SlideShare a Scribd company logo
1 of 25
Download to read offline
CIDOC CRM in Practice
               - Experiences, Problems, and Possible Solutions -




Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Background

           • BRICKS Project (2003 - 2007)
           • Goal
            • build an infrastructure for integrating contents
                        and metadata from heterogeneous sources
                 • build value added services on top

Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Background
           • Build an application that provides access to
                  archaeological findings from two distinct
                  institutions
           • Provided advanced search (e.g. faceted search)
           • Use the CIDOC-CRM to deal with metadata
                  heterogeneities


Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Background




Bernhard Haslhofer & Philipp Nussbaumer, November 2009
CIDOC CRM Mapping
       • Metadata Schemes:
                                                   !&,?@;                   A&589-                        !"#$%&'&(                  7&589-
                      .!#$%&'()*$+(*,-,*,




                                                                                                                                                 !"#$%&'()*$+(*,-,*,
                                                 )*+&,-./$&                  'B%&1                        )*+&,-./$&                :#$&121

                                                012"34&1523              ;&<2#5<"-52<                     012"34&1523             ;&<2#5<"-52<

                                               415#"1/6"-&15"%               65<-                       415#"1/6"-&15"%               65<-

                                             )*=&1>&C3&>,15$-52<      '&=&1>&C3&>,15$-52<                     )*=&1>&               '&=&1>&

                                            6&-923)(6"<B(",-B1&               DDD                             ;2<21                 ;2<21'&(



                                                            !/<-",-5,"%%/E"<3E>&#"<-5,"%%/E&FB5="%&<-              !&#"<-5,"%%/E&FB5="%&<-

                                                                                            G2E&FB5="%&<,&>




Bernhard Haslhofer & Philipp Nussbaumer, November 2009
CIDOC CRM Mapping
       • Sample Metadata Instance:
                                                                       !"#$%&'(
                                                              !"#$%&         !""#$%&'()*+"#,"%

                                                            '()"#*+,-"                '-./

                                                         '()"#*&".#/0-*012    0-12/34-563789

                                                              3"045*                 (:#%34

                                                         6/078/,98*"/08:              ;-56

                                                         9"*51;'<982=<>           <=>?@A3->3789

                                                                >>>                    :::




Bernhard Haslhofer & Philipp Nussbaumer, November 2009
CIDOC CRM Mapping
       • The CIDOC CRM:                                                                                          !""#&0?)I)<2()0'
                                                                                                                                        !"+#510?K<()0'

                                                                                                                                         EEE

                                                         !;#$0'?)()0'#:(2(-                                                            !;M#O)6K23#7(-.    !;J#7.2B-
                                                                                               !4#D<()P)(*           EEE
                                  !+#,-./0123#!'()(*                                                                                   !;"#>0<K.-'(         EEE
                                                             !=#5-1)0?          !8#!P-'(         EEE
                                                                                                             !4;#7'I01.2()0'#FGH-<(     !+C#>-6)B'#01#510<-?K1-
                                                                                                                                          EEE
                                                                                                                                                     !8M#N2'BK2B-
                                                             !4@#,A)'B        !++#&2'9&2?-#FGH-<(            !+J#$0'<-/(K23#FGH-<(
                                                                                                                                       !88#,*/-       !84#&2(-1)23
                                                             !;C#D<(01              EEE                        EEE
                                 !44#5-16)6(-'(#7(-.                                                                                     EEE         !8J#&-26K1-.-'(#L')(
                                                         !8"#$0'(2<(#50)'(      !=8#D??1-66
               !"#$%&#!'()(*
                                                                                !=+#FGH-<(#7?-'()I)-1

                                                          !="#D//-332()0'       !=C#,).-#D//-332()0'          !8@#>2(-
                                   !8+#,).-9:/2'
                                                                               !==#532<-#D//-332()0'         !=4#:/2()23#$001?)'2(-6
                                      !8;#532<-
                                                                                    EEE                        EEE
                                   !8=#>).-'6)0'


                                                                                                 !M@#QK.G-1

                                                              !8C#51).)()P-#O23K-             !M"#,).-#51).)()P-

                                                                                                  !M+#:(1)'B

Bernhard Haslhofer & Philipp Nussbaumer, November 2009
CIDOC CRM Mapping
       • Source Metadata Expressed in CRM:
                                >MH$/66#,,-2130                    >MH$/66#,,-2130
                                                                                              GH$1.$1E#02141#E$78$
                                                                                                  51E#02141#.=                                                        >LL$!86#
                                                                                                                              >?H$'3+<A#02
                                      K<L                      GHH-?.B!+I=AH-JH.                                                                                            !40&
                                                                                              GHJK$1.$+3A63.#E$34$
                                                                                                543:A.$6-:2$34=                 GIJ$E3+<A#02.$
                                            GH$1.$1E#02141#E$78$
                                                                              >?H$'3+<A#02                                    51.$E3+<A#02#E$10=             GC$"-.$286#$
                                                51E#02141#.=
                                                                                                                                                             51.$286#$34=


                                 >LI$*-2#:1-,                                                                         >CC$*-0D*-E#$(7F#+2
                                                          GHCK$#A6,38#E              GHJ@$"-.$6:3E<+#E
                                     M4"6                59-.$#A6,38#E$10=           59-.$6:3E<+#E$78=                                             G?$"-.$032#       >KC$Q2:10B
                                                                                                                                                                 2345#&2*4"62#78)7$2
                                                                   >HC$G:3E<+2130                             GM?$"-.$E1A#0.130                                  492:)842;<=2>?@ABC,2
                                                                                                               51.$E1A#0.130$34=      GH?@$:#6:#.#02.            DEF)20$$7)62(08(#2<=2
                                                         GHK$<.#E$.6#+141+$37F#+2$                                                  5"-.$:#6:#.#02-2130=                A?@A>,
                                                             59-.$<.#E$43:=

                                                                                                             >LM$'1A#0.130
                                             >CN$'#.1B0$3:$G:3+#E<:#

                                                          GH$1.$1E#02141#E$78$               GNH$"-.$<012      GNJ$"-.$;-,<# GC$"-.$286#$                         >?@$&A-B#
                                                                                              51.$<012$34=                   51.$286#$34=
                                                              51E#02141#.=

                                   >MH$/66#,,-2130                      >L@$*#-.<:#A#02$O012                  >KJ$P<A7#:              >LL$!86#
                                  L'87(N24821#55)8)6                                   *                             +,-.               /)0*1'




                                                                   !!"#$#%&
                                                                       !"#$$         !"#$%&'(%$%)*$+,-..
                                                                      %&$'#&()       /0$10.2-0+#$34$2"#$+,-..$563..17,8$912"$+30+:#2#$;-,<#=

Bernhard Haslhofer & Philipp Nussbaumer, November 2009
CIDOC CRM Mapping
       • Mappings expressed as mapping chains:
                           !"#$%                                                                                                                      4"0/7%#$%
                                !$&'()*%+,,-./0123*4,-5,/!6$&'()*%                                                                                   !89:!%!;4
                                !789&':;<=&% !"#$ !6789&':;<=&%                                                                WNNF;<=&
                                !789&':;<=&1&>:?@A:<%1&>:?@A!6789&':;<=&1&>:?@A:<%                                                .(/0

                                !789&':*&B'>@=:@CA%                                                 "XFU?BF:<=&FM@BF:<=&FCKO
                                     DCE?AFGCHIF?J>&JBFCKFL&>CFM#*FN. 40OFPQQQR
                                !6789&':*&B'>@=:@CA%                                                      WXXFT?A T?I&F789&':
                                !789&':*?:&-1&>:?@A:<%1&>:?@A!6789&':*?:&-1&>:?@A:<%                                                             "-,0FU?BF=>CIJ'&IF
                                                                                                             "-4FJB&IFB=&'@K@'FC89&':F           M?BF=>CIJ'&IF8<O
                                !*?:&S>CE%4.!6*?:&S>CE%                                                          M?BFJB&IFKC>O
                                !"&>@CIS>CE%D7T#L!6"&>@CIS>CE%                                                                           W-XF">CIJ':@CA
                                                                                          WX3F*&B@GAFC>F">C'&IJ>&
                                !T&:UCI7KT?AJK?':J>&%
                          %%%%%%%%%%&'()*+%"(%,-../(/0                                          "-F@BF@I&A:@K@&IF8<F           W.-F#==&HH?:@CA
                                                                                                    M@I&A:@K@&BO               !"#$%&'(#')*++,#,-
                                !6T&:UCI7KT?AJK?':J>&%
                                     V
                           !6"#$%                              12&%345%&")(*/%6#7/



