be shown by installing a totalizing meter on the incoming water to the CIP system, 
       and then running a hot program versus a cold program. 
   c.  A simple measurement of time can be used to measure the amount of additional CIP downtime that is 
       necessary to perform a hot program over a cold.  This can be timed for each program and time gained 
       can be transformed back to the production cycle. 
   d.  Due to the fact that no heat is used with the cold program, this heat savings should now be viewed as a 
       total energy savings. 


From a monetary standpoint, these savings can now be shown as profit to the process company, while the only 
investment being made is switching to the chemicals, equipment, and programs needed to support the new CIP 
processes.  It should be stressed that although an initial investment is necessary, those funds will be recouped 
rapidly due to the various money­saving problems that the new CIP process will solve.  And those savings will 
continue to grow over time, translating as profits for the company. 



4  Conclusion 
Chemical companies and beverage system suppliers have a real opportunity to form alliances that through new 
technology can transform the CIP process and gain them a competitive edge in the market place.  By combining 
their expertise they can provide documentation displaying the potential financial gains that can be realized by 
the customer and offer the necessary consulting services, chemicals, equipment and programming to fully 
implement a new and efficient CIP system.




                                                        6 

More Related Content

What's hot

C22 4 product recovery_final-web
C22 4 product recovery_final-webC22 4 product recovery_final-web
C22 4 product recovery_final-web
Dir Jan
 
Cleaning In Place- Principle, Parameter, Procedure
Cleaning In Place-  Principle, Parameter, ProcedureCleaning In Place-  Principle, Parameter, Procedure
Cleaning In Place- Principle, Parameter, Procedure
PMG Engineering Private Limited
 
Food Talkline Morgan Foods
Food Talkline Morgan FoodsFood Talkline Morgan Foods
Food Talkline Morgan Foods
ola wesstrom
 
CIP vs COP - Hygienic Pumps and Meeting Government Regulations - Carotek Proc...
CIP vs COP - Hygienic Pumps and Meeting Government Regulations - Carotek Proc...CIP vs COP - Hygienic Pumps and Meeting Government Regulations - Carotek Proc...
CIP vs COP - Hygienic Pumps and Meeting Government Regulations - Carotek Proc...
Carotek
 
Carbonated Softdrinks and ECA technology (CIP)
Carbonated Softdrinks and ECA technology (CIP)Carbonated Softdrinks and ECA technology (CIP)
Carbonated Softdrinks and ECA technology (CIP)
Radical Waters
 
Suncombe cip overview presentation
Suncombe cip overview presentationSuncombe cip overview presentation
Suncombe cip overview presentation
Kyriakos Michalaki
 
Cip sip-ctd solution-ivt_presentation
Cip sip-ctd solution-ivt_presentationCip sip-ctd solution-ivt_presentation
Cip sip-ctd solution-ivt_presentationAraik Ambartsumyan
 
Chemical Catalog - FQE Chemicals
Chemical Catalog - FQE Chemicals Chemical Catalog - FQE Chemicals
Chemical Catalog - FQE Chemicals
FQE Chemicals
 
Back To Basics GMPs[1]
Back To Basics GMPs[1]Back To Basics GMPs[1]
Back To Basics GMPs[1]Bob Darius
 
E+H brochure - Safe Choice for Food & Beverage
E+H brochure - Safe Choice for Food & Beverage E+H brochure - Safe Choice for Food & Beverage
E+H brochure - Safe Choice for Food & Beverage
Carotek
 
C22 0 introduction to cleaning_final-web
C22 0 introduction to cleaning_final-webC22 0 introduction to cleaning_final-web
C22 0 introduction to cleaning_final-web
Dir Jan
 
FDF Energy Services
FDF Energy Services FDF Energy Services
FDF Energy Services
Kurt Daigle
 
Self-Optimising Clean-in-Place
Self-Optimising Clean-in-PlaceSelf-Optimising Clean-in-Place
Self-Optimising Clean-in-Place
Martec (Marplug™)
 
Supplementing Lab Analysis with Inline Measurements
Supplementing Lab Analysis with Inline MeasurementsSupplementing Lab Analysis with Inline Measurements
Supplementing Lab Analysis with Inline Measurements
E-direct, Division of Endress+Hauser
 
E+H - inline quality measurement
E+H -  inline quality measurementE+H -  inline quality measurement
E+H - inline quality measurement
Carotek
 
