This document discusses using deep learning models to classify chest x-ray images as either normal or pneumonia. It obtained a dataset of over 5,800 pediatric chest x-rays from a Chinese hospital. Various deep learning models were explored, including multilayer perceptrons, convolutional neural networks, and transfer learning with VGG16, which achieved 92% validation accuracy. The document recommends future work such as distinguishing between viral and bacterial pneumonia and combining models with SVM. It also discusses recommendations to reduce childhood pneumonia prevalence.