                                                                                              12&%'"%!89:!%4-<<#$=
                                                     F"#$Y789&':;<=&          Z%FWXX "X WNN
                                                     F"#$YT&:UCI7KT?AJK?':J>& Z%FWXX @A["-,0 "-4 WX3 "- W.-




Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Problems encountered



Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Problem 1: Lifting and
       Normalisation
           • How to technically represent metadata in terms
                  of the CRM?
           • RDFS / OWL model exists
            • lack essential features (e.g. properties for
                        literals)
                 • require application-specific extensions
Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Problem 2: Mapping Ambiguity
        • Different valid representations for the same
                  attributes:                             !;;$I834
                                                             0"12
                                                                           %#$012$+834$
                                                                           5,2$+834$'<9
                                                                                                                !"#$"%"&'(')*&+,

                                                                                                           !;= >1+4&,1?
                                                                       !##$>1-@>1(4$A7B4*+                      !"#$                              !"#$"%"&'".+/*&/"#'0+
                                                                                                                                                        !*#"./*0
                                                                                                       %"#G$4H3?'84(
                                                            %"./$012$3&'()*4($
                                                                                                      5612$4H3?'84($,-9
                                                            5612$3&'()*4($789
                                                                                    !"#$%&'()*+,'-

                                                                !:"$F334??1+,'-                      %"G$)24($234*,<,*$'7B4*+$
                                                                                                         5612$)24($<'&9                                  !"#$"%"&'(')*&+-
                                                               %&'()*+"'+,-../'/$
                                                                        %"$,2$,(4-+,<,4($78$   !#C$D42,E-$'&$%&'*4()&4                                 !;= >1+4&,1?
                                                                            5,(4-+,<,429                                                                    !"#$
                                                                                                                                                   %:;$*'-2,2+2$'<$
                                                                                                                                                5,2$,-*'&3'&1+4($,-9
                                                                                                                             !##$>1-@>1(4$A7B4*+
                                                                                                                                      0"12

                                                                                                                                                        %"./$012$3&'()*4($
                                                                                                                                                        5612$3&'()*4($789
                                                         !"#$"%"&'".+/*&/"#'0+                              !;;$I834
                                                         !"#$%&'%(')*+,(*-#,."                                                                     !"#$%&'()*+,'-
                                                                                                        %&'()*+"'+,-../'/$       %#$012$+834$
                                                                                                                                 5,2$+834$'<9




                                                                          ++1"2"&.
                                                                               0#-33      I04$JKDAJ$JL>$*?122
                                                                             423&-2)/     F-$,-2+1-*4$'<$+04$*?122$53'22,7?8$6,+0$*'-*&4+4$M1?)49
Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Problem 3: Processing and
       Visualisation
           • The human / machine must “remember” the
                  meaning of mapping chains in order to retrieve
                  information
                 • E22-P2-E55 = the object type
                 • E22-invP108-P16-E29-P1-E41 = manufacture
                        method
Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Possible solutions



Bernhard Haslhofer & Philipp Nussbaumer, November 2009
A Simple Approach to (partially) solve Problem II + III

                   !"#$%&'(               )$'*                                  +",,-.%/!0"-.

                                                                               3.4#05#0'(&-010('#*6#
                                                                                   70'(&-010(58
                                        !"#$%&'&#(       !""#$%& $%'(#)*+(,-                             !."#)*+(,-#/'(&-010(2

                   )*+(,-5
                                                                                  3G#>%5#&:-(
                                       )#*+(&,%&-$       !""#$%& $%'(#)*+(,-                                  !A"#E-20&F



                                                         !""#$%& $%'(#)*+(,-                                !9"#32:';,-0:&
                                                                                39<=#>%5#?2:';,('                       39"A#(B?C:6('#
                                        ./%#(&/0                                                                       7@%5#(B?C:6('#0&8
                                                                                7@%5#?2:';,('#*68
                                                                                                             !D4#$%-(20%C


                   E(B%&-0,                                                    3.G#>%5#'0B(&50:&
                    E-%-(5                                                      705#'0B(&50:&#:18
                                                         !""#$%& $%'(#)*+(,-                                !D.#H0B(&50:&
                                                                               3L9#>%5#;&0-                                 3"#>%5#-6?(#
                                     )&1#$*&-$*2
                                                                                705#;&0-#:18                                705#-6?(#:18
                                 3)&/1#%#(425#&67%289                                                  3L<#>%5#M%C;(

                                                                 !D=#$(%5;2(B(&-#I&0-           !A<#J;B*(2             !DD#K6?(




Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Generic Approach to solve Problems I+II+III
           • Methodology to create consistent mappings to
                  the CRM
                 • Step 1: Lifting the data source-specific data
                        model (e.g., relational model, XML) to the level
                        of CIDOC CRM
                 • Step 2: Map the lifted model to the CRM using
                        specific mapping guidelines (mapping
                        “algorithm”)

Bernhard Haslhofer & Philipp Nussbaumer, November 2009
(1) Lifting & Normalisation
           • Lift a relational model to the CRM via an
                  intermediate semantic model




                                                                                                                     "'4C"0"?A
                                            /*$-&/'(")*+,          /*$-&/'0*/1              /*$-&/'$*,-&
                                        !LMM0A.% A.()0CDE)2*&                           !L8M0CDE)2*0'()%*$+$),&
                                                                   G8;0$/0$()%*$+$)(0
                                                 5'&(               DN0!$()%*$+$)/&     566789:";<4=67>69




                                                                                                                     1)B.%*$20A#()@
                                             !"#$%&'(")*+,         !"#$%&'0*/1             !"#$%&'$*,-&
                                                 !"#$%&                                     !'()%*$+$),&
                                                                     -./01)23'4
                                                                                        566789:";<4=67>69

                                                         0%%+&12%")($3")                       0%%+&12%")4$#2")$,)
                                                           $,)-+'-"+%/                          "(%&%/)&(,%$(*"

                                    !"#$%&'()*'++",-'(.,) !"#$




                                                                                                                     ?)@.*$#%.@0A#()@
                                          %')"(%&%/       1)23'4                 566789:";<4=67>69
                                                          CDE)2*4)/2,$F*$#%      ?#B.%0I#@(0.J,)J/
                                                          G),$#(H,#B             ?#B.%
                                                          >,#.(G),$#(            ?#B.%
                                                          ...                    KKK
Bernhard Haslhofer & Philipp Nussbaumer, November 2009
(2) Reducing Mapping Ambiguity
           • Mapping Methodology (Principles):
            • start from the lifted semantic model
            • find most specific CRM entities for source
                        domain and target range
                 • determine the shortest possible path between
                        these entities


Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Mapping                                                          Start                       p := next property of P




       “Algorithm”                                               E := set of source
                                                                  domain entities
                                                                                                    mapping chain c := ∅



                                                                                                            eend =
                                                                                                     findTargetRange(p)
                                                                    all entities of
                                              End        yes
                                                                     E iterated?
                                                                                                        add eend to c
                                                                         no


                                                                e := next entity of E
                                                                                                          x := eend



                                                                estart := findTarget
                                                                     Domain(e)
                                                                                               no
                                                                                                        isA(estart, x)?       yes

                                                               e := instanceOf(estart)                                               invert c
                                                                                                              no

                                                                   P : = Set of                       cl = findChainLink
                                                                properties p where       yes               (estart, x)              estart := x
                                                                getDomain(p) = e


                                                                                                          add cl to c

                                                                   all properties
                                                                   of P iterated?
                                                                                                    x := first element of cl


Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Mapping Example
              @"8A&B$96:&;$<1)*C1$1D9?
                                                    %"
       #"       EFF$9"G 9":&$CHI&'B                                  E.F$):&GBJKJ&8    $"
                                           =.2$J#$J:&GBJKJ&:$HL$
                                               <J:&GBJKJ&#?



