SlideShare a Scribd company logo
1 of 193
Download to read offline
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
SOLUTIONS MANUAL
THERMODYNAMICS
AND AN INTRODUCTION
THERMOSTATISTICS
SECOND EDITION
TO
HERBERT B. CALLEN
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
Manual de soluções para o livro Thermodyna-
mics and an introduction to thermostatistics -
second edition. [SUMÁRIO]
Este manual de soluções é essencialmente uma tradução do solucionário original, feito pelo
próprio Herbert B. Callen e publicado pela editora JOHN WILEY & SONS no ano de 1986
(ISBN 0 471 81993 X). O solucionário original foi feito e publicado na forma manuscrita, sendo
essa a principal razão pela qual decidimos editar esse documento. A praticidade e clareza deste
manual de soluções o torna uma excelente ferramenta auxiliar para as pessoas que usam o
livro-texto, porém deve-se tomar o cuidado de não fazer dessa ferramenta consultiva a principal
forma de resolver os problemas, sendo essa nossa principal preocupação em tornar esse material
público.
O livro thermodynamics and an introduction to thermostatistics apresenta 391 problemas ao
todo, e esse manual traz a solução de 346 desses problemas e ainda 7 problemas suplementares
e suas respectivas soluções. Tomamos o cuidado de deixar esse documento tão mais fiel ao
original quanto fosse possível, tanto nas explicações quanto na disposição das figuras, fazendo
pequenas correções e alterações quando necessário e conveniente.
Esse manual é um bem público feito por nós estudantes para vocês estudantes. Por favor
não o comercialize. Este material, bem como a ciência e não obstante o conhecimento, deve ser
acessado por todos e para todos, sendo portanto livre o seu compartilhamento.
Comentários, correções, ou mesmo sugestões de solução para qualquer problema do livro
ou deste manual, favor enviar para o e-mail solutionscallen@gmail.com, dessa forma podemos
mantê-lo sempre atualizado.
Goiânia, fevereiro de 2022
πiXeL
Karlengs
WallRiDeR
Feito em L
A
TEX
2
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
Esse PDF foi construído pelas seguintes contribuições:
Capa (feita no inkscape)
πiXeL e Lactovacilo
Capítulos 1, 2, 3, 4, 7, 8, 13*, 15, 16, 17, 18, 19, 20, 21.
πiXeL
Capítulos 5, 6.
WallRiDeR
Capítulos 9, 10, 11, 13*.
Karlengs
Figuras ( feitas no inkscape e tikz)
πiXeL, WallRiDeR e Karlengs
Um agradecimento especial aos queridos Vinny e Mrsteps que tornaram possível o acesso à
obra original.
Contato: solutionscallen@gmail.com
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD
Feito no Goiás
3
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
A quem interessar possa,
cuide bem desse solucionário,
ele salvou minha vida.
—Watney
(e um estudante da graduação)
4
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
Página do manual original (única página que não é manuscrita)
5
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
Sumário [SUMÁRIO]
1 THE PROBLEM AND THE POSTULATES 20
1.3 THE COMPOSITION OF THERMODYNAMIC SYSTEMS . . . . . . 20
1.3.1 One tenth of a kilogram of NaCl and 0.15 kg of sugar (C12H22O11)... . . . 20
1.3.2 Naturally occurring boron has an atomic mass of 10.811 g... . . . . . . . 20
1.3.3 Twenty cubic centimeters each of ethyl alcohol... . . . . . . . . . . . . . . 20
1.3.4 A 0.01 kg sample is composed of 50 molecular percent H2... . . . . . . . 21
1.3.5 A solution of sugar (C12H22O11) in water is 20% sugar by weight... . . . . 21
1.3.6 An aqueous solution of an unidentified solute has a total mass... . . . . . 22
1.3.7 One tenth of a kg of an aqueous solution of HCl is poured... . . . . . . . 22
1.8 QUANTITATIVE DEFINITION OF HEAT-UNITS . . . . . . . . . . . . 23
1.8.1 For the system considered in Example 1, calculate... . . . . . . . . . . . . 23
1.8.2 Calculate the heat transferred to the system considered in... . . . . . . . 23
1.8.3 For a particular gaseous system it has been determined that... . . . . . . 24
1.8.4 For the system of Problem 1.8-3 find the equation of the adiabats... . . . 25
1.8.5 The energy of a particular system, of one mole, is given by ... . . . . . . . 25
1.8.6 For a particular system it is found that if the volume is kept ... . . . . . . 26
1.8.7 Two moles of a particular single-component system are found... . . . . . 26
1.8.8 (Supplementary Problem) A particular single-component system of
one mole has adiabats of the form P5/3
= constant . . . . . . . . . . . . 27
1.10 THE ENTROPY MAXIMUM POSTULATES . . . . . . . . . . . . . . . 28
1.10.1 The following ten equations are purported to be fundamental... . . . . . 28
1.10.2 For each of the five physically acceptable fundamental equations... . . . . 29
1.10.3 The fundamental equation of a system A is S =

R2
v0θ
1/3
(NV U)1/3
and
similarly... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2 THE CONDITIONS OF EQUILIBRIUM 31
2.2 EQUATIONS OF STATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.1 Find the three equations of state for a system with the fundamental... . . 31
2.2.2 For the system of problem 2.2-1 find µ as a function of T, V e N . . . . . 31
2.2.3 Show by a diagram (drawn to arbitrary scale) the dependence of... . . . . 31
2.2.4 Find the three equations of state for a system with the fundamental
equation u =

θ
R

s2
−

Rθ
v2
0

v2
. . . . . . . . . . . . . . . . . . . . . . 32
2.2.5 Express µ as a function of T and P for the system of problem 2.2-4 . . . 32
2.2.6 Find the three equations of state for a system with the fundamental
equation u =

