SlideShare a Scribd company logo
1 of 21
CHE 203: ENTROPY
ENTROPY
• Entropy (S) is a term coined by Rudolph Clausius in the 19th century.
• Clausius was convinced of the significance of the ratio of heat delivered and the
temperature at which it is delivered,
• Entropy can be thought of as a measure of the randomness of a system.
It is related to the various modes of motion in molecules.
• Like total energy, E, and enthalpy, H, entropy is a state function.
• Therefore,
S = Sfinal  Sinitial
ENTROPY
For a process occurring at constant temperature (an isothermal process):
qrev = the heat that is transferred when the process is carried out reversibly
at a constant temperature.
T = temperature in Kelvin.
Second Law of Thermodynamics
The second law of thermodynamics:
The entropy of the universe does not change for reversible processes
and increases for spontaneous processes.
Second Law of Thermodynamics
The entropy of the universe increases (real, spontaneous processes).
But, entropy can decrease for individual systems.
Thermodynamic Entropy
• The kinetic energy linked to the mobility of particles spreads out as they disperse
and acquire freedom of motion. Energy dispersion or spreading out turns out to be
a crucial aspect of all spontaneous processes. It even has a name: entropy (S).
• Entropy is a thermodynamic property that provides a measure of the dispersal of
energy in a system at a specific temperature.
• The Second Law of Thermodynamics states that entropy of an isolated
thermodynamic system always increases during a spontaneous process.
• The second law also covers thermodynamic systems that are not isolated (most
systems are not isolated; they are either open or closed).
• Universe = System + Surroundings
The overall change in the entropy of the universe is the sum of the entropy changes
experienced by the system and by its surroundings:
∆Suniv = ∆Ssys + ∆Ssurr (1)
1. In the case of a spontaneous process in an isolated system, ∆Ssys is greater than
zero (∆Ssys > 0)
2. The entropy of its surroundings is unchanged (∆Ssurr = 0).
Therefore, according to above equation (1)
∆Suniv must also be greater than zero (∆Suniv > 0).
4. The positive value of ∆Suniv is the basis for another way of expressing the second
law of thermodynamics that applies to all systems (not just isolated ones):
A spontaneous process produces an increase in the entropy.
The second law provides a thermodynamic requirement for reaction spontaneity as well as a criterion
for nonspontaneity:
A process that produces a decrease in the entropy of the universe does not occur on its own.
Summarizing these relationships:
If ∆Suniv > 0, then a process is spontaneous
If ∆Suniv < 0, then a process is nonspontaneous
Absolute values of ∆Ssurr and ∆Ssys: |∆Ssurr| > |∆Ssys|
The relationship between entropy gain and temperature is reflected in Equation below
∆S = qrev/T
SUMMARY
Entropy on the Molecular Scale
• Ludwig Boltzmann described the concept of entropy on the molecular level.
• Temperature is a measure of the average kinetic energy of the molecules in a
sample.
Entropy on the Molecular Scale
Molecules exhibit several types of motion:
• Translational: Movement of the entire molecule from one place to another.
• Vibrational: Periodic motion of atoms within a molecule.
• Rotational: Rotation of the molecule on about an axis or rotation about 
bonds.
Entropy on the Molecular Scale
Boltzmann envisioned the motions of a sample of molecules
at a particular instant in time.
• This would be akin to taking a snapshot of all the molecules.
• He referred to this sampling as a microstate of the thermodynamic
system.
Entropy on the Molecular Scale
• Each thermodynamic state has a specific number of microstates, W, associated
with it.
• Entropy is
S = k lnW
where k is the Boltzmann constant, 1.38  1023 J/K.
Implications:
• more particles
-> more states -> more entropy
• higher T
-> more energy states -> more entropy
• less structure (gas vs solid)
-> more states -> more entropy
Entropy on the Molecular Scale
The number of microstates and, therefore, the entropy tends
to increase with increases in
• Temperature.
• Volume (gases).
• The number of independently moving molecules.
Entropy and Physical States
Solutions
Dissolution of a solid:
Ions have more entropy (more states) But,
Some water molecules have less entropy (they are grouped around ions).
• Usually, there is an overall increase in S.
• (The exception is very highly charged ions that make a lot of water molecules
align around them.)
Entropy Changes
• In general, entropy increases when
• Gases are formed from liquids and solids.
• Liquids or solutions are formed from solids.
• The number of gas molecules increases.
• The number of moles increases.
Third Law of Thermodynamics
The entropy of a pure crystalline substance at absolute zero is 0.