                                               !"#$%&'()*
                          !"#$                                     +,,-./0123*4,-5,/


              %678'&$96:&;$<=>%?                    !"



            Comments:

                  ad 1.: define the source path (table as source domain, field name
Bernhard Haslhofer & Philipp Nussbaumer, November 2009
                  as relationship, field value as instance)
Limitations
        • Problem:
         • mapping might fail because there is no
                        “obvious” entity to map to
                 • unclear how to close mapping chain
           • Solution:
            • application context specific functions with
                        hardwired chains for given entities

Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Discussion



Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Discussion
           • Problem 1:
            • could be resolved by providing precise
                        technical specifications
           • Problem 2:
            • users will always map differently against a
                        global ontology; guidelines can only reduce but
                        not completely resolve ambiguities

Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Discussion

           • Problem 3:
            • “remembering” mapping chains = introducing
                        an application-specific model
                 • why not use this model instead of the CRM?

Bernhard Haslhofer & Philipp Nussbaumer, November 2009
Discussion
       • Why not map directly in a P2P manner?
                                                                                                equivalent            equivalent



                                                      !&,?@;                   A&589-                          !"#$%&'&(                7&589-
                         .!#$%&'()*$+(*,-,*,




                                                                                                                                                    !"#$%&'()*$+(*,-,*,
                                                    )*+&,-./$&                  'B%&1                          )*+&,-./$&              :#$&121

                                                   012"34&1523              ;&<2#5<"-52<                      012"34&1523            ;&<2#5<"-52<

                                                  415#"1/6"-&15"%               65<-                         415#"1/6"-&15"%             65<-

                                                )*=&1>&C3&>,15$-52<      '&=&1>&C3&>,15$-52<                     )*=&1>&               '&=&1>&

                                               6&-923)(6"<B(",-B1&               DDD                             ;2<21                 ;2<21'&(



                                                               !/<-",-5,"%%/E"<3E>&#"<-5,"%%/E&FB5="%&<-              !&#"<-5,"%%/E&FB5="%&<-

                                                                                               G2E&FB5="%&<,&>


Bernhard Haslhofer & Philipp Nussbaumer, November 2009

More Related Content

What's hot

Ontologies neo4j-graph-workshop-berlin
Ontologies neo4j-graph-workshop-berlinOntologies neo4j-graph-workshop-berlin
Ontologies neo4j-graph-workshop-berlinSimon Jupp
 
Implementing Semantic Search
Implementing Semantic SearchImplementing Semantic Search
Implementing Semantic SearchPaul Wlodarczyk
 
Schema.org Structured data the What, Why, & How
Schema.org Structured data the What, Why, & HowSchema.org Structured data the What, Why, & How
Schema.org Structured data the What, Why, & HowRichard Wallis
 
AI, Knowledge Representation and Graph Databases -
 Key Trends in Data Science
AI, Knowledge Representation and Graph Databases -
 Key Trends in Data ScienceAI, Knowledge Representation and Graph Databases -
 Key Trends in Data Science
AI, Knowledge Representation and Graph Databases -
 Key Trends in Data ScienceOptum
 
Introduction to the Semantic Web
Introduction to the Semantic WebIntroduction to the Semantic Web
Introduction to the Semantic WebMarin Dimitrov
 
Semantic Web - Ontologies
Semantic Web - OntologiesSemantic Web - Ontologies
Semantic Web - OntologiesSerge Linckels
 
A Brief Introduction to Encoded Archival Description
A Brief Introduction to Encoded Archival DescriptionA Brief Introduction to Encoded Archival Description
A Brief Introduction to Encoded Archival DescriptionKevin Schlottmann
 
NGSIv1 を知っている開発者向けの NGSIv2 の概要 (Orion 2.3.0対応)
NGSIv1 を知っている開発者向けの NGSIv2 の概要 (Orion 2.3.0対応)NGSIv1 を知っている開発者向けの NGSIv2 の概要 (Orion 2.3.0対応)
NGSIv1 を知っている開発者向けの NGSIv2 の概要 (Orion 2.3.0対応)fisuda
 
From Queries to Algorithms to Advanced ML: 3 Pharmaceutical Graph Use Cases
From Queries to Algorithms to Advanced ML: 3 Pharmaceutical Graph Use CasesFrom Queries to Algorithms to Advanced ML: 3 Pharmaceutical Graph Use Cases
From Queries to Algorithms to Advanced ML: 3 Pharmaceutical Graph Use CasesNeo4j
 
Architecture as Linked Data
Architecture as Linked DataArchitecture as Linked Data
Architecture as Linked DataDanny Greefhorst
 

What's hot (20)

Ontologies neo4j-graph-workshop-berlin
Ontologies neo4j-graph-workshop-berlinOntologies neo4j-graph-workshop-berlin
Ontologies neo4j-graph-workshop-berlin
 
SPARQL Cheat Sheet
SPARQL Cheat SheetSPARQL Cheat Sheet
SPARQL Cheat Sheet
 
Introducation to metadata
Introducation to metadataIntroducation to metadata
Introducation to metadata
 
Introduction to linked data
Introduction to linked dataIntroduction to linked data
Introduction to linked data
 
Implementing Semantic Search
Implementing Semantic SearchImplementing Semantic Search
Implementing Semantic Search
 
Metadata crosswalks
Metadata crosswalksMetadata crosswalks
Metadata crosswalks
 
Cooperación bibliotecaria
Cooperación bibliotecariaCooperación bibliotecaria
Cooperación bibliotecaria
 
Schema.org Structured data the What, Why, & How
Schema.org Structured data the What, Why, & HowSchema.org Structured data the What, Why, & How
Schema.org Structured data the What, Why, & How
 
Enterprise Knowledge Graph
Enterprise Knowledge GraphEnterprise Knowledge Graph
Enterprise Knowledge Graph
 
AI, Knowledge Representation and Graph Databases -
 Key Trends in Data Science
AI, Knowledge Representation and Graph Databases -
 Key Trends in Data ScienceAI, Knowledge Representation and Graph Databases -
 Key Trends in Data Science
AI, Knowledge Representation and Graph Databases -
 Key Trends in Data Science
 
Semantic web
Semantic webSemantic web
Semantic web
 
AGRIS PPT.pptx
AGRIS PPT.pptxAGRIS PPT.pptx
AGRIS PPT.pptx
 
Introduction to the Semantic Web
Introduction to the Semantic WebIntroduction to the Semantic Web
Introduction to the Semantic Web
 
Semantic Web - Ontologies
Semantic Web - OntologiesSemantic Web - Ontologies
Semantic Web - Ontologies
 
A Brief Introduction to Encoded Archival Description
A Brief Introduction to Encoded Archival DescriptionA Brief Introduction to Encoded Archival Description
A Brief Introduction to Encoded Archival Description
 
NGSIv1 を知っている開発者向けの NGSIv2 の概要 (Orion 2.3.0対応)
NGSIv1 を知っている開発者向けの NGSIv2 の概要 (Orion 2.3.0対応)NGSIv1 を知っている開発者向けの NGSIv2 の概要 (Orion 2.3.0対応)
NGSIv1 を知っている開発者向けの NGSIv2 の概要 (Orion 2.3.0対応)
 
RDA y Linked data (Ricardo Santos Muñoz)
RDA y Linked data (Ricardo Santos Muñoz)RDA y Linked data (Ricardo Santos Muñoz)
RDA y Linked data (Ricardo Santos Muñoz)
 
From Queries to Algorithms to Advanced ML: 3 Pharmaceutical Graph Use Cases
From Queries to Algorithms to Advanced ML: 3 Pharmaceutical Graph Use CasesFrom Queries to Algorithms to Advanced ML: 3 Pharmaceutical Graph Use Cases
From Queries to Algorithms to Advanced ML: 3 Pharmaceutical Graph Use Cases
 