v0θ
R

s2
v
es/R
. . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.7 A particular system obeys the relation u = Av−2
exp(s/R)... . . . . . . . 33
2.2.8 Show that, in analogy with equation 2.25, for a system with r components... 33
2.2.9 Show that if a single-component system is such that PV k
is constant... . 34
2.3 ENTROPIC INTENSIVE PARAMETERS . . . . . . . . . . . . . . . . . 35
2.3.1 Find the three equations of state in the entropy representation for... . . . 35
2.3.2 Show by a diagram (drawn to arbitrary scale) the dependence of tempe-
rature on volume ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.3 Find the three equations of state in the entropy representation for ... . . 37
2.3.4 Consider the fundamental equation S = AUn
V m
Nr
where A is a positive
constant... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.5 Find the three equations of state for a system with the fundamental
relation... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 TEMPERATURE UNITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
2.6.1 The temperature of a system composed of ice, water, and water vapor... . 38
2.6.2 The gas constantR is defined as the product of Avogrado’s number... . 38
2.6.3 Two particular systems have the following equations of state... . . . . . . 38
2.6.4 Two systems with the equations of state given in Problem 2.6-3 ... . . . . 39
2.7 MECHANICAL EQUILIBRIUM . . . . . . . . . . . . . . . . . . . . . . . . 39
2.7.1 Three cylinders are fitted with four pistons, as shown in Fig. 2.2 ... . . . 39
2.7.2 Two particular systems have the following equations of state : ... . . . . . 40
2.7.3 The hypothetical problem of equilibrium in a closed composite system ... 40
2.8 EQUILIBRIUM WITH RESPECT TO MATTER FLOW . . . . . . . . 41
2.8.1 The fundamental equation of a particular type of two-component system
is... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.8.2 A two-component system gaseous system has a fundamental equation of
the form... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.9 CHEMICAL EQUILIBRIUM . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.9.1 The hydrogenation of propane (C3H8) to form methane (CH4) proceeds
by the reaction... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3 SOME FORMAL RELATIONSHIPS, AND SAMPLE SYSTEMS 43
3.1 THE EULER EQUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.1 Write each of the five physically acceptable fundamental equations... . . . 43
3.2 THE GIBBS-DUHEM RELATION . . . . . . . . . . . . . . . . . . . . . . 44
3.2.1 Find the relation among T, P, and µ for the system with the fundamental
equation... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 SUMMARY OF FORMAL STRUCTURE . . . . . . . . . . . . . . . . . . 45
3.3.1 A particular system obeys the two equations of state... . . . . . . . . . . 45
3.3.2 It is found that a particular system obeys the relations U = PV and
P = BT2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 A system obeys the equations... . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.4 A system obeys the two equations u =
3
2
Pv and u1/2
= BTv1/3
... . . . . 47
3.4 THE SIMPLE IDEAL GAS AND MULTICOMPONENT SIMPLE
IDEAL GASES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 A constant volume ideal gas thermometeris contructed as shown (sche-
matically) in Fig. 3.3. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2 Show that the relation between the volume and the pressure of a mono-
atomic ideal gas ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.3 Two moles of a monoatomic ideal gas are at a temperature of 0℃... . . . 48
3.4.4 By carring out the integral
R
PdV , compute the work done by the gas in
Problem 3.4-3... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.5 In a particular engine a gas is compressed in the initial stroke of the piston... 49
3.4.6 Find the three equations of state of the simple ideal gas(equation 3.34... 50
3.4.7 Find the four equations of state of a two-component mixture if simple
ideal gases... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.8 If a monoatomic ideal gas is permitted to expand into an evacuated region,
thereby increasing its volume... . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.9 A tank has a volume of 0.1m3
and is filled with He gas at a pressure of... 52
3.4.10 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.11 Show that the pressure of a multicomponent simple ideal gas can be
written as the sum... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.12 Show that µj, the electrochemical potential of the jth component in a ... 53
3.4.13 An impermeable, diathermal, and rigid partition divides a container into
two subvolumes... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
3.4.14 Use the results of problem 3.4-11 and 3.4-12 to stablish the results Pα =
Pγ e... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.15 An impermeable, diathermal and rigid partition divides a container into
two subvolumes... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5 THE ˝IDEAL VAN DER WAALS FLUID . . . . . . . . . . . . . . . . . 54
3.5.1 Are each of the listed pairs of equations of state compatible (recall equa-
tions 3.46)? ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.2 Find the relationship between the volume and the temperature of an ideal
Van Der Waals fluid... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.3 Repeat the problem 3.4-3 for CO2, rather than for a monoatomic ideal
gas... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.4 Repeat parts (a), (b), e (c) do problema 3.4-5, assuming that η = −1/2
and that gas... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.5 Consider a Van Der Waals gas contained in the apparatus described in
Problem 3.4-1... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.6 One mole of a monoatomic ideal gas and one mole of Cl2 are contained
in a rigid cylinder and... . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.7 (Supplementary problem) Suppose we wish to account (crudely) for
a long-range... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6 ELECTROMAGNETIC RADIATION . . . . . . . . . . . . . . . . . . . . 58
3.6.1 The universe is considered by cosmologists to be an expanding electro-
magnetic cavity containing radiation... . . . . . . . . . . . . . . . . . . . 58
3.6.2 Assuming the electromagnetic radiation filling the universe to be in equi-
librium at T = 2.7 K... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6.3 The density of matter (primarily hydrogen atoms) in intergalactic space
is such that... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7 THE ˝RUBBER BAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7.1 For the rubber band model, calculate the fractional change in (L − L0)
that results from an increase δT... . . . . . . . . . . . . . . . . . . . . . . 59
3.7.2 A rubber band is stretched by an amount dL, at constant T. Calculate
the heat transfer đQ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7.3 If the energy of the unstretched rubber band were found to increase qua-
dratically with T... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.8 UNCONSTRAINABLE VARIABLES; MAGNETIC SYSTEMS . . . . 60
3.8.1 Calculate the three equations of state of the paramagnetic model of equa-
tion 3.66. That is, calculate... . . . . . . . . . . . . . . . . . . . . . . . . 60
3.8.2 Repeat problem 3.8-1 for a system with the fundamental equation U =
µ0I2
/2Nχ+... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.9 MOLAR HEAT CAPACITY AND OTHER DERIVATIVES . . . . . . 61
3.9.1 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.9.2 Corroborate equation 3.70 for a multicomponent simple ideal gas, showing
that both the right- and left-hand... . . . . . . . . . . . . . . . . . . . . . 62
3.9.3 Compute the coefficient of expansion α and the isothermal compressibility
κT in terms... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.9.4 Compute CP , CV , κS, e κT for the system in Problem 1.10-(a). With
these values... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.9.5 From equations 3.75 and 3.76 show that... . . . . . . . . . . . . . . . . . 63
3.9.6 A simple fundamental equation that exhibits some of the qualitative pro-
perties of typical crystaline solids... . . . . . . . . . . . . . . . . . . . . . 64
3.9.7 The density of mercury at various temperatures is given here in grams/cm3
... 65
3.9.8 For a particular material CP , α, e κT can be represented empirically by
power series... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
3.9.9 Calculate the molar entropy s(T, P0) for fixed pressure P0 and for tem-
perature T in the vicinity of ... . . . . . . . . . . . . . . . . . . . . . . . 66
3.9.10 By analogy with equations 3.70 and 3.71 show that for a paramagnetic
system... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.9.11 By analogy with equations 3.70 and 3.71 show that for a paramagnetic
system... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.9.12 The magnetic analogues of the molar heat capacities CP and Cv are CB
and CI. Calculate... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.9.13 The (isothermal) molar magnetic susceptibility is defined by ... . . . . . . 67
3.9.14 Calculate the adiabatic molar susceptibility... . . . . . . . . . . . . . . . 68
3.9.15 Calculate the isothermal and adiabatic molar susceptibilities (defined in
Problem 3.9-13 and 3.9-14)... . . . . . . . . . . . . . . . . . . . . . . . . 68
3.9.16 Show that for the system of Problem 3.8-2... . . . . . . . . . . . . . . . . 68
3.9.17 Calculate the heat transfer to a particular system if 1 mole is taken from
(T0, P0) to (2T0, 2P0)... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.9.18 (Supplementary Problem) A particular substance is known to have
α = 5/(4T), κT = 2/(P + P0)... . . . . . . . . . . . . . . . . . . . . . . . 69
4 REVERSIBLE PROCESSES AND THE MAXIMUM WORK THEOREM 70
4.1 POSSIBLE AND IMPOSSIBLE PROCESSES . . . . . . . . . . . . . . . 70
4.1.1 One mole of a monatomic ideal gas and one mole of an idela Van der
Waals fluid (Section 3.5)... . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.2 A rubber band (Section 3.7) is initially at temperature TB and length
LB. One mole of a monatomic ideal gas... . . . . . . . . . . . . . . . . . 71
4.1.3 Supose the two systems in Example 1 were to have heat capacities of the
form C(T) = DTn
, with n  0 ... . . . . . . . . . . . . . . . . . . . . . . 71
4.2 QUASI-STATIC AND REVERSIBLE PROCESSES . . . . . . . . . . . 72
4.2.1 Does every reversible process coincide with a quasi-static locus? Does
every quasi-static locus coincide with a reversible process ?... . . . . . . . 72
4.2.2 Consider a monatomic ideal gas in a cylinder fitted with a piston. The
walls of the cylinder and the piston are adiabatic. ... . . . . . . . . . . . 72
4.2.3 A monatomic ideal gas is permitted to expand by a free expansion from
V to V + dV ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2.4 In the temperature range of interest a system obeys the equations T =
Av2
/s and P = −2Av
ln(s/s0)... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 RELAXATION TIMES AND IRREVERSIBILITY . . . . . . . . . . . . 73
4.3.1 A cylinder of length L and cross-sectional area A is divided into two
equal-volume chambers by a piston, held at... . . . . . . . . . . . . . . . 73
4.4 HEAT FLOW: COUPLED SYSTEMS AND REVERSAL OF PRO-
CESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.1 Each of two bodies has a heat capacity given, in the temperature range
of interest, by C = A + BT ... . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4.2 Consider again the system of Problem 4.4-1. LEt a third body be avai-
lable, with heat capacity C3 = BT... . . . . . . . . . . . . . . . . . . . . 74
4.4.3 Prove that the entropy change in a heat flow process, as given in equation
4.5, is intrinsically positive. . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.4 Show that if two bodies have equal heat capacities, eqach of which is
constant (independent of temperature), the equilibrium temperature... . . 75
4.4.5 Over a limited temperature range the heat capacity at constant volume
of a particular type of system is inversely proportional... . . . . . . . . . 76
9
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
4.4.6 A series of N + 1 large vats of water have temperatures T0, T1, T2, ..., TN
(with Tn  Tn−1). A small body with heat capacity C... . . . . . . . . . . 76
4.5 THE MAXIMUM WORK THEOREM . . . . . . . . . . . . . . . . . . . . 77
4.5.1 One mole of a monatomic ideal gas is contained in a cylinder of volume
10−3
m3
at temperature of 400 K... . . . . . . . . . . . . . . . . . . . . . 77
4.5.2 Consider the following process for the system of Problem 4.5-1. The ideal
gas is first expanded adiabatically ... . . . . . . . . . . . . . . . . . . . . 77
4.5.3 Describe how the gas of the preceding two problems could be brought to
the desired final state by a free expansion. ... . . . . . . . . . . . . . . . . 78
4.5.4 The gasous system of Problem 4.5-1 is to be restored to its initial state.
Both states have temperature 400 K... . . . . . . . . . . . . . . . . . . . 78
4.5.5 If the thermal reservoir of Problem 4.5-1 were to be replaced by a rever-
sible heat source having a heat capacity of ... . . . . . . . . . . . . . . . . 78
4.5.6 A system can be taken from state A to state B (where SB = SA) either
(a) directly along the adiabat S = constant, or (b) along the isochore AC... 79
4.5.7 Consider the maximum work theorem in the case in which the specified
final state of the subsystem has lower... . . . . . . . . . . . . . . . . . . . 79
4.5.8 If SB  SA and UB  UA does this imply that the delivered work is
negative ? Prove your assertion... . . . . . . . . . . . . . . . . . . . . . . 79
4.5.9 Two identical bodies each have constant and equal heat capacities (C1 =
C2 = C, a constant). In addition a reversible work source is available... . 80
4.5.10 Two identical bodies eqch have heat capacities (at constant volume) of
C(T) = a/T... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.11 Two bodies have heat capacities (at constant volume) of C1 = aT and
C2 = 2bT... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.12 One mole of an ideal Van der Waals fluid is contained in a cylinder fitted
with a piston. The initial temperature of the gas... . . . . . . . . . . . . 81
4.5.13 A system has a temperature-independent heat capacity C. The system
is initially at temperature Ti and a heat reservoir... . . . . . . . . . . . . 81
4.5.14 If the temperature of the atmosphere is 5℃on a winter day and if 1 Kg
of water at 90 ℃is... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.15 A rigid cylinder contains an internal adiabatic piston separating it into
two chambers, of volume V10 and V20. ... . . . . . . . . . . . . . . . . . . 82
4.5.16 Each of three identical bodies has a temperature-independent heat capa-
city C. The three bodies... . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.17 Each of two bodies has a heat capacity given by C = A + 2BT... . . . . . 83
4.5.18 A particular system has the equations of state T = As/v1/2
and P =
T2
/4Av1/2
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5.19 A particular type of system obeys the equations T = u
b
and P = avT... . 84
4.5.20 Suppose that we have a system in some initial state (we may think of a
tank of hot, compressed gas as an example) and... . . . . . . . . . . . . . 84
4.5.21 An antartic meteorological station suddenly loses all of its fuel. It has N
moles of an inert ideal Van der Waals fluidat... . . . . . . . . . . . . . 85
4.5.22 A geothermalpower source is available to drive an oxygen production
plant. The geothermal source is simply a ... . . . . . . . . . . . . . . . . 85
4.6 COEFFICIENTS OF ENGINE, REFRIGERATOR, AND HEAT PUMP
PERFORMANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.6.1 A temperature of 0.001 K is accessible in low temperature laboratories
with moderate effort. If the price... . . . . . . . . . . . . . . . . . . . . . 86
4.6.2 A home is to be maintained at 70F, and the external temperature is 50F.
One method of heating... . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
10
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
4.6.3 A household refrigerator is maintained at a temperature of 35°F. Every
time the door is opened, warm material... . . . . . . . . . . . . . . . . . . 86
4.6.4 Heat is extracted from a bath of liquid helium at a temperature of 4.2 K.
The high-temperature reservoir is a ... . . . . . . . . . . . . . . . . . . . 86
4.6.5 Assume that a particular body has the equation of state U = NCT with
NC = 10 J/K and assume that this equation... . . . . . . . . . . . . . . 87
4.6.6 One mole of a monatomic ideal gas is allowed to expand isothermally
from an initial volume of 10 liter to a final... . . . . . . . . . . . . . . . . 87
4.6.7 Give a constructive solutionof Example 2 of Section 4.1. Your solution
may be based on the following procedure... . . . . . . . . . . . . . . . . . 87
4.6.8 Assume that 1 mole of an ideal Van der Waals fluid is expanded isother-
mally, at temperature Th, from an initial... . . . . . . . . . . . . . . . . . 88
4.6.9 Two moles of a monatomic ideal gas are to be taken from an initial state
(Pi, Vi) to a final state... . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.6.10 Assume the process in Problem 4.6-9 to occur along the locus P = B/V 2
,
where B = PiV 2
i . Apply the... . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6.11 Assume the process in Problem 4.6-9 to occur along a straight-line locus
in the T − V plane. Integrate along... . . . . . . . . . . . . . . . . . . . . 91
4.7 THE CARNOT CYCLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.7.1 Repeat the calculation of Example 5 assuming the working substanceof
the auxiliary system to be 1 mole... . . . . . . . . . . . . . . . . . . . . . 91
4.7.2 Calculate the work and the heat transfers in each stage of the carnot
cycle for the auxiliary system being an... . . . . . . . . . . . . . . . . . . 93
4.7.3 A primary subsystemin the initial state A is to be brought reversibly
to a specified final state B. A reversible... . . . . . . . . . . . . . . . . . . 93
4.7.4 The fundamental equation of a particular fluid is UN1/2
V 1/2
= A(S−R)3
where A... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.7.5 One mole of the simple paramagnetic model systemof equation 3.66 is
to be used as the auxiliary system of... . . . . . . . . . . . . . . . . . . . 94
4.7.6 Repeat Problem 4.7-4 using the rubber bandmodel of section 3.7 as the
auxiliary system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7.7 (Supplementary Problem) Repeat Problem 4.7-4 if the working subs-
tance is one mole of.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.8 MEASURABILITY OF THE TEMPERATURE AND OF THE EN-
TROPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.8.1 To corroborate equation 4.22 show that ∂P
∂s