More Related Content

Similar to CHE 116 Unit 2.1 Entropy.pptx chemistry

MH-CET 2014 Thermodynamics and Thermochemistry
MH-CET 2014 Thermodynamics and Thermochemistry MH-CET 2014 Thermodynamics and Thermochemistry
MH-CET 2014 Thermodynamics and Thermochemistry Ednexa
 
Laws of thermodynamics and their significance
Laws of thermodynamics and their significanceLaws of thermodynamics and their significance
Laws of thermodynamics and their significancekanmanivarsha
 
THERMODYNAMICS
THERMODYNAMICS THERMODYNAMICS
THERMODYNAMICS Zain768828
 
Chem7250p4.pptsmn..nnfsknvsk,nvs,mnvsk,jdnlsk,
Chem7250p4.pptsmn..nnfsknvsk,nvs,mnvsk,jdnlsk,Chem7250p4.pptsmn..nnfsknvsk,nvs,mnvsk,jdnlsk,
Chem7250p4.pptsmn..nnfsknvsk,nvs,mnvsk,jdnlsk,chaturvedijay62
 
chemical-thermodynamics-2 (3).pptcscscscscs
chemical-thermodynamics-2 (3).pptcscscscscschemical-thermodynamics-2 (3).pptcscscscscs
chemical-thermodynamics-2 (3).pptcscscscscsAliceRivera13
 
Chem7250p4.ppt
Chem7250p4.pptChem7250p4.ppt
Chem7250p4.pptvaskane
 
2nd law of thermodynamics
2nd law of thermodynamics2nd law of thermodynamics
2nd law of thermodynamicsphysicist666
 
Thermodynamics.ppt
Thermodynamics.pptThermodynamics.ppt
Thermodynamics.pptgokulthambu6
 
Thermodynamics
ThermodynamicsThermodynamics
ThermodynamicsAtul Saini
 
Thermodynamics ppt
Thermodynamics pptThermodynamics ppt
Thermodynamics pptNaman Jain
 
2nd law of thermodynamics
2nd law of thermodynamics2nd law of thermodynamics
2nd law of thermodynamicsphysicist666
 
lecture_223⁵4323564334555543343333334.ppt
lecture_223⁵4323564334555543343333334.pptlecture_223⁵4323564334555543343333334.ppt
lecture_223⁵4323564334555543343333334.pptsadafshahbaz7777
 
Thermodynamics, heat transfer, conduction equation
Thermodynamics, heat transfer, conduction equationThermodynamics, heat transfer, conduction equation
Thermodynamics, heat transfer, conduction equationABHAYLINGAYAT1
 
Chap01_lecture_notes.ppt
Chap01_lecture_notes.pptChap01_lecture_notes.ppt
Chap01_lecture_notes.pptShoebAhmedSyed2
 
Hsslive-XI-Cheem-Ch-6_Thermodynamics.pdf
Hsslive-XI-Cheem-Ch-6_Thermodynamics.pdfHsslive-XI-Cheem-Ch-6_Thermodynamics.pdf
Hsslive-XI-Cheem-Ch-6_Thermodynamics.pdfPraveenBukka1
 

Similar to CHE 116 Unit 2.1 Entropy.pptx chemistry (20)

MH-CET 2014 Thermodynamics and Thermochemistry
MH-CET 2014 Thermodynamics and Thermochemistry MH-CET 2014 Thermodynamics and Thermochemistry
MH-CET 2014 Thermodynamics and Thermochemistry
 