E+H Life Sciences Magazine May 2015
E+H Life Sciences Magazine May 2015E+H Life Sciences Magazine May 2015
E+H Life Sciences Magazine May 2015
Carotek
 
E+H - Global Offering for LIfe Sciences
E+H - Global Offering for LIfe SciencesE+H - Global Offering for LIfe Sciences
E+H - Global Offering for LIfe Sciences
Carotek
 
Clean Room Opportunities
Clean Room OpportunitiesClean Room Opportunities
Clean Room Opportunities
DIv CHAS
 
Supplementing lab analysis with inline quality measurements in food Industry
Supplementing lab analysis with inline quality measurements in food IndustrySupplementing lab analysis with inline quality measurements in food Industry
Supplementing lab analysis with inline quality measurements in food Industry
ola wesstrom
 

What's hot (19)

C22 4 product recovery_final-web
C22 4 product recovery_final-webC22 4 product recovery_final-web
C22 4 product recovery_final-web
 
Cleaning In Place- Principle, Parameter, Procedure
Cleaning In Place-  Principle, Parameter, ProcedureCleaning In Place-  Principle, Parameter, Procedure
Cleaning In Place- Principle, Parameter, Procedure
 
Food Talkline Morgan Foods
Food Talkline Morgan FoodsFood Talkline Morgan Foods
Food Talkline Morgan Foods
 
CIP vs COP - Hygienic Pumps and Meeting Government Regulations - Carotek Proc...
CIP vs COP - Hygienic Pumps and Meeting Government Regulations - Carotek Proc...CIP vs COP - Hygienic Pumps and Meeting Government Regulations - Carotek Proc...
CIP vs COP - Hygienic Pumps and Meeting Government Regulations - Carotek Proc...
 
Carbonated Softdrinks and ECA technology (CIP)
Carbonated Softdrinks and ECA technology (CIP)Carbonated Softdrinks and ECA technology (CIP)
Carbonated Softdrinks and ECA technology (CIP)
 
Suncombe cip overview presentation
Suncombe cip overview presentationSuncombe cip overview presentation
Suncombe cip overview presentation
 
Cip sip-ctd solution-ivt_presentation
Cip sip-ctd solution-ivt_presentationCip sip-ctd solution-ivt_presentation
Cip sip-ctd solution-ivt_presentation
 
Chemical Catalog - FQE Chemicals
Chemical Catalog - FQE Chemicals Chemical Catalog - FQE Chemicals
Chemical Catalog - FQE Chemicals
 
Back To Basics GMPs[1]
Back To Basics GMPs[1]Back To Basics GMPs[1]
Back To Basics GMPs[1]
 
E+H brochure - Safe Choice for Food & Beverage
E+H brochure - Safe Choice for Food & Beverage E+H brochure - Safe Choice for Food & Beverage
E+H brochure - Safe Choice for Food & Beverage
 
C22 0 introduction to cleaning_final-web
C22 0 introduction to cleaning_final-webC22 0 introduction to cleaning_final-web
C22 0 introduction to cleaning_final-web
 
FDF Energy Services
FDF Energy Services FDF Energy Services
FDF Energy Services
 
Self-Optimising Clean-in-Place
Self-Optimising Clean-in-PlaceSelf-Optimising Clean-in-Place
Self-Optimising Clean-in-Place
 
Supplementing Lab Analysis with Inline Measurements
Supplementing Lab Analysis with Inline MeasurementsSupplementing Lab Analysis with Inline Measurements
Supplementing Lab Analysis with Inline Measurements
 
E+H - inline quality measurement
E+H -  inline quality measurementE+H -  inline quality measurement
E+H - inline quality measurement
 
E+H Life Sciences Magazine May 2015
E+H Life Sciences Magazine May 2015E+H Life Sciences Magazine May 2015
E+H Life Sciences Magazine May 2015
 
E+H - Global Offering for LIfe Sciences
E+H - Global Offering for LIfe SciencesE+H - Global Offering for LIfe Sciences
E+H - Global Offering for LIfe Sciences
 
Clean Room Opportunities
Clean Room OpportunitiesClean Room Opportunities
Clean Room Opportunities
 
Supplementing lab analysis with inline quality measurements in food Industry
Supplementing lab analysis with inline quality measurements in food IndustrySupplementing lab analysis with inline quality measurements in food Industry
Supplementing lab analysis with inline quality measurements in food Industry
 