T
= − ∂T
∂v

P
... . . . . . . . 96
4.9 OTHER CRITERIA OF ENGINE PERFORMANCE; POWER OUT-
PUT AND ˝ENDOREVERSIBLE ENGINES  . . . . . . . . . . . . . . 97
4.9.1 Show that the efficiency of an endoreversible engine, maximized for power
output, is always less than εCarnot... . . . . . . . . . . . . . . . . . . . . . 97
4.9.2 Suppose the conductance σh (= σc) to be such that 1 KW is transfered
to the system (as heat flux) if its... . . . . . . . . . . . . . . . . . . . . . 97
4.9.3 Consider an endoreversible engine for which the high temperature reser-
voir is boiling water (100℃) and... . . . . . . . . . . . . . . . . . . . . . . 97
4.9.4 Assume that one cycle of the engine of Problem 4.9-3 takes 20 s and that
the condutance σh = σc = 100 W/K... . . . . . . . . . . . . . . . . . . . 98
4.10 OTHER CYCLIC PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . 98
4.10.1 Assuming that the working gas is a monatomic ideal gas, plot a T − S
diagram for the Otto cycle. . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.10.2 Assuming that the working gas is a simple ideal gas (with temperature-
independent heat capacities), show that the engine efficiency of the Otto
cycle... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
11
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
4.10.3 Assuming that the working gas is a simples ideal gas(with temperature-
independent heat capacities), show that the engine efficiency of the Bray-
ton cycle ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.10.4 Assuming that the working gas is a monatomic ideal gas, plot a T − S
diagram of the Brayton cycle. . . . . . . . . . . . . . . . . . . . . . . . . 99
4.10.5 Assuming that the working gas is a monatomic ideal gas, plot a T − S
diagram of the air-standart diesel cycle. . . . . . . . . . . . . . . . . . . . 99
5 ALTERNATIVE FORMULATIONS AND LEGENDRE TRANSFORMATI-
ONS 99
5.1 THE ENERGY MINIMUM PRINCIPLE . . . . . . . . . . . . . . . . . . 99
5.1.1 Formulate a proof that the energy minimum principle implies the entropy
maximum ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1.2 An adiabatic, impermeable and fixed piston separates a cylinder into two
chambers... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.2 LEGENDRE TRANSFORMATIONS . . . . . . . . . . . . . . . . . . . . . 100
5.2.1 The equation y = x2
/10 describes a parabola. ... . . . . . . . . . . . . . . 100
5.2.2 Let y = AeBx
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3 THERMODINAMIC POTENTIALS . . . . . . . . . . . . . . . . . . . . . 101
5.3.1 Find the fundamental equation of a monatomic ideal gas in the Helmholtz
representation, ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.2 Find the fundamental equation of the ideal van der Waals fluid (Section
3.5) in the Helmholtz representation... . . . . . . . . . . . . . . . . . . . 102
5.3.3 Find the fundamental equation of electromagnetic radiation in the Helmholtz
representation... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.4 Justify the following recipe for obtaining a plot of F(V ) from a plot of
G(P)... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.5 From the first acceptable fundamental equation in Problem 1.10-1 calcu-
late the fundamental equation... . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.6 From the second acceptable fundamental equation in Problem 1.10-1 cal-
culate the... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.7 The enthalpy of a particular system is H = AS2
N−1
ln(P/P0)... . . . . . 104
5.3.8 In Chapter 15 it is shown by a statistical mechanical calculation that the
fundamental equation... . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.9 Show, for the two-level system of Problem 5.3-8, that as the temperature
increases from zero... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.10 Show that the Helmholtz potential of a mixture of simple ideal gases is
the... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3.11 A mixture of two monatomic ideal gases is contained in a volume V at
temperature T... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3.12 A system obeys the fundamental relation (s − s0)4
= avu2
... . . . . . . . 106
5.3.13 For a particular system it is found that u = (3
2
)Pv and P = AvT4
... . . . 106
5.3.14 For a particular system (of 1 mole) the quantity (v + a)f is known to be
a function of... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4 GENERALIZED MASSIEU FUNCTIONS . . . . . . . . . . . . . . . . . 107
5.4.1 Find the fundamental equation of a monatomic ideal gas in the represen-
tation... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4.2 Find the fundamental equation of electromagnetic radiation (Section 3.6)...108
5.4.3 Find the fundamental equation of the ideal van der Waals fluid in the
representation ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
12
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
6 THE EXTREMUM PRINCIPLE IN THE LEGENDRE TRANSFORMED
REPRESENTATIONS 109
6.2 THE HELMHOLTZ POTENTIAL . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.1 Calculate the pressure on each side of the internal piston in Example 1,
for ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.2 Two ideal van der Waals fluids are contained in a cylinder, separated by
an internal ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2.3 Two subsystems are contained within a cylinder and are separated by an
internal piston... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.3 THE ENTHALPY: THE JOULE-THOMSOM OR ˝THROTTLING
PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.1 A hole is opened in the wall separating two chemically identical single-
component subsystems ... . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.2 A gas has the following equations of state ... . . . . . . . . . . . . . . . . 111
6.3.3 Show that for an ideal van der Waals fluid ... . . . . . . . . . . . . . . . . 111
6.3.4 One mole of a monatomic ideal gas is in a cylinder with a movable piston
on the other ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.5 Assume that the gas of Problem 6.3-4 is an ideal van der Waals fluid with
the van der Waals... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4 THE GIBBS POTENTIAL; CHEMICAL REACTIONS . . . . . . . . . 112
6.4.1 One half mole of H2S, 3
4
mole of H2O, 2 moles of H2, and... . . . . . . . 113
7 MAXWELL RELATIONS 113
7.2 A THERMODYNAMIC MNEMONIC DIAGRAM . . . . . . . . . . . . 113
7.2.1 In the immediate vicinity of the state T0, v0 the volume of a particular ... 113
7.2.2 For a particular system of 1 mole, in the vicinity of a particular state ... . 114
7.2.3 Show that the relation α = 1
T
implies ... . . . . . . . . . . . . . . . . . . 114
7.3 A PROCEDURE FOR THE REDUCTION OF DERIVATIVES IN
SINGLE-COMPONENT SYSTEMS . . . . . . . . . . . . . . . . . . . . . 114
7.3.1 Thermodynamicists sometimes refer to the first TdS equationand ... . 114
7.3.2 Show that the second equation in the preceding problem leads directly ... 115
7.3.3 Calculate (∂H/∂V )T,N in terms of the standart quantities... . . . . . . . 115
7.3.4 Reduce the derivative (∂v/∂s)P ... . . . . . . . . . . . . . . . . . . . . . . 115
7.3.5 Reduce the derivative (∂s/∂f)v ... . . . . . . . . . . . . . . . . . . . . . . 115
7.3.6 Reduce the derivative (∂s/∂f)P ... . . . . . . . . . . . . . . . . . . . . . 116
7.3.7 Reduce the derivative (∂s/∂v)h ... . . . . . . . . . . . . . . . . . . . . . . 116
7.4 SOME SIMPLE APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . 116
7.4.1 In the analysis of a Joule-Thomson experiment we may be given the initial
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.4.2 The adiabatic bulk modulus is defined by ... . . . . . . . . . . . . . . . . 117
7.4.3 Evaluate the change in temperature in an infinitesimal free expansion of ...117
7.4.4 Show that equation 7.46 can be written as ... . . . . . . . . . . . . . . . . 117
7.4.5 A 1% decrease in volume of a system is carried out adiabatically. Find ... 117
7.4.6 Two moles of an imperfect gas occupy a volume of 1 liter and are at ... . 118
7.4.7 Show that (∂cv/∂v)T = T(∂2
P/∂T2
)v and evaluate this ... . . . . . . . . 118
7.4.8 Show that ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.4.9 One mole of the system of Problem 7.4-8 is expanded isothermally ... . . 119
7.4.10 A system obeys the van der Waals equation of state. One mole ... . . . . 119
7.4.11 Two moles of O2 are initially at a pressure of 105
Pa and a temperature ...119
7.4.12 A ball bearing of mass 10g just fits in a vertical glass tube of ... . . . . . 119
7.4.13 Calculate the change in the molar internal energy in a throttling ... . . . 120
7.4.14 Assuming that a gas undergoes a free expansion and that the ... . . . . . 120
13
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
7.4.15 One mole of an ideal van der Waals fluid is contained in a vessel ... . . . 120
7.4.16 Assuming the expansion of the ideal van der Waals fluid of ... . . . . . . 121
7.4.17 It is observed that an adiabatic decrease in molar volume of 1% ... . . . . 121
7.4.18 A cylinder is fitted with a piston, and the cylinder contains helium ... . . 121
7.4.19 The cylinder in Problem 7.4-18 is initially filled with 1
10
mole of ... . . . . 122
7.4.20 A system is composed of I mole of a particular substance. In the ... . . . 122
7.4.21 A system is composed of I mole of a particular substance. Two ... . . . . 123
7.4.22 The constant-volume heat capacity of a particular simple system is ... . . 124
7.4.23 A system is expanded along a straight line in the P − v plane, from ... . 124
7.4.24 A nonideal gas undergoes a throttling process (i.e., a Joule-Thomson
expansion) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.5 GENERALIZATIONS: MAGNETIC SYSTEMS . . . . . . . . . . . . . . 126
7.5.1 Calculate the magnetic Gibbs potentialU(T, Be) for the paramagnetic ...126
7.5.2 Repeat Problem 7.5-1 for the system with the fundamental equation given
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.5.3 Calculate (∂I/∂T)s for the paramagnetic model of equation 3.66. ... . . . 126
7.5.4 Show that ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8 STABILITY OF THERMODYNAMIC SYSTEMS 127
8.1 INTRINSIC STABILITY OF THERMODYNAMIC SYSTEMS . . . . 127
8.1.1 To establish the inequality 8.6 expand the left-hand side of 8.5 in a Taylor...127
8.1.2 Consider the fundamental equation of a monatomic ideal gas and show... 128
8.2 STABILITY CONDITIONS FOR THERMODYNAMIC POTENTIALS128
8.2.1 a) Show that in the region X  0 the function Y = Xn
is concave... . . . 128
8.2.2 Prove that... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2.3 Show that stability requires equations 8.15 and... . . . . . . . . . . . . . 129
8.2.4 (Supplementary Problem) Of the five nominally-acceptable funda-
mental.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.3 PHYSICAL CONSEQUENCES OF STABILITY . . . . . . . . . . . . . 130
8.3.1 Explain on intuitive grounds why cP ≥ cv and κT ≥ κS ... . . . . . . . . . 130
8.3.2 Show that the fundamental equation of a monatomic ideal gas satisfies
the... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.3.3 Show that the van der Waals equation of state does not satisfy the criteria...131
8.3.4 (Supplementary Problem)Show that the stability conditions 8.20-8.21
imply... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.3.5 (Supplementary Problem) An isochore and an adiabat intersect at... . 132
8.5 THE LE CHATELIER-BRAUN PRINCIPLE . . . . . . . . . . . . . . . . 132
8.5.1 A system is in equilibrium with its environment at a common temperature...132
9 FIRST-ORDER PHASE TRANSITIONS 133
9.1 FIRST-ORDER PHASE TRANSITIONS IN SINGLE COMPONENT
SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
9.1.1 The slopes os all three curves in Fig. 9.5 are... . . . . . . . . . . . . . . . 133
9.2 THE DISCONTINUITY IN THE ENTROPY - LATENT HEAT . . . 133
9.2.1 In a particular solid-liquid phase transition the... . . . . . . . . . . . . . 133
9.2.2 Discuss the equilibrium that eventually results if a solid is... . . . . . . . 134
9.3 THE SLOPE OF COEXISTENCE CURVES; THE CLAYPEYRON
EQUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.3.1 A particular liquid boils at 127 °C at a pressure of 800 mmHg ... . . . . . 134
9.3.2 A long vertical column is closed at the bottom and open the top ... . . . 134
9.3.3 It is found that a certain boils at a temperature of 95 °C at the top ... . . 135
9.3.4 Two weights are hung on the ends of a wire, which passes ... . . . . . . . 136
14
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
9.3.5 In the vicinity of the triple point the vapor presure of liquid ammonia... . 136
9.3.6 Let x be the mole fraction of solid phase in a solid-liquid two-phase system...137
9.3.7 A particular material has a latent heat of vaporization of... . . . . . . . . 138
9.3.8 Draw the phase diagram, in the Be − T plane, fora simple ... . . . . . . . 138
9.3.9 A system has cohexistence curves similar to those shown ... . . . . . . . . 139
9.4 UNSTABLE ISOTHERMS AND FIRST-ORDER PHASE TRANSI-
TIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9.4.1 Show that the difference in molar volumes across a coexistente curve is ... 139
9.4.2 Derive the expression for vc, Pc and Tc given in Example 1 ... . . . . . . . 140
9.4.3 Using the van der Waals constants for H2O as given in table 3.1... . . . . 140
9.4.4 Show that for sufficiently low temperature the van der Waals isotherm... 141
9.4.5 Is the fundamental equation of an ideal van der Waals fluid... . . . . . . . 141
9.4.6 Explicitly derive the relationship among ṽg, ṽl, as given ... . . . . . . . . . 141
9.4.7 A particular substance satisfies yhe van der Waals equation of state... . . 142
9.4.8 Using the two points as T̃ = 0, 95 and T̃ = 1 on... . . . . . . . . . . . . . 142
9.4.9 Plot the van der Waals isotherm, in reduced variables... . . . . . . . . . . 143
9.4.10 Repeat problem 9.4-8 in the range... . . . . . . . . . . . . . . . . . . . . 143
9.4.11 Two mols of a van der Waals fluid are maintained at ... . . . . . . . . . . 143
9.6 FIRST-OERDER PHASE TRANSITIONS IN MULTICOMPONENT
SYSTEMS - GIBBS PHASE RULE . . . . . . . . . . . . . . . . . . . . . . 144
9.6.1 In a particular system, solute A and solute B are each dissolved... . . . . 144
9.6.2 If g, the molar Gibbs function, is a convex of x1, x2 ... . . . . . . . . . . . 145
9.6.3 Show that the conditions of stability in a multicomponent system ... . . . 145
9.7 PHASE DIAGRAMS FOR BINARY SYSTEMS . . . . . . . . . . . . . . 146
9.7.1 In a particular system, solute A and solute B are each dissolved... . . . . 146
9.7.2 Show that if a small fraction (−dN/N) of the material is boiled off ... . . 146
9.7.3 The phase diagram of a solution of A in B, at a pressure of 1 atm ... . . . 147
10 CRITICAL PHENOMENA 148
10.6 SCALING AND UNIVERSALITY . . . . . . . . . . . . . . . . . . . . . . 148
10.6.1 Show that the following identities hold among ... . . . . . . . . . . . . . . 148
10.6.2 Are classical values of the critical exponents consistent... . . . . . . . . . 148
11 THE NERNST POSTULATE 149
11.1 NERNST’S POSTULATE, AND THE PRINCIPLE OF THOMSEN
AND BERTHELOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
11.1.1 Does the two-level system of problem 5.3-8 satisfy ... . . . . . . . . . . . 149
13 PROPERTIES OF MATERIALS 149
13.2 CHEMICAL REACTIONS IN IDEAL GASES . . . . . . . . . . . . . . 149
13.2.1 How is the equilibrium constant of the reaction in the Example ... . . . . 149
13.2.2 What are the mole fractions of the reaction in the Example ... . . . . . . 149
13.2.3 In the Example, what would the final mole fractions ... . . . . . . . . . . 150
13.2.4 In an ideal gas reaction an increase in presure at constant temperature ... 150
13.2.5 In an ideal gas reaction an increase in presure at constant temperature ... 151
13.2.6 At temperatures above ∼ 500 K phosphorus pentachloride dissociates ... 151
13.2.7 A system containing 0.02 Kg of CO and 0.02 Kg of O2... . . . . . . . . . 152
13.2.8 Apply equation 13.8 to a single-component general ideal gas ... . . . . . . 153
13.2.9 An experimenter finds that water vapor is 0.53% dissociated... . . . . . . 153
13.3 SMALL DEVIATIONS FROM ˝IDEALITY -THE VIRIAL EXPAN-
SION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
13.3.1 In a thermostatistical model in which each atom is treated as ... . . . . . 153
13.3.2 Expand the mechanical equation of state of Van de Waals gas ... . . . . . 154
15
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
13.3.3 Show that the second virial coefficient of gaseous nitrogen (Fig. 13.2) ... . 154
13.3.4 The simplest analytic form suggested by the qualitative shape of B(T) ... 154
13.3.5 A porous plugexperiment is carried out by installing a porous plug in ...155
13.5 DILUTE SOLUTIONS: OSMOTIC PRESSURE AND VAPOR PRES-
SURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
13.5.1 Assuming the latent heat of vaporization of a fluid to be constant ... . . . 156
13.5.2 One hundred grams of a particular solute are dissolved in one ... . . . . . 156
13.5.3 If 20 grams of sugar (C12H22O11), are dissolved in 250 cm3
of water ... . 156
15 STATISTICAL MECHANICS IN THE ENTROPY REPRESENTATION:
THE MICROCANONICAL FORMALISM 157
15.1 PHYSICAL SIGNIFICANCE OF THE ENTROPY FOR CLOSED
SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
15.1.1 A system is composed of two harmonic oscillators each of natural fre-
quency ω0 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
15.1.2 A system is composed of two harmonic oscillators of natural frequencies
ω0 e 2ω0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
15.2 THE EINSTEIN MODEL OF A CRYSTALLINE SOLID . . . . . . . . 158
15.2.1 Calculate the molar heat capacity of the Einstein model by equation 15.7. 158
15.2.2 Obtain an equation for the mean quantum number n̄ of an Einstein ... . . 158
15.2.3 Assume that the Einstein frequency ω0 for a particular crystal depends