Laws of thermodynamics and their significance
Laws of thermodynamics and their significanceLaws of thermodynamics and their significance
Laws of thermodynamics and their significance
 
Thermodynamics, part 4
Thermodynamics, part 4Thermodynamics, part 4
Thermodynamics, part 4
 
THERMODYNAMICS
THERMODYNAMICS THERMODYNAMICS
THERMODYNAMICS
 
Chem7250p4.pptsmn..nnfsknvsk,nvs,mnvsk,jdnlsk,
Chem7250p4.pptsmn..nnfsknvsk,nvs,mnvsk,jdnlsk,Chem7250p4.pptsmn..nnfsknvsk,nvs,mnvsk,jdnlsk,
Chem7250p4.pptsmn..nnfsknvsk,nvs,mnvsk,jdnlsk,
 
Chem7250p4.ppt
Chem7250p4.pptChem7250p4.ppt
Chem7250p4.ppt
 
Chem7250p4.ppt
Chem7250p4.pptChem7250p4.ppt
Chem7250p4.ppt
 
chemical-thermodynamics-2 (3).pptcscscscscs
chemical-thermodynamics-2 (3).pptcscscscscschemical-thermodynamics-2 (3).pptcscscscscs
chemical-thermodynamics-2 (3).pptcscscscscs
 
Chem7250p4.ppt
Chem7250p4.pptChem7250p4.ppt
Chem7250p4.ppt
 
2nd law of thermodynamics
2nd law of thermodynamics2nd law of thermodynamics
2nd law of thermodynamics
 
Thermodynamics.ppt
Thermodynamics.pptThermodynamics.ppt
Thermodynamics.ppt
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Thermodynamics ppt
Thermodynamics pptThermodynamics ppt
Thermodynamics ppt
 
2nd law of thermodynamics
2nd law of thermodynamics2nd law of thermodynamics
2nd law of thermodynamics
 
lecture_223⁵4323564334555543343333334.ppt
lecture_223⁵4323564334555543343333334.pptlecture_223⁵4323564334555543343333334.ppt
lecture_223⁵4323564334555543343333334.ppt
 
Lecture 2
Lecture 2Lecture 2
Lecture 2
 
Thermodynamics, heat transfer, conduction equation
Thermodynamics, heat transfer, conduction equationThermodynamics, heat transfer, conduction equation
Thermodynamics, heat transfer, conduction equation
 
BASIC OF HEAT TRANSFER
BASIC OF HEAT TRANSFERBASIC OF HEAT TRANSFER
BASIC OF HEAT TRANSFER
 
Chap01_lecture_notes.ppt
Chap01_lecture_notes.pptChap01_lecture_notes.ppt
Chap01_lecture_notes.ppt
 
Hsslive-XI-Cheem-Ch-6_Thermodynamics.pdf
Hsslive-XI-Cheem-Ch-6_Thermodynamics.pdfHsslive-XI-Cheem-Ch-6_Thermodynamics.pdf
Hsslive-XI-Cheem-Ch-6_Thermodynamics.pdf
 

More from stephenopokuasante

chromosome - Chromosomes + Mutations 3.pptx
chromosome - Chromosomes + Mutations 3.pptxchromosome - Chromosomes + Mutations 3.pptx
chromosome - Chromosomes + Mutations 3.pptxstephenopokuasante
 
molecular biology Molecular markers (1).pptx
molecular biology Molecular markers (1).pptxmolecular biology Molecular markers (1).pptx
molecular biology Molecular markers (1).pptxstephenopokuasante
 
ORGANIZATIONAL BEHAVIOUR (SBU 208)_CHAPTER 4.pptx
ORGANIZATIONAL BEHAVIOUR (SBU 208)_CHAPTER 4.pptxORGANIZATIONAL BEHAVIOUR (SBU 208)_CHAPTER 4.pptx
ORGANIZATIONAL BEHAVIOUR (SBU 208)_CHAPTER 4.pptxstephenopokuasante
 