Similar to Cip For Profit

How to Optimize Clean-in-Place (CIP) Processes in Food and Beverage Operations
How to Optimize Clean-in-Place (CIP) Processes in Food and Beverage OperationsHow to Optimize Clean-in-Place (CIP) Processes in Food and Beverage Operations
How to Optimize Clean-in-Place (CIP) Processes in Food and Beverage Operations
Schneider Electric
 
Danish Dairy & Food Industry Worldwide
Danish Dairy & Food Industry WorldwideDanish Dairy & Food Industry Worldwide
Danish Dairy & Food Industry WorldwideAllan T. Bruun
 
CIP in food industry | food research lab
CIP in food industry |  food research lab CIP in food industry |  food research lab
CIP in food industry | food research lab
foodresearch
 
Removing Pinch Points in Your Food Safety Plan
Removing Pinch Points in Your Food Safety PlanRemoving Pinch Points in Your Food Safety Plan
Removing Pinch Points in Your Food Safety Plan
SafetyChain Software
 
DIC Presentation On 6th August
DIC Presentation On 6th AugustDIC Presentation On 6th August
DIC Presentation On 6th August
junebeh
 
Production and operations management
Production and operations managementProduction and operations management
Production and operations management
Simbarashe Nyakudanga
 
OnTrack CIP Validation
OnTrack CIP ValidationOnTrack CIP Validation
OnTrack CIP Validation
Brian Thomas
 
GRAIN HYDRATION
GRAIN HYDRATION GRAIN HYDRATION
GRAIN HYDRATION
Milling and Grain magazine
 
CLEAN-IN-PLACE (CIP).pptx
CLEAN-IN-PLACE (CIP).pptxCLEAN-IN-PLACE (CIP).pptx
CLEAN-IN-PLACE (CIP).pptx
DeskTop8
 
cost classification
cost classification cost classification
cost classification
nawal16
 
Bpr report mavericks
Bpr report  mavericksBpr report  mavericks
Bpr report mavericksSheema Adil
 
The Reality of Affordable and Scalable Digital Transformation.pptx
The Reality of Affordable and Scalable Digital Transformation.pptxThe Reality of Affordable and Scalable Digital Transformation.pptx
The Reality of Affordable and Scalable Digital Transformation.pptx
SafetyChain Software
 
Bottled water filtration selection guide for products and applications rev 1 d
Bottled water filtration selection guide for products and applications rev 1 dBottled water filtration selection guide for products and applications rev 1 d
Bottled water filtration selection guide for products and applications rev 1 d
Ana Saray Ayala Chirinos
 
Process improvement using lean tool SMED, kaizan & spaghetti diagram to reduc...
Process improvement using lean tool SMED, kaizan & spaghetti diagram to reduc...Process improvement using lean tool SMED, kaizan & spaghetti diagram to reduc...
Process improvement using lean tool SMED, kaizan & spaghetti diagram to reduc...
VishalPatelMEng
 
Life Lessons for Future Engineering Leaders with Bushnak Group Chairman
Life Lessons for Future Engineering Leaders with Bushnak Group ChairmanLife Lessons for Future Engineering Leaders with Bushnak Group Chairman
Life Lessons for Future Engineering Leaders with Bushnak Group Chairman
GineersNow
 
Isbt Technical Paper
Isbt Technical PaperIsbt Technical Paper
Isbt Technical Paper
RecoverySystems
 
Restarting your wastewater treatment plant after a shutdown (such as the COVI...
Restarting your wastewater treatment plant after a shutdown (such as the COVI...Restarting your wastewater treatment plant after a shutdown (such as the COVI...
Restarting your wastewater treatment plant after a shutdown (such as the COVI...
A.T.E. Private Limited
 
Latest HVACR Trends by Danfoss - GineersNow Engineering Magazine
Latest HVACR Trends by Danfoss - GineersNow Engineering MagazineLatest HVACR Trends by Danfoss - GineersNow Engineering Magazine
Latest HVACR Trends by Danfoss - GineersNow Engineering Magazine
GineersNow
 

Similar to Cip For Profit (20)

How to Optimize Clean-in-Place (CIP) Processes in Food and Beverage Operations
How to Optimize Clean-in-Place (CIP) Processes in Food and Beverage OperationsHow to Optimize Clean-in-Place (CIP) Processes in Food and Beverage Operations
How to Optimize Clean-in-Place (CIP) Processes in Food and Beverage Operations
 