Architecture as Linked Data
Architecture as Linked DataArchitecture as Linked Data
Architecture as Linked Data
 
Dublin core Presentation
Dublin core PresentationDublin core Presentation
Dublin core Presentation
 

Viewers also liked

Types and Annotations for CIDOC CRM Properties - Presentation
Types and Annotations for CIDOC CRM Properties - PresentationTypes and Annotations for CIDOC CRM Properties - Presentation
Types and Annotations for CIDOC CRM Properties - PresentationVladimir Alexiev, PhD, PMP
 
Mapping Cultural Heritage Information to CIDOC-CRM
Mapping Cultural Heritage Information to CIDOC-CRMMapping Cultural Heritage Information to CIDOC-CRM
Mapping Cultural Heritage Information to CIDOC-CRMMaria Theodoridou
 
Methodological tips for mappings to CIDOC CRM
Methodological tips for mappings to CIDOC CRMMethodological tips for mappings to CIDOC CRM
Methodological tips for mappings to CIDOC CRMariadnenetwork
 
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRMDH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRMFrederic Kaplan
 
Mapping VRA Core 4.0 to the CIDOC/CRM ontology
Mapping VRA Core 4.0 to the CIDOC/CRM ontologyMapping VRA Core 4.0 to the CIDOC/CRM ontology
Mapping VRA Core 4.0 to the CIDOC/CRM ontologyGiannis Tsakonas
 
Mapping Encoded Archival Description to CIDOC CRM
Mapping Encoded Archival Description to CIDOC CRMMapping Encoded Archival Description to CIDOC CRM
Mapping Encoded Archival Description to CIDOC CRMGiannis Tsakonas
 
Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ...
 Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ... Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ...
Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ...Vladimir Alexiev, PhD, PMP
 
Metadata for 3D models, Sheena Bassett
Metadata for 3D models, Sheena BassettMetadata for 3D models, Sheena Bassett
Metadata for 3D models, Sheena Bassett3D ICONS Project
 
The Future of Museum Documentation
The Future of Museum DocumentationThe Future of Museum Documentation
The Future of Museum DocumentationCollections Trust
 
601 Session5-Encyclopedias
601 Session5-Encyclopedias601 Session5-Encyclopedias
601 Session5-EncyclopediasDiane Nahl
 
601 l5-encycs-100902165613-phpapp01
601 l5-encycs-100902165613-phpapp01601 l5-encycs-100902165613-phpapp01
601 l5-encycs-100902165613-phpapp01bellhawaii
 
Big data - The beauty or the Beast
Big data  - The beauty or the BeastBig data  - The beauty or the Beast
Big data - The beauty or the BeastSteliana Moraru
 
Searching beyond google
Searching beyond googleSearching beyond google
Searching beyond googletdurnell
 
DH101 2013/2014 course 3 - Panoramic intensifcation, narrative crise and intr...
DH101 2013/2014 course 3 - Panoramic intensifcation, narrative crise and intr...DH101 2013/2014 course 3 - Panoramic intensifcation, narrative crise and intr...
DH101 2013/2014 course 3 - Panoramic intensifcation, narrative crise and intr...Frederic Kaplan
 
UN’ESPERIENZA DI RAPPRESENTAZIONE DI DATI DI CATALOGHI DIGITALI IN LINKED OPE...
UN’ESPERIENZA DI RAPPRESENTAZIONE DI DATI DI CATALOGHI DIGITALI IN LINKED OPE...UN’ESPERIENZA DI RAPPRESENTAZIONE DI DATI DI CATALOGHI DIGITALI IN LINKED OPE...
UN’ESPERIENZA DI RAPPRESENTAZIONE DI DATI DI CATALOGHI DIGITALI IN LINKED OPE...Ciro Mattia Gonano
 
ARIADNE: Final report on standards and project registry
ARIADNE: Final report on standards and project registryARIADNE: Final report on standards and project registry
ARIADNE: Final report on standards and project registryariadnenetwork
 
DH101 2013/2014 course 8 - Historical Geographical Information Systems (HGIS)...
DH101 2013/2014 course 8 - Historical Geographical Information Systems (HGIS)...DH101 2013/2014 course 8 - Historical Geographical Information Systems (HGIS)...
DH101 2013/2014 course 8 - Historical Geographical Information Systems (HGIS)...Frederic Kaplan
 

Viewers also liked (20)

Types and Annotations for CIDOC CRM Properties - Presentation
Types and Annotations for CIDOC CRM Properties - PresentationTypes and Annotations for CIDOC CRM Properties - Presentation
Types and Annotations for CIDOC CRM Properties - Presentation
 
Mapping Cultural Heritage Information to CIDOC-CRM
Mapping Cultural Heritage Information to CIDOC-CRMMapping Cultural Heritage Information to CIDOC-CRM
Mapping Cultural Heritage Information to CIDOC-CRM
 
Methodological tips for mappings to CIDOC CRM
Methodological tips for mappings to CIDOC CRMMethodological tips for mappings to CIDOC CRM
Methodological tips for mappings to CIDOC CRM
 
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRMDH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
DH101 2013/2014 course 6 - Semantic coding, RDF, CIDOC-CRM
 
Mapping VRA Core 4.0 to the CIDOC/CRM ontology
Mapping VRA Core 4.0 to the CIDOC/CRM ontologyMapping VRA Core 4.0 to the CIDOC/CRM ontology
Mapping VRA Core 4.0 to the CIDOC/CRM ontology
 
Mapping Encoded Archival Description to CIDOC CRM
Mapping Encoded Archival Description to CIDOC CRMMapping Encoded Archival Description to CIDOC CRM
Mapping Encoded Archival Description to CIDOC CRM
 
Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ...
 Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ... Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ...
Large-scale Reasoning with a Complex Cultural Heritage Ontology (CIDOC CRM) ...
 
Metadata for 3D models, Sheena Bassett
Metadata for 3D models, Sheena BassettMetadata for 3D models, Sheena Bassett
Metadata for 3D models, Sheena Bassett
 
The CIDOC CRM Family and LOD
The CIDOC CRM Family and LODThe CIDOC CRM Family and LOD
The CIDOC CRM Family and LOD
 
The Future of Museum Documentation
The Future of Museum DocumentationThe Future of Museum Documentation
The Future of Museum Documentation
 
601 Session5-Encyclopedias
601 Session5-Encyclopedias601 Session5-Encyclopedias
601 Session5-Encyclopedias
 
601 l5-encycs-100902165613-phpapp01
601 l5-encycs-100902165613-phpapp01601 l5-encycs-100902165613-phpapp01
601 l5-encycs-100902165613-phpapp01
 
Big data - The beauty or the Beast
Big data  - The beauty or the BeastBig data  - The beauty or the Beast
Big data - The beauty or the Beast
 
Searching beyond google
Searching beyond googleSearching beyond google
Searching beyond google
 
DH101 2013/2014 course 3 - Panoramic intensifcation, narrative crise and intr...
DH101 2013/2014 course 3 - Panoramic intensifcation, narrative crise and intr...DH101 2013/2014 course 3 - Panoramic intensifcation, narrative crise and intr...
DH101 2013/2014 course 3 - Panoramic intensifcation, narrative crise and intr...
 
UN’ESPERIENZA DI RAPPRESENTAZIONE DI DATI DI CATALOGHI DIGITALI IN LINKED OPE...
UN’ESPERIENZA DI RAPPRESENTAZIONE DI DATI DI CATALOGHI DIGITALI IN LINKED OPE...UN’ESPERIENZA DI RAPPRESENTAZIONE DI DATI DI CATALOGHI DIGITALI IN LINKED OPE...
UN’ESPERIENZA DI RAPPRESENTAZIONE DI DATI DI CATALOGHI DIGITALI IN LINKED OPE...
 