21st Century Pan-Africanism part 1 (1).pptx
21st Century Pan-Africanism part 1 (1).pptx21st Century Pan-Africanism part 1 (1).pptx
21st Century Pan-Africanism part 1 (1).pptxstephenopokuasante
 
phylogeny of class Reptilia vertebrates.pptx
phylogeny of class Reptilia vertebrates.pptxphylogeny of class Reptilia vertebrates.pptx
phylogeny of class Reptilia vertebrates.pptxstephenopokuasante
 
bryophytes and pteridophytes.ppt cryptogams
bryophytes and pteridophytes.ppt cryptogamsbryophytes and pteridophytes.ppt cryptogams
bryophytes and pteridophytes.ppt cryptogamsstephenopokuasante
 
VERTEBRATES COMPLETE LECTUR E NOTES.pptx
VERTEBRATES COMPLETE LECTUR E NOTES.pptxVERTEBRATES COMPLETE LECTUR E NOTES.pptx
VERTEBRATES COMPLETE LECTUR E NOTES.pptxstephenopokuasante
 
2.0 - Types of Light Microscope.ppt microscope
2.0 - Types of Light Microscope.ppt microscope2.0 - Types of Light Microscope.ppt microscope
2.0 - Types of Light Microscope.ppt microscopestephenopokuasante
 
1.0 - The Light Miscroscope.ppt microscopy
1.0 - The Light Miscroscope.ppt microscopy1.0 - The Light Miscroscope.ppt microscopy
1.0 - The Light Miscroscope.ppt microscopystephenopokuasante
 
Tissue of the primary plant body.pdf pdf
Tissue of the primary plant body.pdf pdfTissue of the primary plant body.pdf pdf
Tissue of the primary plant body.pdf pdfstephenopokuasante
 
BIOLOGY VERTEBRATE Lesson 4 CLASS AVES.pptx
BIOLOGY  VERTEBRATE Lesson 4 CLASS AVES.pptxBIOLOGY  VERTEBRATE Lesson 4 CLASS AVES.pptx
BIOLOGY VERTEBRATE Lesson 4 CLASS AVES.pptxstephenopokuasante
 
Pollination-and-Fertilisation.ppt plants
Pollination-and-Fertilisation.ppt plantsPollination-and-Fertilisation.ppt plants
Pollination-and-Fertilisation.ppt plantsstephenopokuasante
 
vdocuments.net_phylum-cnidaria-5696f5c22d3e6.ppt
vdocuments.net_phylum-cnidaria-5696f5c22d3e6.pptvdocuments.net_phylum-cnidaria-5696f5c22d3e6.ppt
vdocuments.net_phylum-cnidaria-5696f5c22d3e6.pptstephenopokuasante
 
2.0 - Types of Light Microscope wonder.pptx
2.0 - Types of Light Microscope wonder.pptx2.0 - Types of Light Microscope wonder.pptx
2.0 - Types of Light Microscope wonder.pptxstephenopokuasante
 
2.0 - Types of Light Microscope.pptx ppt
2.0 - Types of Light Microscope.pptx ppt2.0 - Types of Light Microscope.pptx ppt
2.0 - Types of Light Microscope.pptx pptstephenopokuasante
 
1.0 - The Light Miscroscope (2).pptx0ppt
1.0 - The Light Miscroscope (2).pptx0ppt1.0 - The Light Miscroscope (2).pptx0ppt
1.0 - The Light Miscroscope (2).pptx0pptstephenopokuasante
 
Plant Tissues 26-03-2021.pptx morphology
Plant Tissues 26-03-2021.pptx morphologyPlant Tissues 26-03-2021.pptx morphology
Plant Tissues 26-03-2021.pptx morphologystephenopokuasante
 
3.0 Cell Structure and function (2).pptx
3.0 Cell Structure and function (2).pptx3.0 Cell Structure and function (2).pptx
3.0 Cell Structure and function (2).pptxstephenopokuasante
 
5.Muscle tissue.pptx cell and tissue organization
5.Muscle tissue.pptx cell and tissue organization5.Muscle tissue.pptx cell and tissue organization
5.Muscle tissue.pptx cell and tissue organizationstephenopokuasante
 