upon the molar volume... . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
15.3 THE TWO-STATE SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . 160
15.3.1 In the two-state model system of this section suppose the excited state
energy ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
15.4 A POLYMER MODEL-THE RUBBER BAND REVISITED . . . . . . 160
15.4.1 Is the sign correct in equation 15.19 ? Explain . . . . . . . . . . . . . . 160
15.4.2 Eliminate U/ε between equations 15.23 and 15.24 and show that the
formal solution is equation 15.25... . . . . . . . . . . . . . . . . . . . . . 160
15.4.3 A rubber band consisting of n polymer chains is stretched from zero ... . 161
15.4.4 Calculate the heat capacity at constant length for a rubber bandconsisting
of n polymer... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
15.4.5 Calculate the heat capacity at constant length for a rubber bandconsisting
of n polymer... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
15.5 COUNTING TECHNIQUES AND THEIR CIRCUMVENTION; HIGH
DIMENSIONALITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
15.5.1 To stablish equation 15.29 le Ωn be the hyperplane in n dimensions. ... . 162
15.5.2 Recalling that lim
x→0
(1 + x)1/x
= e... . . . . . . . . . . . . . . . . . . . . . 162
15.5.3 Calculate the fraction of the hypervolume between the radii 0.9r and r ... 162
16 THE CANONICAL FORMALISM: STATISTICAL MECHANICS IN HELMHOLTZ
REPRESENTATION 162
16.1 THE PROBABILITY DISTRIBUTION . . . . . . . . . . . . . . . . . . . 162
16.1.1 Show the equation 16.13 is equivalent to U = F + TS... . . . . . . . . . . 162
16.1.2 From the canonical algorithm expressed by equations... . . . . . . . . . . 162
16.1.3 Show that S/kB = β2
∂F/∂β and thereby express S... . . . . . . . . . . . 163
16.1.4 Show that cv = −β(∂s/∂β)v and thereby express cv in ... . . . . . . . . . 163
16.2 ADDITIVE ENERGIES AND FACTORIZABILITY OF THE PAR-
TITION SUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
16.2.1 Consider a system of three particles, each different. The first ... . . . . . 163
16.2.2 Show that for the two level system the Helmholtz potential calculated in...163
16.2.3 Is the energy additive over the particles of a gas if the particles are ... . . 164
16
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
16.2.4 Calculate the heat capacity per mode from the fundamental equation ... . 164
16.2.5 Calculate the energy per mode from equation 16.24. What is the leading...164
16.2.6 A binary alloy is composed of ÑA atoms of type A and ÑB... . . . . . . . 164
16.2.7 A paramagnetic salt is composed of 1 mole of noninteracting ions, each ... 165
16.3 INTERNAL MODES IS A GAS . . . . . . . . . . . . . . . . . . . . . . . . 165
16.3.1 Calculate the average rotational energy per molecule and the rotational ...165
16.3.2 Calculate the rotational contribution of the Helmholtz potential per ... . 166
16.3.3 A particular heteronuclear diatomic gas has one vibrational mode, of ... . 166
16.4 PROBABILITIES IN FACTORIZABLE SYSTEMS . . . . . . . . . . . . 166
16.4.1 The probability that the ith element is in its jth orbital... . . . . . . . . 166
16.4.2 Demonstrate the equivalence of the fundamental equations found in... . . 166
16.5 STATISTICAL MECHANICS OF SMALL SYSTEMS: ENSEMBLES 167
16.5.1 The energies of the orbital states of a given molecule ar such that ... . . . 167
16.5.2 A hydrogen atim in equilibrium with a radiation field at temperature ... . 167
16.5.3 A small system has two normal modes of vibration, with natural... . . . . 167
16.5.4 DNA, the genetic molecule deoxyribonucleic acid, exists as a ... . . . . . 168
16.5.5 Calculate the probability that a harmonic oscillator of natural ... . . . . . 168
16.5.6 A small system has two energy levels, of energies 0 and ε... . . . . . . . . 169
16.5.7 Two simple harmonic oscillators, each of natural frequency ω... . . . . . . 169
16.6 DENSITY OF STATES AND DENSITY OF ORBITAL STATES . . . 170
16.6.1 Show that the number of orbital states in the energy interval... . . . . . . 170
16.6.2 For the particles of a gas ε = p2
/2m = (~2
/2m)k2
... . . . . . . . . . . . . 170
16.6.3 For excitations obeying the spectral relation ω = Akn
, n  0... . . . . . . 170
16.7 THE DEBYE MODEL OF NONMETALLIC CRYSTALS . . . . . . . . 170
16.7.1 Calculate the energy of a cristal in the Debye approximation. Show ... . . 170
16.7.2 Calculate the entropy of a cristal in the Debye approximation, and... . . 171
16.7.3 The frequency ω(λ) of the vibrational mode of wave ... . . . . . . . . . . 171
16.8 ELECTROMAGNETIC RADIATION . . . . . . . . . . . . . . . . . . . . 171
16.8.1 Show that including the zero-point energies˝of the electromagnetic... . . 171
16.8.2 Show that the energy per unit volume of electromagnetic radiation... . . 172
16.8.3 Evaluating the number of photons per unit volume in the frequency... . . 172
16.8.4 Since radiation within a cavity propagates isotropically with velocity c... 172
16.10THE CLASSICAL IDEAL GAS . . . . . . . . . . . . . . . . . . . . . . . . 172
16.10.1Show that the calculation of Z = zÑ
, with z given by equation... . . . . . 172
16.10.2Show that the fundamental equations of a “multicomponent simple gas”... 172
16.10.3The factors (1/Ñ1!)(1/Ñ2!) in equation 16.74 give and additive ... . . . . 173
16.10.4Consider a particle of mass m in a cubic container of volume V... . . . . 173
16.10.5A single particle is contained in a vessel of volume 2V which... . . . . . . 173
17 ENTROPY AND DISORDER: GENERALIZED CANONICAL FORMU-
LATIONS 174
17.1 ENTROPY AS A MEASURE OF DISORDER . . . . . . . . . . . . . . . 174
17.1.1 Consider the quantity x ln x in the limit x → 0.Show... . . . . . . . . . . 174
17.1.2 Prove that the disorder, defined in equation 17.6, is nonnegative... . . . . 174
17.1.3 Prove that the quantity −k
P
j fj is maximum if all the... . . . . . . . . . 174
17.2 DISTRIBUTIONS OF MAXIMAL DISORDER . . . . . . . . . . . . . . 175
17.2.1 Show that the maximum value of disorder, as calculate in this section... . 175
17.2.2 Given the identification of the disorder as the entropy, and of ... . . . . . 175
17.3 THE GRAND CANONICAL FORMALISM . . . . . . . . . . . . . . . . 175
17.3.1 Calculate (∂ log Z/∂β)βµ directly from equation 17.27... . . . . . . . . . . 175
17.3.2 A system is contained in a cylinder with diathermal impermeable walls... 175
17.3.3 For the surface adsorption model of the preceding example, investigate... 175
17
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
17.3.4 Suppose the adsorption model to be augmented by assuming that two... . 176
17.3.5 Calculate the fundamental equation of the polymer model of section ... . 177
17.3.6 A system contains Ñ sites and Ñ electrons. At a given site... . . . . . . . 177
17.3.7 Carbon monoxide molecules (CO) can be adsorbed at specific sites on a
solid... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
18 QUANTUM FLUIDS 178
18.1 QUANTUM PARTICLES: A “FERMION PRE-GAS MODEL” . . . . 178
18.1.1 Obtain the mean number of particles in the fermion pre-gras model... . . 178
18.1.2 The entropy of a system is given by S = −kB
P
j fj, where fj... . . . . . 178
18.1.3 Apply equation 17.27 for U to the fundamental equation of the... . . . . 179
18.1.4 Show that df/dε = −β/4 at ε = µ. With this result ... . . . . . . . . . . 179
18.1.5 Show that Fig. 17.2 (of f(ε, T) as a function of ε) is ... . . . . . . . . . . 179
18.1.6 Suppose f(ε, T) is to be approximated as a function of... . . . . . . . . . 179
18.2 THE IDEAL FERMI FLUID . . . . . . . . . . . . . . . . . . . . . . . . . . 180
18.2.1 Prove equations c, g, h, i and j of table 18.1 (for fermions only)... . . . . 180
18.3 THE CLASSICAL LIMIT AND THE QUANTUM CRITERION . . . 180
18.3.1 Calculate the definite integrals appearing in equations 18.25 and... . . . . 180
18.3.2 Validate the interpretation of λT as the “thermall wavelength”by... . . . . 180
18.4 THE STRONG QUANTUM REGIME: ELECTRONS IN A METAL . 180
18.4.1 Show that equation 18.32 can be interpreted as µ0 = ~2
k2
f where... . . . . 180
18.4.2 Derive equation 18.35 by the following sequence of operations: ... . . . . 180
18.6 NONCONSERVED IDEAL BOSON FLUIDS: ELECTROMAGNE-
TIC RADIATION REVISITED . . . . . . . . . . . . . . . . . . . . . . . . 181
18.6.1 Calculate the number of photons in the lowest orbital state... . . . . . . . 181
18.6.2 (a) In applying the grand canonical formalismo...(b) Denoting the ... . . 181
18.7 BOSE CONDENSATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
18.7.1 Show that equations 18.56 and 18.58, for Ñe and U, respectively... . . . . 181
18.7.2 Show that F3/2(1), F5/2(1) and F0
5/2(1) are all finite... . . . . . . . . . . . 181
18.7.3 Show that the explicit inclusion of the orbital ground state... . . . . . . . 182
19 FLUCTUATIONS 182
19.2 MOMENTS OF THE ENERGY FLUCTUATIONS . . . . . . . . . . . . 182
19.2.1 A molecule has a vibrational mode of natural frequency ω. The ... . . . . 182
19.2.2 Calculate the third central moment for the molecule in the preceding
problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
19.2.3 Calculate the mean square deviation of the energy contained within a... . 182
19.3 GENERAL MOMENTS AND CORRELATION MOMENTS . . . . . . 183
19.3.1 An ideal gas is in contact with a thermal and a pressure reservoir... . . . 183
19.3.2 Repeat Problem 19.3-1 for a van der Waals gas (recall Problem 3.8-3). . 183
19.3.3 A conceptual subsystem of N moles in a single-component simple... . . . 183
19.3.4 What is the order of magnitude of the mean square deviation of the... . . 184
19.3.5 Consider a small volume V within a two-component simple system... . . . 184
19.3.6 Consider a small quantity of matter consisting of a fixed number N... . . 184
19.3.7 Show that the density fluctuations of an ideal gas are given by... . . . . . 185
19.3.8 Show that the relative root mean square deviation in density of ... . . . . 185
19.3.9 The dielectric constant ε of a fluid varies with... . . . . . . . . . . . . . . 185
19.3.10If light of intensity I0 is incident on a region of volume V, which... . . . . 185
19.3.11The classical theory of fluctuations, due to Einstein, proceeds from... . . 186
18
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
20 VARIATIONAL PROPERTIES, PERTURBATION EXPANSIONS, AND
MEAN FIELD THEORY 186
20.1 THE BOGOLIUBOV VARIATIONAL THEOREM . . . . . . . . . . . . 186
20.1.1 Derive equation (h) of Example 1, fisrt showing that for a harmonic... . . 186
20.1.2 Solve the quartic potential problem of Example 2 assuming the... . . . . 186
20.1.3 Complete Example 2 by writing the Helmholtz potential F(T, α)... . . . . 187
20.1.4 Consider a particle in a quadratic potential V (x) = ax2
/2a2
. Despite... . 187
20.2 MEAN FIELD THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
20.2.1 Formulate the exact solution of the two-particle Ising model... . . . . . . 188
20.2.2 Formulate mean field theory for the three state Ising model... . . . . . . . 188
20.2.3 For the Heisenberg ferromagntic model the Hamiltonian is... . . . . . . . 189
20.2.4 A metallic surface is covered by a monomolecular layer of Ñ ... . . . . . . 189
20.2.5 Solve the preceding problem if the molecules can exist in three steric... . 190
20.2.6 In the classic Heisenberg model each spin can take any orientation... . . . 191
20.2.7 2Ñ two-valued Ising spins are arranged sequentially on a circle... . . . . . 191
20.2.8 Consider a sequence of 2Ñ alternating A sites and B sites... . . . . . . . 192
21 POSTLUDE: SYMMETRY AND THE CONCEPTUAL FOUNDATIONS
OF THERMOSTATISTICS 192
21.1 STATISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
21.1.1 The probability of throwing a “seven ”on two dice can be viewed as ... . . 192
21.1.2 Associate the value +1 with one side of a coin (head) and... . . . . . . . 192
21.5 BROKEN SYMMETRY AND GOLDSTONE’S THEOREM . . . . . . 192
21.5.1 Draw a longitudinal vibrational mode in a one-dimensional system... . . . 192
19
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
1 THE PROBLEM AND THE POSTULATES [SUMÁRIO]
1.3 THE COMPOSITION OF THERMODYNAMIC SYSTEMS
[SUMÁRIO]
1.3.1 One tenth of a kilogram of NaCl and 0.15 kg of sugar (C12H22O11)... [SUMÁRIO]
Solução:
Os pesos moleculares são :
Na : 0, 023 kg; Cl : 0, 035 kg;
C : 0, 012 kg; O : 0, 016 kg;
Então temos que
NaCl : 0, 058 kg
C12H12O11 : 0, 34 kg
Temos que o número de mols dos três componentes do sistema é :
0, 1 kg NaCl = 1, 7 mols
0, 15 kg C12H12O11 = 0, 44 mol
0, 5 kg H2O = 28 mol
∴ Total de mol = 30
As frações molares são :
Fração molar de NaCl = 0, 057
Fração molar de C12H12O11 = 0, 015
Fração molar de H2O = 0, 93
∴ V olume molar =
0, 55 × 10−3
m3
30 mol
= 18 × 10−6
m3
/mol
1.3.2 Naturally occurring boron has an atomic mass of 10.811 g... [SUMÁRIO]
Solução:
X × 10, 0129 + (1 − X) × 11, 0093 = 10, 811
Assim a fração molar de 10
B é
X = 0, 199
1.3.3 Twenty cubic centimeters each of ethyl alcohol... [SUMÁRIO]
Solução:
Álcool etílico, C2H5OH : densidade = 0, 79 g/cm3
Álcool metílico CH3OH : densidade = 0, 81 g/cm3
Água H2O : densidade = 1 g/cm3
NC2H5OH = (0, 79 g/cm3
) × (20 cm3
)/(46 g/mol) = 0, 34 mol
NCH3OH = (0, 81 g/cm3
) × (20 cm3
)/(32 g/mol) = 0, 51 mol
NH2O = (1 g/cm3
) × (20 cm3
)/(18 g/mol) = 1, 11 mol
O número de mols é
∴ N = NC2H5OH + NCH3OH + NH2O = 1, 96 mol
20
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
e as frações molares dos componentes do sistema são
XC2H5OH =
0, 34 mol
1, 96 mol
= 0, 17
XCH3OH =
0, 51 mol
1, 96 mol
= 0, 26
XH2O =
1, 11 mol
1, 96 mol
= 0, 57
1.3.4 A 0.01 kg sample is composed of 50 molecular percent H2... [SUMÁRIO]
Solução:
Seja N o número de mols na amostra inicialmente. Portanto
massa do H2 = 0, 5N × 2 × 10−3
kg = 10−3
N kg
massa do HD = 0, 3N × 2 × 10−3
kg = 0, 9 × 10−3
N kg
massa do D2 = 0, 2N × 4 × 10−3
kg = 0, 8 × 10−3
N kg
Massa total = 0, 01 kg = (1 + 0, 9 + 0, 8) × 10−3
N kg
∴ N =
10−2
2, 7 × 10−3
= 3, 7 mol
Número inicial de mols de D2 = 0, 2 × 3, 7 = 0, 74 mol
Seja N0
o número de mols de D2 a ser adicionado.
Então
0, 3 =
0, 74 mol + N0
3, 7 mol + N0
N0
= 0, 53mol
∴ Massa de D2 = 0, 53 × 4 × 10−3
kg = 2, 1 × 10−3
kg
1.3.5 A solution of sugar (C12H22O11) in water is 20% sugar by weight... [SUMÁRIO]
Solução:
Massa da Água(water) = M(water)
= 0, 8M(solution)
Massa de açúcar(sugar) = M(sugar)
= 0, 2M(Solution)
N(water)
=
0, 8M(solution)
0, 018
= 44, 44M(solution)
N(sugar)
=
0, 2M(solution)
0, 34
= 0, 588M(solution)
∴ Xsugar
=
N(sugar)
N(sugar) + N(water)
=
0, 588M(solution)
0, 588M(solution) + 44, 44M(solution)
= 0, 013
Ou
∴ Xsugar
= 1, 3%
21
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
1.3.6 An aqueous solution of an unidentified solute has a total mass... [SUMÁRIO]
Solução:
Seja Ms a massa molecular (peso molecular) do soluto e N o número total de mols na amostra
original
∴ (0, 1N) × Ms + (0, 9N) × 18 × 10−3
= 0, 1029 × 10−3
kg
Depois de adicionar 2 mols (= 36 × 10−3
kg) de H2O :
0, 1N
N + 2
= 0, 07 ou N = 4, 67
Onde Ms = 0, 0584 kg
Consequentemente NaCl é um palpite razoável.
1.3.7 One tenth of a kg of an aqueous solution of HCl is poured... [SUMÁRIO]
Solução:
Massa molar de HCl = 1, 01 + 35, 45 = 36, 46
Massa molar de NaOH = 22, 99 + 16 + 1, 01 = 40, 00
Massa molar de H2O = 2, 02 + 16 = 18, 02
Massa molar de NaCl = 22, 99 + 35, 45 = 58, 44
Solução ácida: Massa= 0, 9N×MH2O+0, 1N×MHCl = (0, 9×18, 02+0, 1×36, 46)N×10−3
=
0, 1 kg
N = 5, 034 mol
∴ N0
H2O = 0, 9N = 4, 53 mol N0
HCl = 0, 1N = 0, 50 mol
Solução básica: 0, 2 kg = (0, 75 × 18, 02 + 0, 25 × 40) × 10−3
= 23, 52N0
N0
= 8, 503 mol
∴ N0
H2O =
3
4
× 8, 503 = 6, 38 mol N0
NaOH = 0, 25N0
= 2, 13 mol
Então
NaOH + HCl −→ NaCl + H2O
O HCl é a quantidade limite, e apenas 0, 5 mol de NaOH podem reagir.
A composição final é
NaCl : 0, 5 mol NaOH : 1, 63 mol HCl : 0 mol
H2O : 4, 53 + 6, 38 + 0, 5 = 11, 41 mol
O número total de mols é = 13, 54, que está de acordo com o número original (Note que a
reação química preserva o número total de mols). Então
XNaCl = 0, 04 ; XNaOH = 0, 12 ; XH2O = 0, 84
22
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
1.8 QUANTITATIVE DEFINITION OF HEAT-UNITS [SUMÁRIO]
1.8.1 For the system considered in Example 1, calculate... [SUMÁRIO]
Solução:
Denote este estado por E; Note que é a meio caminho entre os estados B e D. Note também
que ao longo da linha de V constante, a energia é diretamente proporcional a P. Isto é
dU =
3
2
V dP (V constante)
Consequentemente
UE =
1
2
(UD + UB) =
1
2
(967, 5 − 112, 5)
Tomando UA = 0 temos
UE = 427, 5J
1.8.2 Calculate the heat transferred to the system considered in... [SUMÁRIO]
Solução:
10⁵
5x10⁴
10⁴
V
P
10⁻³ 8x10⁻³
A
E
W = −
R
Pdv = −(Área sombreada)
A área sombreada é um trapézio.
Áreatrapézio =
B + b
2
× h
W=−7, 5 × 104
× 7 × 10−3
= −525J
UE = 427, 5J (Do problema 1.8-1)
UE − UA = WA→E + QA→E
427, 5 = −525 + QA→E
∴ QA→E = 952, 5J
23
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
1.8.3 For a particular gaseous system it has been determined that... [SUMÁRIO]
Solução:
P(MPa)
V(m³)
0,01 0,03
0,5
0,2
A B
C
Faça UA ≡ 0,
Então U = 2, 5PV − 5 × 103
J
∴ UB = 104
J, UC = 7, 5 × 103
J
WAB = −
R B
A
PdV = −P∆V = −4 × 103
Joules
e UB − UA = WAB + QAB
∴ QAB = 14 × 103
J (Um fluxo de energia na
forma de calor entra no sistema)
de forma similar :
WBC = −
R C
B
PdV = área abaixo da linha BC = 7 × 103
J
QBC = UC − UB − WBC = −2, 5 × 103
− 7 × 103
= −9, 5 × 103
Joules
Finalmente WCA = 0
UA−UC = QCA+WCA, QCA = −7, 5×103
J (Fluxo de energia na forma de calor sai do sistema)
Para checar, note que o trabalho realizado no ciclo é WAB +WBC +WCA = 3×103
J e a energia
na forma de calor que entrou no ciclo é 14 × 103
J − 9, 5 × 103
J − 7, 5 × 103
J = −3 × 103
J. A
Soma do trabalho e da energia na forma de calor transferidos é zero, exatamente como deveria
ser.
Agora nos resta calcular Q e W para o processo de A para B ao longo da parábola
P = 105
+ 109
(V − 0, 02)2
P(MPa)
V(m³)
0,01 0,03
0,2
A B
0,1
WAB = −
R 0,03
0,01
PdV
= −
R 0,03
0,01
[105
+ 109
(V − 0, 02)2
]dV
WAB = −