Danish Dairy & Food Industry Worldwide
Danish Dairy & Food Industry WorldwideDanish Dairy & Food Industry Worldwide
Danish Dairy & Food Industry Worldwide
 
CIP in food industry | food research lab
CIP in food industry |  food research lab CIP in food industry |  food research lab
CIP in food industry | food research lab
 
Removing Pinch Points in Your Food Safety Plan
Removing Pinch Points in Your Food Safety PlanRemoving Pinch Points in Your Food Safety Plan
Removing Pinch Points in Your Food Safety Plan
 
DIC Presentation On 6th August
DIC Presentation On 6th AugustDIC Presentation On 6th August
DIC Presentation On 6th August
 
Production and operations management
Production and operations managementProduction and operations management
Production and operations management
 
OnTrack CIP Validation
OnTrack CIP ValidationOnTrack CIP Validation
OnTrack CIP Validation
 
GRAIN HYDRATION
GRAIN HYDRATION GRAIN HYDRATION
GRAIN HYDRATION
 
Final report
Final reportFinal report
Final report
 
CLEAN-IN-PLACE (CIP).pptx
CLEAN-IN-PLACE (CIP).pptxCLEAN-IN-PLACE (CIP).pptx
CLEAN-IN-PLACE (CIP).pptx
 
Greencore
GreencoreGreencore
Greencore
 
cost classification
cost classification cost classification
cost classification
 
Bpr report mavericks
Bpr report  mavericksBpr report  mavericks
Bpr report mavericks
 
The Reality of Affordable and Scalable Digital Transformation.pptx
The Reality of Affordable and Scalable Digital Transformation.pptxThe Reality of Affordable and Scalable Digital Transformation.pptx
The Reality of Affordable and Scalable Digital Transformation.pptx
 
Bottled water filtration selection guide for products and applications rev 1 d
Bottled water filtration selection guide for products and applications rev 1 dBottled water filtration selection guide for products and applications rev 1 d
Bottled water filtration selection guide for products and applications rev 1 d
 
Process improvement using lean tool SMED, kaizan & spaghetti diagram to reduc...
Process improvement using lean tool SMED, kaizan & spaghetti diagram to reduc...Process improvement using lean tool SMED, kaizan & spaghetti diagram to reduc...
Process improvement using lean tool SMED, kaizan & spaghetti diagram to reduc...
 
Life Lessons for Future Engineering Leaders with Bushnak Group Chairman
Life Lessons for Future Engineering Leaders with Bushnak Group ChairmanLife Lessons for Future Engineering Leaders with Bushnak Group Chairman
Life Lessons for Future Engineering Leaders with Bushnak Group Chairman
 
Isbt Technical Paper
Isbt Technical PaperIsbt Technical Paper
Isbt Technical Paper
 
Restarting your wastewater treatment plant after a shutdown (such as the COVI...
Restarting your wastewater treatment plant after a shutdown (such as the COVI...Restarting your wastewater treatment plant after a shutdown (such as the COVI...
Restarting your wastewater treatment plant after a shutdown (such as the COVI...
 
Latest HVACR Trends by Danfoss - GineersNow Engineering Magazine
Latest HVACR Trends by Danfoss - GineersNow Engineering MagazineLatest HVACR Trends by Danfoss - GineersNow Engineering Magazine
Latest HVACR Trends by Danfoss - GineersNow Engineering Magazine
 

More from RecoverySystems

Isbt With Guide 2004,2006
Isbt With Guide 2004,2006Isbt With Guide 2004,2006
Isbt With Guide 2004,2006
RecoverySystems
 
Isbt 2010 Presentation
Isbt 2010 PresentationIsbt 2010 Presentation
Isbt 2010 Presentation
RecoverySystems
 
BOD Source Reduction For Beverage Plants 2010
BOD Source Reduction For Beverage Plants 2010BOD Source Reduction For Beverage Plants 2010
BOD Source Reduction For Beverage Plants 2010
RecoverySystems
 
Opportunity For Bod Source Reduction 2009 Isbt Presentation With Guide P&A
Opportunity For Bod Source Reduction 2009 Isbt Presentation With Guide P&AOpportunity For Bod Source Reduction 2009 Isbt Presentation With Guide P&A
Opportunity For Bod Source Reduction 2009 Isbt Presentation With Guide P&A
RecoverySystems
 