VERTEBRATES COMPLETE LECTURE NOTES.pptxs
VERTEBRATES COMPLETE LECTURE NOTES.pptxsVERTEBRATES COMPLETE LECTURE NOTES.pptxs
VERTEBRATES COMPLETE LECTURE NOTES.pptxsstephenopokuasante
 

More from stephenopokuasante (20)

chromosome - Chromosomes + Mutations 3.pptx
chromosome - Chromosomes + Mutations 3.pptxchromosome - Chromosomes + Mutations 3.pptx
chromosome - Chromosomes + Mutations 3.pptx
 
molecular biology Molecular markers (1).pptx
molecular biology Molecular markers (1).pptxmolecular biology Molecular markers (1).pptx
molecular biology Molecular markers (1).pptx
 
ORGANIZATIONAL BEHAVIOUR (SBU 208)_CHAPTER 4.pptx
ORGANIZATIONAL BEHAVIOUR (SBU 208)_CHAPTER 4.pptxORGANIZATIONAL BEHAVIOUR (SBU 208)_CHAPTER 4.pptx
ORGANIZATIONAL BEHAVIOUR (SBU 208)_CHAPTER 4.pptx
 
21st Century Pan-Africanism part 1 (1).pptx
21st Century Pan-Africanism part 1 (1).pptx21st Century Pan-Africanism part 1 (1).pptx
21st Century Pan-Africanism part 1 (1).pptx
 
phylogeny of class Reptilia vertebrates.pptx
phylogeny of class Reptilia vertebrates.pptxphylogeny of class Reptilia vertebrates.pptx
phylogeny of class Reptilia vertebrates.pptx
 
bryophytes and pteridophytes.ppt cryptogams
bryophytes and pteridophytes.ppt cryptogamsbryophytes and pteridophytes.ppt cryptogams
bryophytes and pteridophytes.ppt cryptogams
 
VERTEBRATES COMPLETE LECTUR E NOTES.pptx
VERTEBRATES COMPLETE LECTUR E NOTES.pptxVERTEBRATES COMPLETE LECTUR E NOTES.pptx
VERTEBRATES COMPLETE LECTUR E NOTES.pptx
 
2.0 - Types of Light Microscope.ppt microscope
2.0 - Types of Light Microscope.ppt microscope2.0 - Types of Light Microscope.ppt microscope
2.0 - Types of Light Microscope.ppt microscope
 
1.0 - The Light Miscroscope.ppt microscopy
1.0 - The Light Miscroscope.ppt microscopy1.0 - The Light Miscroscope.ppt microscopy
1.0 - The Light Miscroscope.ppt microscopy
 
Tissue of the primary plant body.pdf pdf
Tissue of the primary plant body.pdf pdfTissue of the primary plant body.pdf pdf
Tissue of the primary plant body.pdf pdf
 
BIOLOGY VERTEBRATE Lesson 4 CLASS AVES.pptx
BIOLOGY  VERTEBRATE Lesson 4 CLASS AVES.pptxBIOLOGY  VERTEBRATE Lesson 4 CLASS AVES.pptx
BIOLOGY VERTEBRATE Lesson 4 CLASS AVES.pptx
 
Pollination-and-Fertilisation.ppt plants
Pollination-and-Fertilisation.ppt plantsPollination-and-Fertilisation.ppt plants
Pollination-and-Fertilisation.ppt plants
 
vdocuments.net_phylum-cnidaria-5696f5c22d3e6.ppt
vdocuments.net_phylum-cnidaria-5696f5c22d3e6.pptvdocuments.net_phylum-cnidaria-5696f5c22d3e6.ppt
vdocuments.net_phylum-cnidaria-5696f5c22d3e6.ppt
 
2.0 - Types of Light Microscope wonder.pptx
2.0 - Types of Light Microscope wonder.pptx2.0 - Types of Light Microscope wonder.pptx
2.0 - Types of Light Microscope wonder.pptx
 