105
(VB − VA) +
109
(V − 0, 02)3
3
0,03
0,01
Então WAB = −2, 7 × 103
J
Q = ∆U − W = 104
+ 2, 7 × 103
∴ Q = 12, 7 × 103
Joules
24
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
1.8.4 For the system of Problem 1.8-3 find the equation of the adiabats... [SUMÁRIO]
Solução:
U = 2, 5PV + const.
Então dU = 2, 5PdV + 2, 5V dP
Mas ao longo de uma adiabata, temos que dU = −PdV
∴ 2, 5PdV + 2, 5V dP = −PdV , assim
7
dV
V
+ 5
dP
P
= 0
Integrando, ficamos com 7 ln

V
V0

+ 5 ln

P
P0

= 0
∴ V 7
P5
= V 7
0 P5
0
1.8.5 The energy of a particular system, of one mole, is given by ... [SUMÁRIO]
Solução:
dU = 2APV dP + AP2
dV = −PdV
∴ A
dP
1 + AP
= −
1
2
dV
V
ln(1 + AP) = −
1
2
ln V + const.
(1 + AP)V 1/2
= const
Obs : Para onde foi o A que multiplica
dP
1 + AP
na segunda linha?
Figura 1: reprodução da solução original, feita pelo próprio Callen, onde ele questiona sobre o
“A”
25
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
1.8.6 For a particular system it is found that if the volume is kept ... [SUMÁRIO]
Solução:
P
V
P'
P0
V0
(P',V0)
(P0,V0)
(P,V)
Primeiro, encontre a energia ao longo da isocórica V = V0.
Ao longo da isocórica nenhum trabalho é realizado, portanto :
U(P0
, V0) = U0 + Q0
= U0 + A(P0
− P0)
Agora considere o ponto (P, V ). A adiabata através desse
ponto intercepta a isocórica V0 em P0
= P(V/V0)γ
.
Consequentemente
U(P, V ) − U(P0
, V0) = −
R V
V0
P00
dV 00
= −P
R V
V0
(V/V 00
)γ
dV 00
= −PV γ [V 1−γ
− V 1−γ
0 ]
1 − γ
= −
P
1 − γ

V − V0

V
V0
γ
ou U(P, V ) = U0 + A

P

V
V0
γ
− P0

+
PV
γ − 1

1 −

V
V0
γ−1
#
1.8.7 Two moles of a particular single-component system are found... [SUMÁRIO]
Solução:
Resposta U =
2
N
APV 2
26
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
1.8.8 (Supplementary Problem) A particular single-component system of one
mole has adiabats of the form P5/3
= constant (that is, the pressure and the
volume obey the given relationship when when the system is enclosed by an
adiabatic, impermeable wall). The system is fitter with a stirrer, as in the
example of this section. If the system is adiabatically insulated and main-
tained at constant volume, and if an amount of work dW (= torque × dθ)
is transmitted (by an external torque turning the stirrer through an angle
dθ), the pressure of the system is observed to increase by an amount dP,
where
(AV + BV5/3
)dP = d̄W (torque × dθ)
Find the internal energy as a function of P, V and N. [SUMÁRIO]
Solução:
P
v
P'
P0
v0
(P',v0)
(P0,v0)
(P,v)
Primeiro encontramos a escala de energia ao
longo da isocórica v = v0:
u = u0 + (Av0 + Bv
5/3
0 ) × (P − P0)
Agora escolhemos um ponto arbitrário P1, v1.
A adiabata através desse ponto intercepta a
isocórica v = v0 no ponto P0
= P1

v1
v0
5/3
.
O trabalho realizado no processo de levar
o sistema de (P0
, v0) para (P1, v1) ao longo
da adiabata é :
W = −
Z v1
v0
Pdv = −
Z v1
v0
P1
v1
v
5/3
dv = −
3
2
P1v1

v1
v0
2/3
− 1
#
então
u(P1, v1) = u(P0
, v0) −
3
2
P1v1

v1
v0
2/3
− 1
#
E portanto
u(P1, v1) = u0 + (Av0 + Bv
5/3
0 )

P1

v1
v0
5/3
− P0
#
−
3
2
P1v1

v1
v0
2/3
− 1
#
Então, para um sistema de N moles (e também retirando os subscritos em P1 e v1):
U(P, V, N) = Nu0 + N(Av0 + Bv
5/3
0 )

P

v
v0
5/3
− P0
#
−
3
2
NPv

v
v0
2/3
− 1
#
27
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
1.10 THE ENTROPY MAXIMUM POSTULATES [SUMÁRIO]
1.10.1 The following ten equations are purported to be fundamental... [SUMÁRIO]
Solução:
Precisamos encontrar as 5 equações supostamente fundamentais que são fisicamente inadimis-
síveis e indicar quais postulados são violados por cada uma.
Fisicamente aceitável
(a) S =

R2
v0θ
1/3
(NV U)1/3
Não viola nenhum postulado.
Viola algum postulado
(b) S =

R
θ2
1/3 
NU
V
2/3
Não é homogênea de primeira ordem.
Fisicamente aceitável
(c) S =

R
θ
1/2 
NU +
RθV 2
v2
0
1/2
Não viola nenhum postulado.
Viola algum postulado
(d) S =

R2
θ
v3
0

V 3
/NU Não é uma função monotonicamente crescente e
também viola o postulado de Nernst.
Fisicamente aceitável
(e) S =

R3
v0θ2
1/5
[N2
V U2
]1/5
Não viola nenhum postulado.
Viola algum postulado
(f) S = NRln(UV/N2
Rθv0) Viola o postulado de Nernst.
Fisicamente aceitável
(g) S =

R
θ
1/2
[NU]1/2
exp(−V 2
/2N2
v2
0) Não viola nenhum postulado
Viola algum postulado
(h) S =

R
θ
1/2
(NU)1/2
exp

−
UV
NRθv0

Não é homogênea de primeira ordem nem
uma função monotonicamente crescente
de U
28
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
Fisicamente aceitável
(i) U =

v0θ
R

S2
V
exp(S/NR) Não viola nenhum postulado.
Viola algum postulado
(j) U =

Rθ
v0

NV

1 +
S
NR

exp(−S/NR) Não é homogênea de primeira ordem nem
uma função monotonicamente crescente
de U
Obs: O postulado de Nernst ao qual o autor se refere é o postulado reformulado por Planck,
e que o Callen chama de Postulado IV. Discussões mais detalhadas a respeito desse postulado
podem ser vistas na página 30 do capítulo 1 e no capítulo 11 do livro.
Postulado IV.A entropia de qualquer sistema se anula no estado para o qual
(∂U/∂S)V,N1,...,Nr = 0 (isto é, no zero de temperatura)
1.10.2 For each of the five physically acceptable fundamental equations... [SUMÁRIO]
Solução:
(a) U =
1
NV

v0θ
R2

S3
(c) U =
θS2
NR
−
RθV 2
Nv2
0
(e) U = N−1
V −1/2

v0θ
R3
1/2
S5/2
(g) U =

θS2
NR

exp

V 2
N2v2
0

(i) U =

v0θ
R

S2
V
exp

S
NR

29
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
1.10.3 The fundamental equation of a system A is S =

R2
v0θ
1/3
(NVU)1/3
and
similarly... [SUMÁRIO]
Solução:
SA =

R2
v0θ
1/3
(NAVAUA)1/3
VA = 9 × 10−6
m3
, NA = 3
SB =

R2
v0θ
1/3
(NBVBUB)1/3
VB = 4 × 10−6
m3
, NB = 2
UA + UB = 80J
Faça S0
=
S
R2v0θ
∴ S0
A = 3 × 10−2
U
1/3
A e S0
B = 2 × 10−2
U
1/3
B
S0
= S0
A + S0
B = 3 × 801/3
× 10−2
×