ARIADNE: Final report on standards and project registry
ARIADNE: Final report on standards and project registryARIADNE: Final report on standards and project registry
ARIADNE: Final report on standards and project registry
 
The Story behind Maphub
The Story behind MaphubThe Story behind Maphub
The Story behind Maphub
 
Cidoc2009 H20
Cidoc2009 H20Cidoc2009 H20
Cidoc2009 H20
 
DH101 2013/2014 course 8 - Historical Geographical Information Systems (HGIS)...
DH101 2013/2014 course 8 - Historical Geographical Information Systems (HGIS)...DH101 2013/2014 course 8 - Historical Geographical Information Systems (HGIS)...
DH101 2013/2014 course 8 - Historical Geographical Information Systems (HGIS)...
 

Similar to CIDOC CRM in Practice

The Lean Startup - simplified
The Lean Startup - simplifiedThe Lean Startup - simplified
The Lean Startup - simplifiedStefano Bernardi
 
9t rainforest menus
9t rainforest menus9t rainforest menus
9t rainforest menusAshleigh100
 
Google Talk: DOs and DON'Ts of Mobile Strategy
Google Talk: DOs and DON'Ts of Mobile StrategyGoogle Talk: DOs and DON'Ts of Mobile Strategy
Google Talk: DOs and DON'Ts of Mobile StrategyJason Grigsby
 
分光光度法快速测定玉米叶片中的叶绿素
分光光度法快速测定玉米叶片中的叶绿素分光光度法快速测定玉米叶片中的叶绿素
分光光度法快速测定玉米叶片中的叶绿素sugeladi
 
Entrepreneurship 101 - The Nuts and Bolts of Starting a Business
Entrepreneurship 101 -  The Nuts and Bolts of Starting a BusinessEntrepreneurship 101 -  The Nuts and Bolts of Starting a Business
Entrepreneurship 101 - The Nuts and Bolts of Starting a BusinessMaRS Discovery District
 
Get me a mobile strategy or you're fired web 2
Get me a mobile strategy or you're fired   web 2Get me a mobile strategy or you're fired   web 2
Get me a mobile strategy or you're fired web 2Jason Grigsby
 
Innotech - Get Me a Mobile Strategy or You’re Fired!
Innotech - Get Me a Mobile Strategy or You’re Fired!Innotech - Get Me a Mobile Strategy or You’re Fired!
Innotech - Get Me a Mobile Strategy or You’re Fired!Jason Grigsby
 
Grad survey results presentation
Grad survey results presentationGrad survey results presentation
Grad survey results presentationCarissa Caloud
 
Grad survey results presentation
Grad survey results presentationGrad survey results presentation
Grad survey results presentationguyvonh
 
Grad survey results presentation
Grad survey results presentationGrad survey results presentation
Grad survey results presentationCarissa Caloud
 
[Harvard CS264] 04 - Intermediate-level CUDA Programming
[Harvard CS264] 04 - Intermediate-level CUDA Programming[Harvard CS264] 04 - Intermediate-level CUDA Programming
[Harvard CS264] 04 - Intermediate-level CUDA Programmingnpinto
 
SEO - It Works Even if You Don’t Know How or Why
SEO - It Works Even if You Don’t Know How or Why SEO - It Works Even if You Don’t Know How or Why
SEO - It Works Even if You Don’t Know How or Why Wolfgang Weicht
 

Similar to CIDOC CRM in Practice (20)

Chinese
ChineseChinese
Chinese
 
OSGi - beyond the myth
OSGi -  beyond the mythOSGi -  beyond the myth
OSGi - beyond the myth
 
The Lean Startup - simplified
The Lean Startup - simplifiedThe Lean Startup - simplified
The Lean Startup - simplified
 
referente
referentereferente
referente
 
2012 Report to the Council on Postsecondary Education by Kentucky's private c...
2012 Report to the Council on Postsecondary Education by Kentucky's private c...2012 Report to the Council on Postsecondary Education by Kentucky's private c...
2012 Report to the Council on Postsecondary Education by Kentucky's private c...
 
9t rainforest menus
9t rainforest menus9t rainforest menus
9t rainforest menus
 
Overview of APEC Region Wine Trade 2011
Overview of APEC Region Wine Trade 2011Overview of APEC Region Wine Trade 2011
Overview of APEC Region Wine Trade 2011
 
Google Talk: DOs and DON'Ts of Mobile Strategy
Google Talk: DOs and DON'Ts of Mobile StrategyGoogle Talk: DOs and DON'Ts of Mobile Strategy
Google Talk: DOs and DON'Ts of Mobile Strategy
 
分光光度法快速测定玉米叶片中的叶绿素
分光光度法快速测定玉米叶片中的叶绿素分光光度法快速测定玉米叶片中的叶绿素
分光光度法快速测定玉米叶片中的叶绿素
 
Company Resume
Company ResumeCompany Resume
Company Resume
 
Entrepreneurship 101 - The Nuts and Bolts of Starting a Business
Entrepreneurship 101 -  The Nuts and Bolts of Starting a BusinessEntrepreneurship 101 -  The Nuts and Bolts of Starting a Business
Entrepreneurship 101 - The Nuts and Bolts of Starting a Business
 
Get me a mobile strategy or you're fired web 2
Get me a mobile strategy or you're fired   web 2Get me a mobile strategy or you're fired   web 2
Get me a mobile strategy or you're fired web 2
 
Innotech - Get Me a Mobile Strategy or You’re Fired!
Innotech - Get Me a Mobile Strategy or You’re Fired!Innotech - Get Me a Mobile Strategy or You’re Fired!
Innotech - Get Me a Mobile Strategy or You’re Fired!
 
Grad survey results presentation
Grad survey results presentationGrad survey results presentation
Grad survey results presentation
 
Grad survey results presentation
Grad survey results presentationGrad survey results presentation
Grad survey results presentation
 
Grad survey results presentation
Grad survey results presentationGrad survey results presentation
Grad survey results presentation
 
Nota 041109
Nota 041109Nota 041109
Nota 041109
 
[Harvard CS264] 04 - Intermediate-level CUDA Programming
[Harvard CS264] 04 - Intermediate-level CUDA Programming[Harvard CS264] 04 - Intermediate-level CUDA Programming
[Harvard CS264] 04 - Intermediate-level CUDA Programming
 
PQ Issue 4_2015
PQ Issue 4_2015PQ Issue 4_2015
PQ Issue 4_2015
 
SEO - It Works Even if You Don’t Know How or Why
SEO - It Works Even if You Don’t Know How or Why SEO - It Works Even if You Don’t Know How or Why
SEO - It Works Even if You Don’t Know How or Why
 

More from Bernhard Haslhofer

Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...Bernhard Haslhofer
 
Token Systems, Payment Channels, and Corporate Currencies
Token Systems, Payment Channels, and Corporate CurrenciesToken Systems, Payment Channels, and Corporate Currencies
Token Systems, Payment Channels, and Corporate CurrenciesBernhard Haslhofer
 
Can a blockchain solve the trust problem?
Can a blockchain solve the trust problem?Can a blockchain solve the trust problem?
Can a blockchain solve the trust problem?Bernhard Haslhofer
 
Measurements in Cryptocurrency Networks
Measurements in Cryptocurrency NetworksMeasurements in Cryptocurrency Networks
Measurements in Cryptocurrency NetworksBernhard Haslhofer
 
Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
 Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur... Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...Bernhard Haslhofer
 
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...Bernhard Haslhofer
 
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency AnalyticsO Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency AnalyticsBernhard Haslhofer
 
Mind the Gap - Data Science Meets Software Engineering
Mind the Gap - Data Science Meets Software EngineeringMind the Gap - Data Science Meets Software Engineering
Mind the Gap - Data Science Meets Software EngineeringBernhard Haslhofer
 
GraphSense - Real-time Insight into Virtual Currency Ecosystems
GraphSense - Real-time Insight into Virtual Currency EcosystemsGraphSense - Real-time Insight into Virtual Currency Ecosystems
GraphSense - Real-time Insight into Virtual Currency EcosystemsBernhard Haslhofer
 