2.0 - Types of Light Microscope.pptx ppt
2.0 - Types of Light Microscope.pptx ppt2.0 - Types of Light Microscope.pptx ppt
2.0 - Types of Light Microscope.pptx ppt
 
1.0 - The Light Miscroscope (2).pptx0ppt
1.0 - The Light Miscroscope (2).pptx0ppt1.0 - The Light Miscroscope (2).pptx0ppt
1.0 - The Light Miscroscope (2).pptx0ppt
 
Plant Tissues 26-03-2021.pptx morphology
Plant Tissues 26-03-2021.pptx morphologyPlant Tissues 26-03-2021.pptx morphology
Plant Tissues 26-03-2021.pptx morphology
 
3.0 Cell Structure and function (2).pptx
3.0 Cell Structure and function (2).pptx3.0 Cell Structure and function (2).pptx
3.0 Cell Structure and function (2).pptx
 
5.Muscle tissue.pptx cell and tissue organization
5.Muscle tissue.pptx cell and tissue organization5.Muscle tissue.pptx cell and tissue organization
5.Muscle tissue.pptx cell and tissue organization
 
VERTEBRATES COMPLETE LECTURE NOTES.pptxs
VERTEBRATES COMPLETE LECTURE NOTES.pptxsVERTEBRATES COMPLETE LECTURE NOTES.pptxs
VERTEBRATES COMPLETE LECTURE NOTES.pptxs
 

Recently uploaded

Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksSérgio Sacani
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...chandars293
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencySheetal Arora
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfrohankumarsinghrore1
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticssakshisoni2385
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Monika Rani
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfSumit Kumar yadav
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxRizalinePalanog2
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxFarihaAbdulRasheed
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfmuntazimhurra
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...Lokesh Kothari
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPirithiRaju
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and ClassificationsAreesha Ahmad
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bSérgio Sacani
 

Recently uploaded (20)

Formation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disksFormation of low mass protostars and their circumstellar disks
Formation of low mass protostars and their circumstellar disks
 
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
High Class Escorts in Hyderabad ₹7.5k Pick Up & Drop With Cash Payment 969456...
 
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls AgencyHire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
Hire 💕 9907093804 Hooghly Call Girls Service Call Girls Agency
 
Forensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdfForensic Biology & Its biological significance.pdf
Forensic Biology & Its biological significance.pdf
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceuticsPulmonary drug delivery system M.pharm -2nd sem P'ceutics
Pulmonary drug delivery system M.pharm -2nd sem P'ceutics
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
Vip profile Call Girls In Lonavala 9748763073 For Genuine Sex Service At Just...
 
Zoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdfZoology 4th semester series (krishna).pdf
Zoology 4th semester series (krishna).pdf
 
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptxSCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
SCIENCE-4-QUARTER4-WEEK-4-PPT-1 (1).pptx
 
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptxCOST ESTIMATION FOR A RESEARCH PROJECT.pptx
COST ESTIMATION FOR A RESEARCH PROJECT.pptx
 
Biological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdfBiological Classification BioHack (3).pdf
Biological Classification BioHack (3).pdf
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
GUIDELINES ON SIMILAR BIOLOGICS Regulatory Requirements for Marketing Authori...
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdfPests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
Pests of cotton_Borer_Pests_Binomics_Dr.UPR.pdf
 
Bacterial Identification and Classifications
Bacterial Identification and ClassificationsBacterial Identification and Classifications
Bacterial Identification and Classifications
 
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 bAsymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
Asymmetry in the atmosphere of the ultra-hot Jupiter WASP-76 b
 