SRS PRS Pres With Guide 2008 Global Issues Rev
SRS PRS Pres With Guide 2008 Global Issues RevSRS PRS Pres With Guide 2008 Global Issues Rev
SRS PRS Pres With Guide 2008 Global Issues Rev
RecoverySystems
 
Isbt Pres.With Guide 2007 Env Committee
Isbt Pres.With Guide 2007 Env CommitteeIsbt Pres.With Guide 2007 Env Committee
Isbt Pres.With Guide 2007 Env Committee
RecoverySystems
 

More from RecoverySystems (6)

Isbt With Guide 2004,2006
Isbt With Guide 2004,2006Isbt With Guide 2004,2006
Isbt With Guide 2004,2006
 
Isbt 2010 Presentation
Isbt 2010 PresentationIsbt 2010 Presentation
Isbt 2010 Presentation
 
BOD Source Reduction For Beverage Plants 2010
BOD Source Reduction For Beverage Plants 2010BOD Source Reduction For Beverage Plants 2010
BOD Source Reduction For Beverage Plants 2010
 
Opportunity For Bod Source Reduction 2009 Isbt Presentation With Guide P&A
Opportunity For Bod Source Reduction 2009 Isbt Presentation With Guide P&AOpportunity For Bod Source Reduction 2009 Isbt Presentation With Guide P&A
Opportunity For Bod Source Reduction 2009 Isbt Presentation With Guide P&A
 
SRS PRS Pres With Guide 2008 Global Issues Rev
SRS PRS Pres With Guide 2008 Global Issues RevSRS PRS Pres With Guide 2008 Global Issues Rev
SRS PRS Pres With Guide 2008 Global Issues Rev
 
Isbt Pres.With Guide 2007 Env Committee
Isbt Pres.With Guide 2007 Env CommitteeIsbt Pres.With Guide 2007 Env Committee
Isbt Pres.With Guide 2007 Env Committee
 