ξ1/3
+
2
3
(1 − ξ)1/3

Onde ξ = UA/80
1 − ξ = UB/80
Para maximizar fazemos
dS0
dξ
= 0
dS0
dξ
= 3 × 801/3
× 10−2
×

1
3
ξ−2/3
−
2
9
(1 − ξ)−2/3

= 0
Então
ξ =

2
3
−3/2
(1 − ξ) ⇒ ξ = 0, 6475295549 ou arredondando ξ = 0, 65
∴ UA = 80ξ = 52J e UB = 80(1 − ξ) = 28J
________
3x(80)1/3
x10-2
S'
Figura 2: Entropia como função de UA/(UA + UB) com o máximo em ξ = 0, 65
30
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
2 THE CONDITIONS OF EQUILIBRIUM [SUMÁRIO]
2.2 EQUATIONS OF STATE [SUMÁRIO]
2.2.1 Find the three equations of state for a system with the fundamental equation
U =

v0θ
R2

S3
NV
... [SUMÁRIO]
Solução:
T =

∂U
∂S

= 3

v0θ
R2

S2
NV
−P =

∂U
∂V

= −

v0θ
R2

S3
NV 2
µ =

∂U
∂N

= −

v0θ
R2

S3
N2V
Para corroborar com o fato de que as três equações de estado são homogêneas de ordem zero
(Isto é, T, P e µ são parâmetros intensivos) fazemos :
T(λS, λV, λN) = 3

v0θ
R2

(λS)2
(λN)(λV )
= 3

v0θ
R2

S2
NV
= T(S, V, N)
−P(λS, λV, λN) = −

v0θ
R2

(λS)3
(λN)(λV )2
= −

v0θ
R2

S3
NV 2
= −P(S, V, N)
µ(λS, λV, λN) = −

v0θ
R2

(λS)3
(λN)2(λV )
= −

v0θ
R2

S3
N2V
= µ(S, V, N)
2.2.2 For the system of problem 2.2-1 find µ as a function of T, V e N [SUMÁRIO]
Solução:
Eliminando S das equações de estado T(S, V, N) e µ(S, V, N) do problema 2.2-1,
µ = −3−3/2

v0θ
R2
−1/2
T3/2
v1/2
2.2.3 Show by a diagram (drawn to arbitrary scale) the dependence of... [SUMÁRIO]
Solução:
Eliminando S das equações de estado T(S, V, N) e −P(S, V, N) do problema 2.2-1
P =
1
3

R2
3v0θ
1/2 
NT3
V
1/2
31
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
P
V
T1
T2
T2T1
Figura 3: Isotermas no diagrama PV
2.2.4 Find the three equations of state for a system with the fundamental equation
u =

θ
R

s2
−

Rθ
v2
0

v2
[SUMÁRIO]
Solução:
u =

θ
R

s2
−

Rθ
v2
0

v2
ou U =
θ
R
S2
N
−
Rθ
v2
0
V 2
N
T =

∂u
∂s

v
= 2
θ
R
s , P = −

∂u
∂v

s
= 2
Rθ
v2
0
v
µ =
∂U
∂N
= −
θ
R
S2
N2
+
Rθ
v2
0
V 2
N2
= −
θ
R
s2
+
Rθ
v2
0
v2
∴ µ = −u
2.2.5 Express µ as a function of T and P for the system of problem 2.2-4 [SUMÁRIO]
Solução:
Eliminando S e v das três equações de estado do problema anterior, temos que :
µ = −
1
4
R
θ
T2
+
v2
0
4Rθ
P2
32
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
2.2.6 Find the three equations of state for a system with the fundamental equation
u =

v0θ
R

s2
v
es/R
[SUMÁRIO]
Solução:
T =

∂u
∂s

v
= 2
v0θ
R
s
v
es/R
+
v0θ
R2
s2
v
es/R
−P =

∂u
∂v

s
= −
v0θ
R
s2
v2
es/R
Para encontrar µ, reescreva a equação fundamental como U =

v0θ
R

S2
V
eS/NR
∴ µ =

v0θ
R

S2
V
eS/NR
×

−
S
N2R

= −
v0θ
R2
S3
N2
eS/NR
2.2.7 A particular system obeys the relation u = Av−2
exp(s/R)... [SUMÁRIO]
Solução:
T =
∂u
∂s
=
A
R
v−2
es/R
P = −
∂u
∂v
= 2Av−3
es/R
Com s constante, então
Tf
T0
=
v2
0
v2
f
!
e
Pf
P0
=

v0
vf
3
∴
Tf
T0
=

Pf
P0
2/3
Ou Tf =
T0
22/3
= 0, 63T0 ⇒ Tf = 0, 63T0
2.2.8 Show that, in analogy with equation 2.25, for a system with r components...
[SUMÁRIO]
Solução:
Seja u = u(s, v, x1, ..., xr), xj ≡ Nj/N, N ≡
P
j=1
Nj
du =
∂u
∂s
ds +
∂u
∂v
dv +
r
P
j=1
∂u
∂xj
dxj
= Tds − Pdv +
r
P
j=1
µjdxj
33
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
mas
r
P
j=1
dxj = 0 ou dxr = −
r−1
P
j=1
dxj
∴ du = Tds − Pdv +
r−1
X
j=1
(µj − µr)dxj
2.2.9 Show that if a single-component system is such that PVk
is constant...
[SUMÁRIO]
Solução:
Nos é dado que PV k
= g(s), onde g é uma função arbitrária.
Agora seja u = u(s, v) e P = −
∂u
∂v
= −
g(s)
vk
Integrando,
u = −
g(s)
(k − 1)vk−1
+ h(s), h é uma função arbitrária
∴ u =
Pvk
(k − 1)vk−1
+ h(s) =
Pv
k − 1
+ h(s)
Mas de Pvk
= g(s) sabemos que s é uma função de Pvk
∴ u =
Pv
k − 1
+ f(Pvk
), f é uma função arbitrária
ou U =
1
k − 1
PV + Nf(PV k
/Nk
)
34
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
2.3 ENTROPIC INTENSIVE PARAMETERS [SUMÁRIO]
2.3.1 Find the three equations of state in the entropy representation for... [SUMÁRIO]
Solução:
s =
R3/2
v
1/2
0 θ
!2/5
u2/5
v1/5
1
T
=
∂s
∂u
=
2
5
R3/2
v
1/2
0 θ
!2/5
u−3/5
v1/5
Reescrevendo
−
−
−
−
−
−
−
−
−
→
1
T
=
2
5
v
1/2
0 θ
R3/2
!−2/5
v1/5
u3/5
P
T
=
∂s
∂v
=
1
5
R3/2
v
1/2
0 θ
!2/5
u2/5
v−4/5
Reescrevendo
−
−
−
−
−
−
−
−
−
→
P
T
=
1
5
v
1/2
0 θ
R3/2
!−2/5
u2/5
v4/5
Para a equação de estado
µ
T
= −
∂S
∂N
utilizamos as relações s =
S
N
= SN−1
, v =
V
N
= V N−1
e
u =
U
N
= UN−1
, que para esse problema, são, s = SN−1
, v1/5
= V 1/5
N−1/5
e u2/5
= U2/5
N−2/5
.
Assim, temos
SN−1
=
R3/2
v
1/2
0 θ
!2/5
U2/5
N−2/5
V 1/5
N−1/5
=⇒ SN−1
=
R3/2
v
1/2
0 θ
!2/5
U2/5
V 1/5
N−2/5
N−1/5
SN−1
=
R3/2
v
1/2
0 θ
!2/5
U2/5
V 1/5
N−3/5
=⇒
S =
R3/2
v
1/2
0 θ
!2/5
U2/5
V 1/5
N2/5
| {z }
Calcularemos
µ
T
a partir dessa equação
µ
T
= −
∂S
∂N
= −
2
5
R3/2
v
1/2
0 θ
!2/5
U2/5
V 1/5
N−3/5
, Note que (N−3/5 = N−2/5N−1/5)
=⇒
µ
T
= −
2
5
R3/2
v
1/2
0 θ
!2/5
U2/5
V 1/5
N−2/5
N−1/5
=⇒
µ
T
= −
2
5
R3/2
v
1/2
0 θ
!2/5
U2/5
N−2/5
V 1/5
N−1/5
=⇒
µ
T
= −
2
5
R3/2
v
1/2
0 θ
!2/5
u2/5
v1/5
Reescrevendo
−
−
−
−
−
−
−
−
−
→
µ
T
= −
2
5
v
1/2
0 θ
R3/2
!−2/5
u2/5
v1/5
Portanto, as três equações de estado na representação entrópica são :
1
T
=
2
5
v
1/2
0 θ
R3/2
!−2/5
v1/5
u3/5
,
P
T
=
1
5
v
1/2
0 θ
R3/2
!−2/5
u2/5
v4/5
,
µ
T
= −
2
5
v
1/2
0 θ
R3/2
!−2/5
u2/5
v1/5
35
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
2.3.2 Show by a diagram (drawn to arbitrary scale) the dependence of tempera-
ture on volume ... [SUMÁRIO]
Solução:
T
v
P=P2
P=P1
P2P1
Obtemos a relação de dependência entre T
e v eliminando u das equações de estado
1
T
e
P
T
do problema anterior, que são :
1
T
=
2
5
R3/2
v
1/2
0 θ
!2/5
u−3/5
v1/5
P
T
=
1
5
R3/2
v
1/2
0 θ
!2/5
u2/5
v−4/5
Isolando u na primeira equação
1
T
, temos :
u =

2
5
5/3 
R3
v0θ2
1/3
v1/3
T5/3
Substituindo u na equação de estado
P
T
, encontramos :
P
T
=
1
5

R3
v0θ2
1/5

2
5
2/3 
R3
v0θ2
2/15
v2/15
T2/3
#
v−4/5
=⇒ P =

2
5
2/3
1
5

R3
v0θ2
1/3
| {z }
= A (=Constante)
T5/3
v2/3
Assim
T5
v2
= AP3
ou ainda T = AP3/5
v2/5
, onde A = Cte =

2
5
2/3
1
5

R3
v0θ2
1/3
36
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
2.3.3 Find the three equations of state in the entropy representation for ... [SUMÁRIO]
Solução:
s =

R
θ
1/2
u1/2
e−v/v0
A partir dessa equação fundamental, as equações de estado calculadas são :
1
T
=

∂s
∂u

v
=
1
2

R
θ
1/2
u−1/2
e−v/v0
P
T
=

∂s
∂v

u
= −
1
v0

R
θ
1/2
u1/2
e−v/v0
µ
T
= −

∂S
∂N

V,U
= −
∂
∂N

R
θ
1/2
U1/2
N1/2
e−V/Nv0
#
=

R
θ
1/2
u1/2
e−v/v0

1
2
−
v
v0

2.3.4 Consider the fundamental equation S = AUn
Vm
Nr
where A is a positive
constant... [SUMÁRIO]
Solução:
a) Para que S seja homogênea de primeira ordem, devemos ter :
n + m + r = 1 , ou r = 1 − n − m daí
S = NA

U
N
n 
V
N
m
b)
1
T
=
∂S
∂U
= nA

U
N
n−1 
V
N
m
ou T =
1
nA
u1−n
vm
mas se u → 0 em T = 0 devemos ter 1 − n  0 ou
n  1
Também, multiplicando as equações acima por T e S
TS =
1
n
U , ou U = nTS
e eliminando U na equação de estado acima
Tn
= n−n
A−1
s1−n
v−m
e se T → 0 na medida em que s → 0 devemos ter
0  n  1
c)
Finalmente
P
T
=
∂S
∂V
= mA

U
N
n 
V
N
m−1
e eliminando T da equação térmica de estado (primeira linha de (b))
P =
m
n

U
V

Se P cresce com U/V , m/n  0, ou m  0
Consequentemente devemos ter m  0 e 0  n  1
37
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
2.3.5 Find the three equations of state for a system with the fundamental rela-
tion... [SUMÁRIO]
Solução:
a,b)
1
T
= R

v +
1
u2v

 0,
P
T
= R

u +
1
uv2

, −
µ
T
= R

−uv −
3
uv

c) s =
1
T
u +
P
T
v −
µ
T
= Ru

v +
1
u2v

+ R

uv +
1
uv

− R

uv +
3
uv

= uv − (uv)−1
d) Dividindo as duas primeiras equações de estado, P = u/v ou u = Pv e substituindo na
relação fundamental
s
R
= uv −
1
uv
= Pv2
−
1
Pv2
P
v
P=const/v2
Ou ainda Pv2
=Função de s.
Portanto as adiabatas são dadas por
Pv2
= const
2.6 TEMPERATURE UNITS [SUMÁRIO]
2.6.1 The temperature of a system composed of ice, water, and water vapor...
[SUMÁRIO]
Solução:
T(℃) = T(K) − 273, 15 = (373, 15 − 273, 15) ± 0, 01 = (100, 00 ± 0, 01)℃
T(°R) =
9
5
T(K) = (671, 67 ± 0, 02)°R
T(°F) = T(°R) − 459, 67 =
9
5
T(℃) − 32 = (212, 00 ± 0, 02)°F
2.6.2 The gas constantR is defined as the product of Avogrado’s number...
[SUMÁRIO]
Solução:
R = 8, 314 ×
5
9
J/mol °F = 4, 619J/mol °F
2.6.3 Two particular systems have the following equations of state... [SUMÁRIO]
Solução:
T(1)
= T(2)
=⇒
2
3
U(1)
RN(1)
=
2
5
U(2)
RN(2)
ou 5U(1)
= 2U(2)
.
Também U(1)
+ U(2)
= 2, 5 × 103
J =⇒ U(1)
= 714, 3J e U(2)
= 1785, 7J
38
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
2.6.4 Two systems with the equations of state given in Problem 2.6-3 ... [SUMÁRIO]
Solução:
U
(1)
0 =
3
2
RN(1)
T
(1)
0 =
3
2
× 8, 314 × 2 × 250 = 6235, 5J
U
(2)
0 =
5
2
RN(2)
T
(2)
0 =
5
2
× 8, 314 × 3 × 350 = 21824, 25J
∴ U(1)
+ U(2)
= 28060J
e novamente 5U(1)
= 2U(2)
=⇒ U(1)
= 8017J e U(2)
= 20043J
2.7 MECHANICAL EQUILIBRIUM [SUMÁRIO]
2.7.1 Three cylinders are fitted with four pistons, as shown in Fig. 2.2 ... [SUMÁRIO]
Solução:
1 3 2
Figura 4: Three volume-coupled system
δU(1)
+ δU(2)
+ δU(3)
= 0
e δV (3)
= −3δV (1)
−
3
2
δV (2)
Então
δS =
1
T(1)
δU(1)
+
1
T(2)
δU(2)
+
1
T(3)
δU(3)
−
P(1)
T(1)
δV (1)
−
P(2)
T(2)
δV (2)
−
P(3)
T(3)
δV (3)
Eliminando δU(3)
e δV (3)
das duas últimas equações,
δS =