BITCOIN - De-anonymization and Money Laundering Detection Strategies
BITCOIN - De-anonymization and Money Laundering Detection StrategiesBITCOIN - De-anonymization and Money Laundering Detection Strategies
BITCOIN - De-anonymization and Money Laundering Detection StrategiesBernhard Haslhofer
 
Bitcoin - Introduction, Technical Aspects and Ongoing Developments
Bitcoin - Introduction, Technical Aspects and Ongoing DevelopmentsBitcoin - Introduction, Technical Aspects and Ongoing Developments
Bitcoin - Introduction, Technical Aspects and Ongoing DevelopmentsBernhard Haslhofer
 
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...Bernhard Haslhofer
 
The value of open data and the OpenGLAM network
The value of open data and the OpenGLAM networkThe value of open data and the OpenGLAM network
The value of open data and the OpenGLAM networkBernhard Haslhofer
 
Offene Daten im Kulturbereich - Die pragmatische Perspektive
Offene Daten im Kulturbereich - Die pragmatische PerspektiveOffene Daten im Kulturbereich - Die pragmatische Perspektive
Offene Daten im Kulturbereich - Die pragmatische PerspektiveBernhard Haslhofer
 
Open Data - Principles and Techniques
Open Data - Principles and TechniquesOpen Data - Principles and Techniques
Open Data - Principles and TechniquesBernhard Haslhofer
 
Semantic Tagging on Historical Maps
Semantic Tagging on Historical MapsSemantic Tagging on Historical Maps
Semantic Tagging on Historical MapsBernhard Haslhofer
 
OpenGLAM Intro @ OKFN.AT Meetup Graz
OpenGLAM Intro @ OKFN.AT Meetup GrazOpenGLAM Intro @ OKFN.AT Meetup Graz
OpenGLAM Intro @ OKFN.AT Meetup GrazBernhard Haslhofer
 
Semantic Tagging for old maps...and other things on the Web
Semantic Tagging for old maps...and other things on the WebSemantic Tagging for old maps...and other things on the Web
Semantic Tagging for old maps...and other things on the WebBernhard Haslhofer
 

More from Bernhard Haslhofer (20)

Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
Decentralized Finance (DeFi) - Understanding Risks in an Emerging Financial P...
 
Token Systems, Payment Channels, and Corporate Currencies
Token Systems, Payment Channels, and Corporate CurrenciesToken Systems, Payment Channels, and Corporate Currencies
Token Systems, Payment Channels, and Corporate Currencies
 
Can a blockchain solve the trust problem?
Can a blockchain solve the trust problem?Can a blockchain solve the trust problem?
Can a blockchain solve the trust problem?
 
Measurements in Cryptocurrency Networks
Measurements in Cryptocurrency NetworksMeasurements in Cryptocurrency Networks
Measurements in Cryptocurrency Networks
 
Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
 Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur... Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
Post-Bitcoin Cryptocurrencies, Off-Chain Transaction Channels, and Cryptocur...
 
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
Insight Into Cryptocurrencies - Methods and Tools for Analyzing Blockchain-ba...
 
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency AnalyticsO Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
O Bitcoin Where Art Thou? An Introduction to Cryptocurrency Analytics
 
Mind the Gap - Data Science Meets Software Engineering
Mind the Gap - Data Science Meets Software EngineeringMind the Gap - Data Science Meets Software Engineering
Mind the Gap - Data Science Meets Software Engineering
 
GraphSense - Real-time Insight into Virtual Currency Ecosystems
GraphSense - Real-time Insight into Virtual Currency EcosystemsGraphSense - Real-time Insight into Virtual Currency Ecosystems
GraphSense - Real-time Insight into Virtual Currency Ecosystems
 
BITCOIN - De-anonymization and Money Laundering Detection Strategies
BITCOIN - De-anonymization and Money Laundering Detection StrategiesBITCOIN - De-anonymization and Money Laundering Detection Strategies
BITCOIN - De-anonymization and Money Laundering Detection Strategies
 
Bitcoin - Introduction, Technical Aspects and Ongoing Developments
Bitcoin - Introduction, Technical Aspects and Ongoing DevelopmentsBitcoin - Introduction, Technical Aspects and Ongoing Developments
Bitcoin - Introduction, Technical Aspects and Ongoing Developments
 
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
Maphub und Pelagios: Anwendung von Linked Data in den Digitalen Geisteswissen...
 
The value of open data and the OpenGLAM network
The value of open data and the OpenGLAM networkThe value of open data and the OpenGLAM network
The value of open data and the OpenGLAM network
 
Things, not Strings
Things, not StringsThings, not Strings
Things, not Strings
 
Offene Daten im Kulturbereich - Die pragmatische Perspektive
Offene Daten im Kulturbereich - Die pragmatische PerspektiveOffene Daten im Kulturbereich - Die pragmatische Perspektive
Offene Daten im Kulturbereich - Die pragmatische Perspektive
 
Open Data - Principles and Techniques
Open Data - Principles and TechniquesOpen Data - Principles and Techniques
Open Data - Principles and Techniques
 
Semantic Tagging on Historical Maps
Semantic Tagging on Historical MapsSemantic Tagging on Historical Maps
Semantic Tagging on Historical Maps
 
OpenGLAM Intro @ OKFN.AT Meetup Graz
OpenGLAM Intro @ OKFN.AT Meetup GrazOpenGLAM Intro @ OKFN.AT Meetup Graz
OpenGLAM Intro @ OKFN.AT Meetup Graz
 
Semantic Tagging for old maps...and other things on the Web
Semantic Tagging for old maps...and other things on the WebSemantic Tagging for old maps...and other things on the Web
Semantic Tagging for old maps...and other things on the Web
 
Linked (Open) Data
Linked (Open) DataLinked (Open) Data
Linked (Open) Data
 

Recently uploaded

WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024Lorenzo Miniero
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...ScyllaDB
 
AI mind or machine power point presentation
AI mind or machine power point presentationAI mind or machine power point presentation
AI mind or machine power point presentationyogeshlabana357357
 
Navigating the Large Language Model choices_Ravi Daparthi
Navigating the Large Language Model choices_Ravi DaparthiNavigating the Large Language Model choices_Ravi Daparthi
Navigating the Large Language Model choices_Ravi DaparthiRaviKumarDaparthi
 
2024 May Patch Tuesday
2024 May Patch Tuesday2024 May Patch Tuesday
2024 May Patch TuesdayIvanti
 
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptxHarnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptxFIDO Alliance
 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAnitaRaj43
 
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...caitlingebhard1
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptxFIDO Alliance
 
Design Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxDesign Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxFIDO Alliance
 
Microsoft BitLocker Bypass Attack Method.pdf
Microsoft BitLocker Bypass Attack Method.pdfMicrosoft BitLocker Bypass Attack Method.pdf
Microsoft BitLocker Bypass Attack Method.pdfOverkill Security
 
State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!Memoori
 
ADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptxADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptxFIDO Alliance
 
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc
 
Microsoft CSP Briefing Pre-Engagement - Questionnaire
Microsoft CSP Briefing Pre-Engagement - QuestionnaireMicrosoft CSP Briefing Pre-Engagement - Questionnaire
Microsoft CSP Briefing Pre-Engagement - QuestionnaireExakis Nelite
 
Working together SRE & Platform Engineering
Working together SRE & Platform EngineeringWorking together SRE & Platform Engineering
Working together SRE & Platform EngineeringMarcus Vechiato
 
JohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard37
 
ChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps ProductivityChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps ProductivityVictorSzoltysek
 

Recently uploaded (20)

WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
Event-Driven Architecture Masterclass: Integrating Distributed Data Stores Ac...
 