Cip For Profit

  • 1. Beverage Production C IP lean n lace for Profit Haselden Recovery Systems Prepared by Kent Haselden and Alan Sheppard
  • 2. Beverage Production  CIP for Profit  Table of Contents  Cleaning In Place............................................................................................................................................... 2  1  Introduction ............................................................................................................................................... 2  1.1  Where We’ve Been ............................................................................................................................ 2  1.2  Where We Are ................................................................................................................................... 2  1.3  Where We Should Be ......................................................................................................................... 3  2  CIP System Design and Programming........................................................................................................ 3  2.1  Water Consumption............................................................................................................................ 3  2.2  Energy Consumption.......................................................................................................................... 4  2.3  Production Efficiencies ...................................................................................................................... 4  2.4  Wearable Parts ................................................................................................................................... 4  2.5  Downtime .......................................................................................................................................... 5  2.6  Benefits.............................................................................................................................................. 5  3  Tracking Savings ....................................................................................................................................... 5  3.1  Savings can be tracking using the following methods: ........................................................................ 5  4  Conclusion................................................................................................................................................. 6 1 
  • 3. Beverage Production  CIP for Profit  Cleaning In Place for Profit  1  Introduction  Cleaning in Place (CIP) processes currently used to sanitize beverage bottling equipment are inefficient,  outdated and very costly.  These cleansing processes, which have been virtually unchanged for years, involve  running a hot CIP program multiple times per week putting tremendous stress on the bottling equipment.  But  times have changed.  With technological advancements in cleansing chemicals, equipment and programming  capabilities the CIP process is being re­evaluated in a new light, paving the way for significant cost saving  opportunities.  Chemical companies, because of their proven expertise within the beverage bottling industry have an  opportunity to benefit from these process and product improvements.  After reviewing, researching and  validating the information provided below it should be apparent that there will be a significant savings potential  that can be passed on to the customer through established and trusted consulting services.  1.1  Where We’ve Been  In the past, the CIP process was labor intensive and required many hours of downtime to disassemble the piping  and machinery, wash each piece by hand and reassemble.  Eventually chemical sanitizers were introduced  allowing processors to flood the piping and machinery with water and chlorine­based chemicals that would kill  bacteria upon contact, making it unnecessary to disassemble the piping and machinery.  With the acquisition of fruit­based beverages, it became necessary to take further steps to control microbes so  heat was introduced. In this new process, the system had water and detergent circulated through it at 145° F for  15 minutes, was rinsed and refilled with water, which had been heated to 185°F.  This hot water was then  circulated, cooled down and drained.  The system was again refilled with water and sanitizer, circulated, and  followed by a final rinse.  Heat was added to the process to kill any microbes that the detergent may have missed. The introduction of heat  increased the sanitation quality but also made the process so complicated and labor intensive that it necessitated  the development of a CIP system.  The first CIP systems were hard wired, making the program very difficult to  manipulate. With the introduction of micro­processors and new electronic sensors, it is now much easier to  change and adapt the programming to meet evolving process requirements.  1.2  Where We Are  Most plants still run the original CIP programs that were established 35 years ago.  These programs were run  with detergents that could not exceed 145° F because they would scale the inside of the equipment.  The  programs took this into consideration and were designed to take the wash step to 145°F for 15 minutes.  After  this step was completed, the detergent would then be rinsed to drain and then water was added back into the  equipment and reheated to 185° F.  This particular step became known as the “Hot Program” and was necessary  to achieve the required sanitizing temperature.  Cold water would then be added to the hot sanitize step to bring 2 
  • 4. Beverage Production  CIP for Profit  the water temperature back to ambient.  At this time a contact cleaner or chemical sanitizer would be added and  circulated through the equipment to kill any potential bacteria that had been missed by the prior methods of  sanitation.  The final step is then to rinse the equipment with water until all of the chemical sanitizer is removed.  The hot program with the chemical sanitizer is the most common program run for sanitation purposes.  When  factoring in that not only the bottling lines, but also the bulk syrup tanks needed to be sanitized up to three times  a day, there could potentially be as many as 45 hot CIP programs run daily.  1.3  Where We Should Be  New sanitation chemicals have allowed the industry to re­evaluate the needs and expense of the existing CIP  protocol.  A new cold sanitation protocol was established to use a cold CIP program daily with a hot program  weekly.  It has been successfully proven in plant quality control labs that a sanitizer or parasitic cold acid wash,  along with a 5 step hot program once a week, will control microbes to within company standards on most  category bottling lines.  As documented below, the elimination of daily hot CIP runs will equate to both immediate and long term  savings over the production life cycle.  Therefore, it can be concluded that the chemical manufacturer that can  successfully market its chemicals for parasitic cold acid wash programs, by demonstrating the cost savings,  would gain not only market share, but also the credibility of the industry. However, for this to happen the  industry must change protocol, the chemical manufacturers must develop improved chemical sanitizers, and  machinery must be properly programmed to provide sufficient contact to all areas to be cleaned.  1.3.1  Less Can Be More  The extensive variety of flavors and bottling line classifications, and the need for frequent changeovers between  flavors to keep up with demand, has directly contributed to the need to track microbe counts to maintain the  highest level of health standards in keeping with plant quality control specifications.  Less hot sanitation by  taking full advantage of a faster, more energy efficient, water saving, and a seal friendly cold CIP program  means More cost savings to the customer.  This is not to say that hot sanitation is not necessary; however, it can  be used in lower increments to help increase plant efficiency and cost savings, while still maintaining these high  quality control levels.  2  CIP System Design and Programming  CIP systems consist of many designs and programs.  The programmer must follow a basic outline of steps,  programming each step to not only perform the task but also to do it efficiently.  This efficiency must be  designed into the flow process as well as the programming of the CIP system.  These efficiencies are related to  the following areas.  2.1  Water Consumption 3 