1
T(1)
−
1
T(3)

δU(1)
+

1
T(2)
−
1
T(1)

δU(2)
−

P(1)
T(1)
− 3
P(3)
T(3)

δV (1)
−

P(2)
T(2)
−
3
2
P(3)
T(3)

δV (2)
portanto δS = 0
Cada uma das quatro diferenciais δU(1)
, δU(2)
, δV (1)
, δV (2)
são arbitrárias, daí
T(1)
= T(2)
= T(3)
, P(1)
= 3P(3)
, 2P(2)
= 3P(3)
39
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
2.7.2 Two particular systems have the following equations of state : ... [SUMÁRIO]
Solução:
1
T(1)
=
3
2
R
N(1)
U(1)
e
P(1)
T(1)
= R
N(1)
V (1)
, N(1)
= 0, 5mol =
1
2
mol
1
T(2)
=
5
2
R
N(2)
U(2)
e
P(2)
T(2)
= R
N(2)
V (2)
, N(2)
= 0, 75mol =
3
4
mol
T
(1)
0 = 200K , T
(2)
0 = 300K , V
(1)
0 + V
(2)
0 = 20 litros = 20 × 10−3
m3
Se o pistão intermediário é móvel e diatérmico, encontrar os volumes, energias, pressões e
temperaturas finais.
1
T(1)
=
1
T(2)
e
P(1)
T(1)
=
P(2)
T(2)
. Logo, T(1)
= T(2)
e P(1)
= P(2)
Mas U(1)
+ U(2)
=
3
2
N(1)
RT(1)
+
5
2
N(2)
RT(2)
= (1245 + 4669)J = 5914J
∴

3
2
×
1
2
+
5
2
×
3
4

× R × Tf
= 5914J R = 8, 314472 Joule/mol − Kelvin
Tf
= 271 K
P(1)
T(1)
=
P(2)
T(2)
ou
N(1)
V (1)
=
N(2)
V (2)
∴ V (2)
=
3
2
V (1)
Também V (1)
+ V (2)
= 20 × 10−3
m3
Consequentemente V (1)
= 8 × 10−3
m3
= 8 litros , V (2)
= 12 × 10−3
m3
= 12 litros
P(1)
= P(2)
=
0, 5 × R × 271K
8 × 10−3m3
P(1)
= P(2)
= 1, 41 × 105
Pa
U(1)
=
3
2
N(1)
RT e U(2)
=
5
2
N(2)
RT
U(1)
= 1690J e U(2)
= 4220J
2.7.3 The hypothetical problem of equilibrium in a closed composite system ...
[SUMÁRIO]
Solução:
A equação fundamental é
S = S(1)
(U(1)
, V (1)
) + S(2)
(U(2)
, V (2)
)
note que suprimimos o número de mols na notação. A condição para o volume é (condição de
fechamento ou completeza)
V (1)
+ V (2)
= V = constante
40
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
E nós devemos formalizar o significado de restrição adiabática. Desde que nenhum fluxo de
energia na forma de calor seja permitido pela parede, a troca de energia de cada subsistema é
devida inteiramente pelo termo do trabalho, e a restrição adiabática é expressa pela condição
que (condição adiabática)
dU(1)
= −P(1)
dV (1)
; dU(2)
= −P(2)
dV (2)
A mudança na entropia total em um processo virtual é agora,
dS =
1
T(1)
dU(1)
+
P(1)
T(1)
dV (1)
+
1
T(2)
dU(2)
+
P(2)
T(2)
dV (2)
Inserindo a condição adiabática, a quantidade dS se anula identicamente. Era de se esperar
inserir a condição do volume (condição de fechamento ou completeza) e então fazer dS = 0 para
obter a condição de equilíbrio, mas o desaparecimento da quantidade dS no meio do caminho
durante os cálculos certamente inviabiliza a continuação da análise. Como esperado dos fun-
damentos físicos, uma solução matemática do problema não existe. Entretanto, uma solução
parcial pode ser obtida, para a segunda condição de fechamento que ainda não escrevemos,
que deve ser aplicada para todo problema na representação entrópica. Esta é a condição de
fechamento para a energia
U(1)
+ U(2)
= U = constante
Assim, temos
dU(1)
= −dU(2)
E, inserindo as condições adiabáticas
−P(1)
dV (1)
= P(2)
dV (2)
Finalmente, da equação da condição do volume encontramos dV (1)
= −dV (2)
, Consequente-
mente
P(1)
= P(2)
Novamente, esta caracterização necessária mas não suficiente do estado de equilíbrio está em
concordância com nossas expectativas nos fundamentos físicos.
2.8 EQUILIBRIUM WITH RESPECT TO MATTER FLOW [SUMÁRIO]
2.8.1 The fundamental equation of a particular type of two-component system
is... [SUMÁRIO]
Solução:
Para cada subsistema temos
1
T
=
∂S
∂U
=
3
2
NR
U
e
P
T
=
NR
V
,
e ainda −
µ1
T
= A + R ln

U3/2
V
N5/2

−
5
2
R − R ln

N1
(N1 + N2)

= R ln
U3/2
V
N1N3/2
+

A −
5
2
R

Mas
1
T(1)
=
1
T(2)
ou
N
(2)
1 + N
(2)
2
U(1)
=
N
(2)
1 + N
(2)
2
U(2)
e
µ
(1)
1
T(1)
=
µ
(2)
1
T(2)
ou
[U(1)
]3/2
[N
(1)
1 + N
(1)
2 ]3/2N
(1)
1
=
[U(2)
]3/2
[N
(2)
1 + N
(2)
2 ]3/2N
(2)
1
41
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
Elevando a primeira dessas equações a 3/2, e multiplicando as equações, obtemos
N
(1)
1 = N
(2)
1 , consequentemente N
(1)
1 = N
(2)
1 = 0, 75
Para encontrar as energias e temperaturas :
As energias iniciais eram :
U(1)
=
3
2
N(1)
RT(1)
= 562, 5R
U(2)
=
3
2
N(2)
RT(2)
= 562, 5R
As energias finais são : U(1)
=
3
2
× 1, 5 × RT , U(2)
=
3
2
× 1, 5 × RT Portanto,
U(1)
+ U(2)
= 4, 125RT
Então,
4, 125RT = 2 × 562, 5R =⇒ T = 272, 7K
Encontrando as pressões : (PV = NRT)
P(1)
V (1)
= N(1)
RT(1)
=⇒ P(1)
= 6, 8 × 105
Pa
P(2)
V (2)
= N(2)
RT(2)
=⇒ P(2)
= 5, 7 × 105
Pa
2.8.2 A two-component system gaseous system has a fundamental equation of the
form... [SUMÁRIO]
Solução:
Para cada subvolume
1
T
=
1
3
AU−2/3
V 1/3
N1/3
,
P
T
=
1
3
AU1/3
V −2/3
N1/3
Ou ainda T =
3
A

U2
NV
1/3
, P = U/V , −
µ1
T
=
1
3
AU1/3
V 1/3
N−2/3
+ B

N2
N
−
N1N2
N2

Então
U =

A
3
3
T3
(NV )1/2

E isto é suficiente para determinar Te :
2T3
e = T3
l + T3
r
Se Tr = 2Tl =⇒ 2T3
e = 9T3
l =⇒ Te = 1, 651Tl
Também, eliminando U da equação para µ/T :
−
µ1
T
=
1
9
A2
T

V
N
1/2
+ B

N2
N
−
N1N2
N2

Então, igualando µ1/T em cada subsistema,
1
9
A2
TeV 1/2
N
−1/2
1l =
1
9
A2
TeV 1/2

N1r +
1
2
−1/2
+ B

N2
N1r + N2
−
N1rN2
(N1r + N2)2

42
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
Mas
B =

A
3
2
TlV 1/2
Portanto,
TeN
−1/2
1l = Te

N1r +
1
2
−1/2
+ Tl

1
2N1r + 1
−
2N1r
(2N1r + 1)2

Assim temos que,

3
2
− N1r
−1/2
=

N1r +
1
2
−1/2
+
Tl
Te
(2N1r + 1)−2
Então,

3
2
− N1r
−1/2
−

N1r +
1
2
−1/2
− 0, 6057(2N1r + 1)2
= 0
Isto pode ser resolvido por tentativa e erro utilizando uma calculadora ou um computador.
Feito corretamente, você deve concluir que,
N1r = 0, 84
N1l = 1, 5 − 0, 84 = 0, 66
2.9 CHEMICAL EQUILIBRIUM [SUMÁRIO]
2.9.1 The hydrogenation of propane (C3H8) to form methane (CH4) proceeds by
the reaction... [SUMÁRIO]
Solução:
µC1H8
+ 2µH2
= 3µCH4
O que é formalmente indentico ao exemplo 1 da seção 2.7
3 SOME FORMAL RELATIONSHIPS, AND SAMPLE
SYSTEMS [SUMÁRIO]
3.1 THE EULER EQUATION [SUMÁRIO]
3.1.1 Write each of the five physically acceptable fundamental equations... [SUMÁRIO]
Solução:
(a)
S = C[UV N]1/3
, C ≡

R2
v0θ
1/3
43
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
Então,
S =

C
3
U−2/3
V 1/3
N1/3

| {z }
1/T
U +

C
3
U1/3
V −2/3
N1/3

| {z }
P/T
V +

C
3
U1/3
V 1/3
N−2/3

| {z }
−µ/T
N
(c)
S = C

NU +
Rθ
v2
0
V 2
1/2
, C ≡

R
θ
1/2
Então,
S =
CN
2

NU +
Rθ
v2
0
V 2
−1/2
| {z }
1/T
U +
CRθ
v2
0
V

NU +
Rθ
v2
0
V 2
−1/2
| {z }
P/T
V +
C
2
U

NU +
Rθ
v2
0
V 2
−1/2
| {z }
−µ/T
N
(e)
S = C[N2
V U]1/5
S =
2
5
CU[N2
V U]−4/5
| {z }
1/T
U +
1
5
C[N2
V U]−4/5
| {z }
P/T
V +
2
5
CN[N2
V U]−4/5
| {z }
−µ/T
N
(g) e (i) são similares
3.2 THE GIBBS-DUHEM RELATION [SUMÁRIO]
3.2.1 Find the relation among T, P, and µ for the system with the fundamental
equation... [SUMÁRIO]
Solução:
A equação fundamental é :
U =

v2
0θ
R3

S4
NV 2
Então,
T = 4

v2
0θ
R3

S3
NV 2
P = 2

v2
0θ
R3

S4
NV 3
µ = −

v2
0θ
R3

S4
N2V 2
Das duas primeiras equações =⇒ T/P = 2V/S
Da primeira e terceira equação =⇒ µ/T = −S/4N
Reescrevendo a primeira equação temos,
44
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
T = 4

v2
0θ
R3

S
N

S
V
2
= 4

v2
0θ
R3
 
−4
µ
T
 
2
P
T
2
∴ T = −(2)6

v2
0θ
R3

µP2
3.3 SUMMARY OF FORMAL STRUCTURE [SUMÁRIO]
3.3.1 A particular system obeys the two equations of state... [SUMÁRIO]
Solução:
Dadas as equações T = 3As2
/v e P = As3
/v, encontre µ(s, v) e a equação fundamental.
(a)
dµ = −sdT + vdP
= −sd[3As2
/v] + vd[As3
/v]
= −3A
s2
v
ds + A
s3
v2
dv
= −d[As3
/v]
⇒ dµ = −d[As3
/v]
Z
dµ =
Z
−d[As3
/v]
∴ µ = −As3
/v + cte
Podemos tomar a constante igual a zero (cte = 0)
Assim,
µ(s, v) = −As3
/v
Então a equação de Euler será:
U = TS − PV + µN
ou ainda
u = Ts − Pv + µ
∴ u =

3As2
v

s −

A
s3
v

v −

A
s3
v

Ou de forma mais sucinta,
U = A
S3
NV
(b)
45
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
Pela integração direta da equação de Euler na forma molar :
du = Tds − Pdv
=

3A
s2
v

ds −

A
s3
v

dv
= d[A
s3
v
]
⇒
Z
du =
Z
d

A
s3
v

Fazendo a constante de integração igual a zero, concluímos que :
U = A
S3
NV
3.3.2 It is found that a particular system obeys the relations U = PV and P = BT2
[SUMÁRIO]
Solução:
As equações envolvem U e estão portanto na representação entrópica. Escreva como :
1
T
= B1/2 v1/2
u1/2
e
P
T
= B1/2 u1/2
v1/2
Então,
ds =
1
T
du +
P
T
dv
= B1/2 v1/2
u1/2
du + B1/2 u1/2
v1/2
dv
= 2B1/2
d[u1/2
v1/2
]
∴ s = 2B1/2
u1/2
v1/2
+ const. ou S = 2B1/2
U1/2
V 1/2
+ Ns0
3.3.3 A system obeys the equations P = −
NU
NV − 2AVU
and T = 2C
U1/2
V1/2
N − 2AU
eAU/N
...
[SUMÁRIO]
Solução:
Escreva as equações na forma
P
T
= −
1
2
C−1 u1/2
v3/2
eAu
e
1
T
=
1
2
C−1
u−1/2
v−1/2
[1 − 2Au]e−Au
∴ ds =
1
2
C−1
e−Au