Overview of Hyperledger Foundation
Overview of Hyperledger FoundationOverview of Hyperledger Foundation
Overview of Hyperledger Foundation
 
AI mind or machine power point presentation
AI mind or machine power point presentationAI mind or machine power point presentation
AI mind or machine power point presentation
 
Navigating the Large Language Model choices_Ravi Daparthi
Navigating the Large Language Model choices_Ravi DaparthiNavigating the Large Language Model choices_Ravi Daparthi
Navigating the Large Language Model choices_Ravi Daparthi
 
2024 May Patch Tuesday
2024 May Patch Tuesday2024 May Patch Tuesday
2024 May Patch Tuesday
 
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptxHarnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
 
AI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by AnitarajAI in Action: Real World Use Cases by Anitaraj
AI in Action: Real World Use Cases by Anitaraj
 
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...Stronger Together: Developing an Organizational Strategy for Accessible Desig...
Stronger Together: Developing an Organizational Strategy for Accessible Desig...
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
 
Design Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptxDesign Guidelines for Passkeys 2024.pptx
Design Guidelines for Passkeys 2024.pptx
 
Microsoft BitLocker Bypass Attack Method.pdf
Microsoft BitLocker Bypass Attack Method.pdfMicrosoft BitLocker Bypass Attack Method.pdf
Microsoft BitLocker Bypass Attack Method.pdf
 
State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!State of the Smart Building Startup Landscape 2024!
State of the Smart Building Startup Landscape 2024!
 
ADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptxADP Passwordless Journey Case Study.pptx
ADP Passwordless Journey Case Study.pptx
 
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
TrustArc Webinar - Unified Trust Center for Privacy, Security, Compliance, an...
 
Microsoft CSP Briefing Pre-Engagement - Questionnaire
Microsoft CSP Briefing Pre-Engagement - QuestionnaireMicrosoft CSP Briefing Pre-Engagement - Questionnaire
Microsoft CSP Briefing Pre-Engagement - Questionnaire
 
Working together SRE & Platform Engineering
Working together SRE & Platform EngineeringWorking together SRE & Platform Engineering
Working together SRE & Platform Engineering
 
JohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptxJohnPollard-hybrid-app-RailsConf2024.pptx
JohnPollard-hybrid-app-RailsConf2024.pptx
 
ChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps ProductivityChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps Productivity
 