  • 5. Beverage Production  CIP for Profit  Current CIP programs use and waste too much water.  The goal of decreasing water consumption can be  accomplished by recycling the water being used within the system.  CIP systems must be designed with  tanks large enough to reclaim water from the prior CIP cycle.  This is done by maintaining low levels in the  tanks during the CIP process, and by adding the minimal amount of water necessary to complete the  program.  Running these minimal levels in the CIP tanks will allow the optimal amount of room to recapture  the water being used to sanitize the equipment.  Using recaptured water from the system should be a clear  indicator of cost savings; however, a quantifiable measurement of the savings can be accomplished with the  installation of water meters on the old and new CIP systems.  The number one mechanical issue directly attributable to the loss of water and chemicals is worn seals, or  elastomer failure.  The rubber seals on the center columns on the filler must be maintained and verified to be  in good working order when CIPing.  Worn seals on the sniff buttons and CIP cups are also the result of  extensive hot CIP and could possibly be preventing the CIP criteria from being achieved.  Water lost during  the wash or sanitizing steps must be replaced.  Cold water added to a hot program will require additional  heat and the chemical strength that must be replaced to meet the CIP criteria.  2.2  Energy Consumption  A great deal of energy is used to power a boiler to heat the water for the CIP process which is used in all  beverage plants.  As previously stated, hot CIP is still necessary, but it can be reduced to weekly intervals if  the process of using cold sanitizing chemicals is adequately relayed to customers.  When cold sanitizing  chemicals are more regularly used, and hot CIP is done only once a week, less energy will be used to heat  the boiler and therefore can be translated to immediate cost savings to customers.  2.3  Production Efficiencies  In the past, more than adequate time was set aside for sanitation purposes.  Now, because of the ever  increasing amount of flavors that the industry produces, it is necessary for more frequent changeovers to be  done on the bottling lines.  Each additional flavor change added 10 to 20 minutes of downtime to rinse and  change to the next flavor.  This efficiency loss is expected and needs to be reclaimed to meet production  quotas.  By going to a cold CIP process using new chemical and mechanical technologies, the CIP cycle  time is significantly reduced by completely eliminating the heating step from the existing process.  This  reduction in time could then be transformed back into production time.  2.4  Wearable Parts  The leading cause of gasket and o­ring failure is heat and cold water administered concurrently over short  intervals.  Filler and process valves are manufactured with rubber gaskets and o­rings to create quality seals  within those parts.  When these gaskets and o­rings fail, they must be replaced, and the potential for this is  greatly increased as the number of hot CIP runs increases. 4 
  • 6. Beverage Production  CIP for Profit  2.5  Downtime  Production, Maintenance and Quality Control managers will attest to the fact that filler valve problems are  much more likely to occur at start­up, after a hot CIP program has been performed.  These problems will be  attributed to approximately 10 to 20 minutes of downtime, which can be multiplied, depending on the  number of valves involved.  Reducing the hot CIP run to only one per week will drastically decrease the  wear on these invaluable machine parts.  Maintaining quality seals on the equipment will also decrease or  prevent water loss during the CIP process, not to mention product loss during normal runs.  2.6  Benefits  If a chemical company can convince bottling plants that they are wasting money due to the five points listed in  sections 2.1 thru 2.5, the following benefits will be realized:  §  Plants would be saving money year­over­year by:  o  Using less water  o  Using less energy  o  Operating more efficiently  o  Causing less wear on machine parts  o  Experiencing less downtime  §  Chemical manufacturers increase revenue and market share by:  o  Educating bottling plants about the savings available to them by converting to the new CIP  process  o  Improving their reputation in the industry by saving customers money  o  Selling consulting time to customers for this invaluable knowledge  §  It would improve the environment because:  o  Bottling plants will be using less non­renewable resources (water)  o  Less energy will be used to operate CIP systems using the new process  3  Tracking Savings  3.1  Savings Tracking Methods  a.  Fewer filler valves will need to be replaced.  Prior records should be available for comparison.  This can  be converted to downtime by multiplying the average valve change time by the number of valve failures  that occur during hot CIP programs.  Although harder to prove, once these findings are confirmed, it can 5 
  • 7. Beverage Production  CIP for Profit  also be related to the amount of wear that the valve seats encounter, and further related process  efficiencies.  b.  Water savings can be shown by installing a totalizing meter on the incoming water to the CIP system,  and then running a hot program versus a cold program.  c.  A simple measurement of time can be used to measure the amount of additional CIP downtime that is  necessary to perform a hot program over a cold.  This can be timed for each program and time gained  can be transformed back to the production cycle.  d.  Due to the fact that no heat is used with the cold program, this heat savings should now be viewed as a  total energy savings.  From a monetary standpoint, these savings can now be shown as profit to the process company, while the only  investment being made is switching to the chemicals, equipment, and programs needed to support the new CIP  processes.  It should be stressed that although an initial investment is necessary, those funds will be recouped  rapidly due to the various money­saving problems that the new CIP process will solve.  And those savings will  continue to grow over time, translating as profits for the company.  4  Conclusion  Chemical companies and beverage system suppliers have a real opportunity to form alliances that through new  technology can transform the CIP process and gain them a competitive edge in the market place.  By combining  their expertise they can provide documentation displaying the potential financial gains that can be realized by  the customer and offer the necessary consulting services, chemicals, equipment and programming to fully  implement a new and efficient CIP system. 6