CHE 116 Unit 2.1 Entropy.pptx chemistry

  • 2. ENTROPY • Entropy (S) is a term coined by Rudolph Clausius in the 19th century. • Clausius was convinced of the significance of the ratio of heat delivered and the temperature at which it is delivered, • Entropy can be thought of as a measure of the randomness of a system. It is related to the various modes of motion in molecules. • Like total energy, E, and enthalpy, H, entropy is a state function. • Therefore, S = Sfinal  Sinitial
  • 3. ENTROPY For a process occurring at constant temperature (an isothermal process): qrev = the heat that is transferred when the process is carried out reversibly at a constant temperature. T = temperature in Kelvin.
  • 4. Second Law of Thermodynamics The second law of thermodynamics: The entropy of the universe does not change for reversible processes and increases for spontaneous processes.
  • 5. Second Law of Thermodynamics The entropy of the universe increases (real, spontaneous processes). But, entropy can decrease for individual systems.
  • 6. Thermodynamic Entropy • The kinetic energy linked to the mobility of particles spreads out as they disperse and acquire freedom of motion. Energy dispersion or spreading out turns out to be a crucial aspect of all spontaneous processes. It even has a name: entropy (S). • Entropy is a thermodynamic property that provides a measure of the dispersal of energy in a system at a specific temperature. • The Second Law of Thermodynamics states that entropy of an isolated thermodynamic system always increases during a spontaneous process. • The second law also covers thermodynamic systems that are not isolated (most systems are not isolated; they are either open or closed). • Universe = System + Surroundings
  • 7. The overall change in the entropy of the universe is the sum of the entropy changes experienced by the system and by its surroundings: ∆Suniv = ∆Ssys + ∆Ssurr (1) 1. In the case of a spontaneous process in an isolated system, ∆Ssys is greater than zero (∆Ssys > 0) 2. The entropy of its surroundings is unchanged (∆Ssurr = 0). Therefore, according to above equation (1) ∆Suniv must also be greater than zero (∆Suniv > 0). 4. The positive value of ∆Suniv is the basis for another way of expressing the second law of thermodynamics that applies to all systems (not just isolated ones): A spontaneous process produces an increase in the entropy.
  • 8. The second law provides a thermodynamic requirement for reaction spontaneity as well as a criterion for nonspontaneity: A process that produces a decrease in the entropy of the universe does not occur on its own. Summarizing these relationships: If ∆Suniv > 0, then a process is spontaneous If ∆Suniv < 0, then a process is nonspontaneous Absolute values of ∆Ssurr and ∆Ssys: |∆Ssurr| > |∆Ssys| The relationship between entropy gain and temperature is reflected in Equation below ∆S = qrev/T
  • 9.
  • 10.
  • 12.
  • 13. Entropy on the Molecular Scale • Ludwig Boltzmann described the concept of entropy on the molecular level. • Temperature is a measure of the average kinetic energy of the molecules in a sample.
  • 14. Entropy on the Molecular Scale Molecules exhibit several types of motion: • Translational: Movement of the entire molecule from one place to another. • Vibrational: Periodic motion of atoms within a molecule. • Rotational: Rotation of the molecule on about an axis or rotation about  bonds.
  • 15. Entropy on the Molecular Scale Boltzmann envisioned the motions of a sample of molecules at a particular instant in time. • This would be akin to taking a snapshot of all the molecules. • He referred to this sampling as a microstate of the thermodynamic system.
  • 16. Entropy on the Molecular Scale • Each thermodynamic state has a specific number of microstates, W, associated with it. • Entropy is S = k lnW where k is the Boltzmann constant, 1.38  1023 J/K. Implications: • more particles -> more states -> more entropy • higher T -> more energy states -> more entropy • less structure (gas vs solid) -> more states -> more entropy
  • 17. Entropy on the Molecular Scale The number of microstates and, therefore, the entropy tends to increase with increases in • Temperature. • Volume (gases). • The number of independently moving molecules.
  • 19. Solutions Dissolution of a solid: Ions have more entropy (more states) But, Some water molecules have less entropy (they are grouped around ions). • Usually, there is an overall increase in S. • (The exception is very highly charged ions that make a lot of water molecules align around them.)
  • 20. Entropy Changes • In general, entropy increases when • Gases are formed from liquids and solids. • Liquids or solutions are formed from solids. • The number of gas molecules increases. • The number of moles increases.
  • 21. Third Law of Thermodynamics The entropy of a pure crystalline substance at absolute zero is 0.