CIDOC CRM in Practice

  • 1. CIDOC CRM in Practice - Experiences, Problems, and Possible Solutions - Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 2. Background • BRICKS Project (2003 - 2007) • Goal • build an infrastructure for integrating contents and metadata from heterogeneous sources • build value added services on top Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 3. Background • Build an application that provides access to archaeological findings from two distinct institutions • Provided advanced search (e.g. faceted search) • Use the CIDOC-CRM to deal with metadata heterogeneities Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 4. Background Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 5. CIDOC CRM Mapping • Metadata Schemes: !&,?@; A&589- !"#$%&'&( 7&589- .!#$%&'()*$+(*,-,*, !"#$%&'()*$+(*,-,*, )*+&,-./$& 'B%&1 )*+&,-./$& :#$&121 012"34&1523 ;&<2#5<"-52< 012"34&1523 ;&<2#5<"-52< 415#"1/6"-&15"% 65<- 415#"1/6"-&15"% 65<- )*=&1>&C3&>,15$-52< '&=&1>&C3&>,15$-52< )*=&1>& '&=&1>& 6&-923)(6"<B(",-B1& DDD ;2<21 ;2<21'&( !/<-",-5,"%%/E"<3E>&#"<-5,"%%/E&FB5="%&<- !&#"<-5,"%%/E&FB5="%&<- G2E&FB5="%&<,&> Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 6. CIDOC CRM Mapping • Sample Metadata Instance: !"#$%&'( !"#$%& !""#$%&'()*+"#,"% '()"#*+,-" '-./ '()"#*&".#/0-*012 0-12/34-563789 3"045* (:#%34 6/078/,98*"/08: ;-56 9"*51;'<982=<> <=>?@A3->3789 >>> ::: Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 7. CIDOC CRM Mapping • The CIDOC CRM: !""#&0?)I)<2()0' !"+#510?K<()0' EEE !;#$0'?)()0'#:(2(- !;M#O)6K23#7(-. !;J#7.2B- !4#D<()P)(* EEE !+#,-./0123#!'()(* !;"#>0<K.-'( EEE !=#5-1)0? !8#!P-'( EEE !4;#7'I01.2()0'#FGH-<( !+C#>-6)B'#01#510<-?K1- EEE !8M#N2'BK2B- !4@#,A)'B !++#&2'9&2?-#FGH-<( !+J#$0'<-/(K23#FGH-<( !88#,*/- !84#&2(-1)23 !;C#D<(01 EEE EEE !44#5-16)6(-'(#7(-. EEE !8J#&-26K1-.-'(#L')( !8"#$0'(2<(#50)'( !=8#D??1-66 !"#$%&#!'()(* !=+#FGH-<(#7?-'()I)-1 !="#D//-332()0' !=C#,).-#D//-332()0' !8@#>2(- !8+#,).-9:/2' !==#532<-#D//-332()0' !=4#:/2()23#$001?)'2(-6 !8;#532<- EEE EEE !8=#>).-'6)0' !M@#QK.G-1 !8C#51).)()P-#O23K- !M"#,).-#51).)()P- !M+#:(1)'B Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 8. CIDOC CRM Mapping • Source Metadata Expressed in CRM: >MH$/66#,,-2130 >MH$/66#,,-2130 GH$1.$1E#02141#E$78$ 51E#02141#.= >LL$!86# >?H$'3+<A#02 K<L GHH-?.B!+I=AH-JH. !40& GHJK$1.$+3A63.#E$34$ 543:A.$6-:2$34= GIJ$E3+<A#02.$ GH$1.$1E#02141#E$78$ >?H$'3+<A#02 51.$E3+<A#02#E$10= GC$"-.$286#$ 51E#02141#.= 51.$286#$34= >LI$*-2#:1-, >CC$*-0D*-E#$(7F#+2 GHCK$#A6,38#E GHJ@$"-.$6:3E<+#E M4"6 59-.$#A6,38#E$10= 59-.$6:3E<+#E$78= G?$"-.$032# >KC$Q2:10B 2345#&2*4"62#78)7$2 >HC$G:3E<+2130 GM?$"-.$E1A#0.130 492:)842;<=2>?@ABC,2 51.$E1A#0.130$34= GH?@$:#6:#.#02. DEF)20$$7)62(08(#2<=2 GHK$<.#E$.6#+141+$37F#+2$ 5"-.$:#6:#.#02-2130= A?@A>, 59-.$<.#E$43:= >LM$'1A#0.130 >CN$'#.1B0$3:$G:3+#E<:# GH$1.$1E#02141#E$78$ GNH$"-.$<012 GNJ$"-.$;-,<# GC$"-.$286#$ >?@$&A-B# 51.$<012$34= 51.$286#$34= 51E#02141#.= >MH$/66#,,-2130 >L@$*#-.<:#A#02$O012 >KJ$P<A7#: >LL$!86# L'87(N24821#55)8)6 * +,-. /)0*1' !!"#$#%& !"#$$ !"#$%&'(%$%)*$+,-.. %&$'#&() /0$10.2-0+#$34$2"#$+,-..$563..17,8$912"$+30+:#2#$;-,<#= Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 9. CIDOC CRM Mapping • Mappings expressed as mapping chains: !"#$% 4"0/7%#$% !$&'()*%+,,-./0123*4,-5,/!6$&'()*% !89:!%!;4 !789&':;<=&% !"#$ !6789&':;<=&% WNNF;<=& !789&':;<=&1&>:?@A:<%1&>:?@A!6789&':;<=&1&>:?@A:<% .(/0 !789&':*&B'>@=:@CA% "XFU?BF:<=&FM@BF:<=&FCKO DCE?AFGCHIF?J>&JBFCKFL&>CFM#*FN. 40OFPQQQR !6789&':*&B'>@=:@CA% WXXFT?A T?I&F789&': !789&':*?:&-1&>:?@A:<%1&>:?@A!6789&':*?:&-1&>:?@A:<% "-,0FU?BF=>CIJ'&IF "-4FJB&IFB=&'@K@'FC89&':F M?BF=>CIJ'&IF8<O !*?:&S>CE%4.!6*?:&S>CE% M?BFJB&IFKC>O !"&>@CIS>CE%D7T#L!6"&>@CIS>CE% W-XF">CIJ':@CA WX3F*&B@GAFC>F">C'&IJ>& !T&:UCI7KT?AJK?':J>&% %%%%%%%%%%&'()*+%"(%,-../(/0 "-F@BF@I&A:@K@&IF8<F W.-F#==&HH?:@CA M@I&A:@K@&BO !"#$%&'(#')*++,#,- !6T&:UCI7KT?AJK?':J>&% V !6"#$% 12&%345%&")(*/%6#7/ 12&%'"%!89:!%4-<<#$= F"#$Y789&':;<=& Z%FWXX "X WNN F"#$YT&:UCI7KT?AJK?':J>& Z%FWXX @A["-,0 "-4 WX3 "- W.- Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 10. Problems encountered Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 11. Problem 1: Lifting and Normalisation • How to technically represent metadata in terms of the CRM? • RDFS / OWL model exists • lack essential features (e.g. properties for literals) • require application-specific extensions Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 12. Problem 2: Mapping Ambiguity • Different valid representations for the same attributes: !;;$I834 0"12 %#$012$+834$ 5,2$+834$'<9 !"#$"%"&'(')*&+, !;= >1+4&,1? !##$>1-@>1(4$A7B4*+ !"#$ !"#$"%"&'".+/*&/"#'0+ !*#"./*0 %"#G$4H3?'84( %"./$012$3&'()*4($ 5612$4H3?'84($,-9 5612$3&'()*4($789 !"#$%&'()*+,'- !:"$F334??1+,'- %"G$)24($234*,<,*$'7B4*+$ 5612$)24($<'&9 !"#$"%"&'(')*&+- %&'()*+"'+,-../'/$ %"$,2$,(4-+,<,4($78$ !#C$D42,E-$'&$%&'*4()&4 !;= >1+4&,1? 5,(4-+,<,429 !"#$ %:;$*'-2,2+2$'<$ 5,2$,-*'&3'&1+4($,-9 !##$>1-@>1(4$A7B4*+ 0"12 %"./$012$3&'()*4($ 5612$3&'()*4($789 !"#$"%"&'".+/*&/"#'0+ !;;$I834 !"#$%&'%(')*+,(*-#,." !"#$%&'()*+,'- %&'()*+"'+,-../'/$ %#$012$+834$ 5,2$+834$'<9 ++1"2"&. 0#-33 I04$JKDAJ$JL>$*?122 423&-2)/ F-$,-2+1-*4$'<$+04$*?122$53'22,7?8$6,+0$*'-*&4+4$M1?)49 Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 13. Problem 3: Processing and Visualisation • The human / machine must “remember” the meaning of mapping chains in order to retrieve information • E22-P2-E55 = the object type • E22-invP108-P16-E29-P1-E41 = manufacture method Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 14. Possible solutions Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 15. A Simple Approach to (partially) solve Problem II + III !"#$%&'( )$'* +",,-.%/!0"-. 3.4#05#0'(&-010('#*6# 70'(&-010(58 !"#$%&'&#( !""#$%& $%'(#)*+(,- !."#)*+(,-#/'(&-010(2 )*+(,-5 3G#>%5#&:-( )#*+(&,%&-$ !""#$%& $%'(#)*+(,- !A"#E-20&F !""#$%& $%'(#)*+(,- !9"#32:';,-0:& 39<=#>%5#?2:';,(' 39"A#(B?C:6('# ./%#(&/0 7@%5#(B?C:6('#0&8 7@%5#?2:';,('#*68 !D4#$%-(20%C E(B%&-0, 3.G#>%5#'0B(&50:& E-%-(5 705#'0B(&50:&#:18 !""#$%& $%'(#)*+(,- !D.#H0B(&50:& 3L9#>%5#;&0- 3"#>%5#-6?(# )&1#$*&-$*2 705#;&0-#:18 705#-6?(#:18 3)&/1#%#(425#&67%289 3L<#>%5#M%C;( !D=#$(%5;2(B(&-#I&0- !A<#J;B*(2 !DD#K6?( Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 16. Generic Approach to solve Problems I+II+III • Methodology to create consistent mappings to the CRM • Step 1: Lifting the data source-specific data model (e.g., relational model, XML) to the level of CIDOC CRM • Step 2: Map the lifted model to the CRM using specific mapping guidelines (mapping “algorithm”) Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 17. (1) Lifting & Normalisation • Lift a relational model to the CRM via an intermediate semantic model "'4C"0"?A /*$-&/'(")*+, /*$-&/'0*/1 /*$-&/'$*,-& !LMM0A.% A.()0CDE)2*& !L8M0CDE)2*0'()%*$+$),& G8;0$/0$()%*$+$)(0 5'&( DN0!$()%*$+$)/& 566789:";<4=67>69 1)B.%*$20A#()@ !"#$%&'(")*+, !"#$%&'0*/1 !"#$%&'$*,-& !"#$%& !'()%*$+$),& -./01)23'4 566789:";<4=67>69 0%%+&12%")($3") 0%%+&12%")4$#2")$,) $,)-+'-"+%/ "(%&%/)&(,%$(*" !"#$%&'()*'++",-'(.,) !"#$ ?)@.*$#%.@0A#()@ %')"(%&%/ 1)23'4 566789:";<4=67>69 CDE)2*4)/2,$F*$#% ?#B.%0I#@(0.J,)J/ G),$#(H,#B ?#B.% >,#.(G),$#( ?#B.% ... KKK Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 18. (2) Reducing Mapping Ambiguity • Mapping Methodology (Principles): • start from the lifted semantic model • find most specific CRM entities for source domain and target range • determine the shortest possible path between these entities Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 19. Mapping Start p := next property of P “Algorithm” E := set of source domain entities mapping chain c := ∅ eend = findTargetRange(p) all entities of End yes E iterated? add eend to c no e := next entity of E x := eend estart := findTarget Domain(e) no isA(estart, x)? yes e := instanceOf(estart) invert c no P : = Set of cl = findChainLink properties p where yes (estart, x) estart := x getDomain(p) = e add cl to c all properties of P iterated? x := first element of cl Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 20. Mapping Example @"8A&B$96:&;$<1)*C1$1D9? %" #" EFF$9"G 9":&$CHI&'B E.F$):&GBJKJ&8 $" =.2$J#$J:&GBJKJ&:$HL$ <J:&GBJKJ&#? !"#$%&'()* !"#$ +,,-./0123*4,-5,/ %678'&$96:&;$<=>%? !" Comments: ad 1.: define the source path (table as source domain, field name Bernhard Haslhofer & Philipp Nussbaumer, November 2009 as relationship, field value as instance)
  • 21. Limitations • Problem: • mapping might fail because there is no “obvious” entity to map to • unclear how to close mapping chain • Solution: • application context specific functions with hardwired chains for given entities Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 22. Discussion Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 23. Discussion • Problem 1: • could be resolved by providing precise technical specifications • Problem 2: • users will always map differently against a global ontology; guidelines can only reduce but not completely resolve ambiguities Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 24. Discussion • Problem 3: • “remembering” mapping chains = introducing an application-specific model • why not use this model instead of the CRM? Bernhard Haslhofer & Philipp Nussbaumer, November 2009
  • 25. Discussion • Why not map directly in a P2P manner? equivalent equivalent !&,?@; A&589- !"#$%&'&( 7&589- .!#$%&'()*$+(*,-,*, !"#$%&'()*$+(*,-,*, )*+&,-./$& 'B%&1 )*+&,-./$& :#$&121 012"34&1523 ;&<2#5<"-52< 012"34&1523 ;&<2#5<"-52< 415#"1/6"-&15"% 65<- 415#"1/6"-&15"% 65<- )*=&1>&C3&>,15$-52< '&=&1>&C3&>,15$-52< )*=&1>& '&=&1>& 6&-923)(6"<B(",-B1& DDD ;2<21 ;2<21'&( !/<-",-5,"%%/E"<3E>&#"<-5,"%%/E&FB5="%&<- !&#"<-5,"%%/E&FB5="%&<- G2E&FB5="%&<,&> Bernhard Haslhofer & Philipp Nussbaumer, November 2009