1 − 2Au
√
uv
du −
u1/2
v3/2
dv

46
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
Faça s = Dun
vm
e−Au
(tentativa e erro!)
∴ ds = D[(nun−1
vm
− Aun
vm
)]e−Au
du + mun
vm−1
e−Au
dv
Isto está de acordo se tomarmos n = 1/2, m = −1/2, D = C−1
∴ s = C−1
r
u
v
e−Au
3.3.4 A system obeys the two equations u =
3
2
Pv and u1/2
= BTv1/3
... [SUMÁRIO]
Solução:
As equações estão na representação entrópica, então escrevemos
1
T
= Bu−1/2
v1/3
e
P
T
=
2
3
Bu1/2
v−2/3
Então
ds =
1
T
du +
P
T
dv
= Bv1/3 du
u1/2
+
2
3
Bu1/2 dv
v2/3
= 2Bd(u1/2
v1/3
)
∴ s = 2Bu1/2
v1/3
+ s0 ou S = 2BU1/2
V 1/3
N1/6
+ Ns0
3.4 THE SIMPLE IDEAL GAS AND MULTICOMPONENT SIM-
PLE IDEAL GASES [SUMÁRIO]
3.4.1 A constant volume ideal gas thermometeris contructed as shown (sche-
matically) in Fig. 3.3. ... [SUMÁRIO]
Solução:
NENHUMA SOLUÇÃO PARA ESSE PROBLEMA NO MOMENTO
3.4.2 Show that the relation between the volume and the pressure of a monoato-
mic ideal gas ... [SUMÁRIO]
Solução:
Para um gás simples S = Ns0 + NR ln

U
U0
−c
V
V0

N0
N
#c+1
47
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
Se S = const, uc
v = uc
0v0e[(s−s0)/R]
∴ (cRT)c
v = (cRT0)c
v0e[(s−s0)/R]
(Pv)c
v = (P0v0)c
v0e[(s−s0)/R]
Pv
c+1
c = P0v
c+1
c
0 e(s−s0)/c
= const.
Então, para um gás ideal monoatômico, c = 3/2
Pv5/3
=
h
P0v
5/3
0 e−2s0/3R
i
e2s/3R
= const
3.4.3 Two moles of a monoatomic ideal gas are at a temperature of 0℃and a
volume... [SUMÁRIO]
Solução:
S =
N
N0
S0 + NR ln

U
U0
3/2
V
V0

N
N0
−5/2
#
Em S = const.,
U3/2
V = const =⇒

3
2
NRT
3/2
V = const. =⇒ T3/2
V = const.
Vf = vi

Ti
Tf
3/2
= 45

273
223
3/2
litros = 61 litros = 61 × 10−3
m3
Também,
PV = NRT
Portanto,
Pi =
NRTi
Vi
= 0, 101MPa e Pf =
NRTf
Vf
= 0, 061MPa
3.4.4 By carring out the integral
R
PdV, compute the work done by the gas in
Problem 3.4-3.. [SUMÁRIO]
Solução:
Do problema 3.4-2, PV 5/3
= const.
(−W) =
Z
PdV =
Z Vf
Vi
Pi

Vi
V
5/3
dV = −
3
2
PiV
5/3
i [V
−2/3
f −V
−2/3
i ] = −
3
2
PiVi

Vf
Vi
−2/3
− 1
#
Então
(−W) = −
3
2
× (1, 01 × 105
) × (45 × 10−3
)

61
45
−2/3
− 1
#
48
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
Logo
(−W) = 12, 5 × 102
Joules
Também
Ui =
3
2
NRTi = 3 × 8, 314 × 273 = 6810 Joules
Uf =
3
2
NRTf = 3 × 8, 314 × 223 = 5560 Joules
∆U = 12, 4 × 102
Joules
3.4.5 In a particular engine a gas is compressed in the initial stroke of the piston...
[SUMÁRIO]
Solução:
(a)
W = −
Z V1
V0
PdV = −NR
Z V1
V0
T
dV
V
= −
NRT0
V η
0
Z V1
V0
V η−1
dV = −
NRT0
η

V1
V0
η
− 1

W =
NR
η
(T0 − T1)
(b)
∆U =
3
2
NR(T1 − T0) Onde T1 =

V1
V0
η
T0
(c)
Q = ∆U − W =
3
2
NR(T1 − T0) +
NR
η
(T1 − T0)
∴ Q =

3
2
+
1
η

NR(T1 − T0)
(d)
S = Ns0 +
3
2
NR ln

U
U0

+ NR ln

V
V0

−
5
2
NR ln

N
N0

= Ns0 +
3
2
NR ln

T
T0

+ NR ln

V
V0

−
5
2
NR ln

N
N0

49
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
∴ dS =
3
2
NR
dT
T
+ NR
dV
V
=
3
2
NRη
dV
V
+ NR
dV
V
=

3
2
η + 1

NR
dV
V
∴ Tds =

3
2
η + 1

NRT0
V η−1
V η
0
dV
Então
Q =
Z
TdV =

3
2
η + 1

NRT0
1
η

V
V0
ηV1
V0
=

3
2
+
1
η

NRT0

V1
V0
η
− 1

∴

3
2
+
1
η

NR(T1 − T0) O que bate com a letra (c)
(e) Para checar η = −
2
3
se Q = 0
Então
PV = NRT = NR

V
V0
η
T0
ou ainda
PV 1−η
= const ou PV 5/3
= const.
E esta é a conhecida forma de uma adiabata.
3.4.6 Find the three equations of state of the simple ideal gas(equation 3.34...
[SUMÁRIO]
Solução:
S = Ns0 + NcR ln

U
Nu0

+ NR ln

V
Nv0

Então
1
T
=
NcR
U
e
P
T
=
NR
V
∴ −
µ
T
=
∂S
∂N
= s0 + cR ln

U
Nu0

+ R ln

V
Nv0

− (1 + c)R
3.4.7 Find the four equations of state of a two-component mixture if simple ideal
gases... [SUMÁRIO]
Solução:
S =
X
j
Njsj0 +
X
j
NjcjR ln

T
T0

+
X
j
NjR ln

V
NjV0

; U =
X
j
Njcj
!
RT
50
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
∴ S =
X
j
Njsj0 +
X
j
Njcj
!
R ln






U
P
j
Njcj
!
RT0






+
X
j
NjR ln

V
NjV0

Então
1
T
=
X
j
Njcj
R
U
P
T
=
X
j
Nj
R
V
−
µ
T
= sj0 + cjR ln



U
P
j
NjcjRT0


 − cjR + R ln

V
NjV0

− R
Para verificar a equação de Euler, calculamos
U
T
+
P
T
V −
X
j
µjNj
T
U
T
+P
T
V −
P
j
µjNj
T
=U
P
j
NjcjR
U
+V
P
j
NjR
V
+
P
j

sj0
+cjR ln

 U
P
j
NjcjRT0

−cjR+R ln

V
NjV0

−R

Nj
O lado direito desta equação é exatamente o S da segunda linha da solução.
3.4.8 If a monoatomic ideal gas is permitted to expand into an evacuated region,
thereby increasing its volume... [SUMÁRIO]
Solução:
Responda na ordem inversa, ou seja, (c), (b) e depois (a).
S = Ns0 + NR ln

U
U0
3/2 
V
V0
 
N
N0
−5/2
#
(a) De PV = NRT
Pf
Pi
=
Vi
Vf
=
1
λ
=⇒ Pf =
Pi
λ
(b) de U =
3
2
NRT =⇒ Tf = Ti
(c) Se Uf = Ui e Vf /Vi = λ então
∆S = Sf − Si = NR ln(Vf ) − NR ln(Vi) = NR ln

Vf
Vi

∴ ∆S = NR ln(λ)
51
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
3.4.9 A tank has a volume of 0.1m3
and is filled with He gas at a pressure of...
[SUMÁRIO]
Solução:
U1 =
3
2
P1V1 , U2 =
3
2
P2V2, Uf =
3
2
Pf Vf =
3
2
Pf (V1 + V2) e Uf = U1 + U2
Então
3
2
Pf (V1 + V2) =
3
2
P1V1 +
3
2
P2V2
∴ Pf =
P1V1 + P2V2
V1 + V2
=
5 × 106
× 0.1 + 6 × 106
× 0, 15
0, 25
= 5, 6 × 106
Pa
3.4.10 ... [SUMÁRIO]
Solução:
(a)
P1V1 = N1RT1 ou 5 × 106
× 0, 1 = N1 × 8, 314 × 300 então N1 = 200, 5 mols
P2V2 = N2RT2 ou 6 × 106
× 0, 15 = N2 × 8, 314 × 350 então N2 = 309, 3 mols
Pf Vf = (N1 + N2)RTf ou 5, 6 × 106
× 0, 25 = 509, 8 × 8, 134 × Tf
∴ Tf = 330 K
(b)
Novamente N1 = 200, 5 e N2 = 309, 3 Então U1 + U2 = Uf
Logo
3
2
N1RT1 +
5
2
N2RT2 =
3
2
N1RTf +
5
2
N2RTf =⇒ Tf = 336 K
Note também que
3
2
P1V1 +
5
2
P2V2 =

3
2
N1 +
5
2
N2

Pf Vf
N1 + N2
=⇒ Pf = 5, 7 × 106
Pa
3.4.11 Show that the pressure of a multicomponent simple ideal gas can be written
as the sum... [SUMÁRIO]
Solução:
P =
NRT
V
e N =
X
i
Ni =⇒ P =
X
i

NiRT
V

≡
X
i
Pi
52
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
3.4.12 Show that µj, the electrochemical potential of the jth component in a ...
[SUMÁRIO]
Solução:
Nós temos S =
X
j
Njsj0 +
X
j
NjcjR ln

T
T0

+
X
j
NjR ln

V
Njv0

quando T =
U
R
P
j
Njcj
−
µj
T
=

∂S
∂Nj

U1,...
= sj0 + cjR ln

T
T0

+
1
T
X
j
Njcj
!
R

∂T
∂Nj

U
+ R ln

V
Njv0

− R
Mas

∂T
∂Nj

= −
U
R
cj
(
P
j
Njcj)2
= −
Tcj
P
j
Njcj
∴ −
µj
T
= sj0 + cjR ln

T
T0

− cjR + R ln

V
Njv0

− R
=⇒ µj = −RT ln

V
Njv0

+ RT

1 + cj − cj ln

T
T0

−
sj0
R

∴ µj = RT ln

Pj
RTv0

+ RT

1 + cj − cj ln

T
T0

−
sj0
R

3.4.13 An impermeable, diathermal, and rigid partition divides a container into
two subvolumes... [SUMÁRIO]
Solução:
Do problema anterior µj = −RT ln

V
Njv0

+ RT

1 + cj − cj ln

T
T0

−
sj0
R

e µ
(1)
H2
= µ
(2)
H2
∴ −RT ln
V0
N
(1)
H2
v0
!
= −RT ln
V0
N
(2)
H2
v0
!
Ou N
(1)
H2
= N
(2)
H2
=
1
2
mol
∴ P(1)
=
N
(1)
H2
RT
V0
=
1
2
RT
V0
e P(2)
=
[N
(2)
H2
+ N
(2)
Ne]RT
V0
=
7
2
RT
V0
3.4.14 Use the results of problem 3.4-11 and 3.4-12 to stablish the results Pα = Pγ
e... [SUMÁRIO]
Solução:
A pressão parcial de A em β, ou PA
β , é igual a Pα
53
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
A pressão parcial de B em β, ou PB
β , é igual a Pγ
∴ Pβ = PA
β + PB
β = Pα + Pγ
Também, por simetria,
Pα = Pγ =⇒ Pβ = 2Pα
3.4.15 An impermeable, diathermal and rigid partition divides a container into
two subvolumes... [SUMÁRIO]
Solução:
Note que U =
X
j
NjcjRT, e desde que a energia total seja constante, a temperatura é constante.
Inicialmente PH2 =
nRT
nV0
=
RT
V0
PHe =
mRT
mV0
=
RT
V0
Finalmente P =
(n + m)RT
(n + m)V0
=
RT
V0
=⇒ não há variação na pressão
Então a variação na entropia é igual a entropia de mistura. Veja o texto logo abaixo da
equação 3.40 no livro-texto (entropy of mixing-pg 69).
∴ ∆s = −R
X
j
Nj ln

Nj
N

= −R

n ln

n
n + m

+ m ln

m
n + m

3.5 THE IDEAL VAN DER WAALS FLUID[SUMÁRIO]
3.5.1 Are each of the listed pairs of equations of state compatible (recall equations
3.46)... [SUMÁRIO]
Solução:
(a)
U = aPv e Pv2
= bT
Escreva as equações como
P
T
=
b
v2
, e (dividindo por P = u/av), =⇒
1
T
=
ab
uv
Então
∂
∂u

P
T

?
=
∂
∂v

1
T

se torna
∂
∂u

b
v2

?
=
∂
∂v

ab
uv

, ou 0
?
= −
ab
uv2
=⇒ não é compatível
(b)
U = aPv2
e Pv2
= bT
54
AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com
πiXeL WallRiDeR Karlengs
∴
P
T
=
b
v2
e
1
T
=
ab
u
Então
∂
∂u

P
T

=
∂
∂v

1
T

, ou 0 = 0 =⇒ Compatível
(c)
P =
u
v
c + buv
a + buv
e T =
u
a + buv
∴
P
T
=
c
v
+ bu e
1
T
=
a
u
+ bv
∴
∂
∂u

P
T

=
∂
∂v

1
T

(= b) =⇒ compatível
Para encontrar as equações fundamentais para os casos (b) e (c) :
(b) ds =
1
T
du +
P
T
dv =
ab
u
du +
b
v2
dv ⇒ S − S0 = abN ln

U
N

− b
N2
V
(c) ds =
a
u
+ bv

du+
c
v
+ bu

dv ⇒ S = Ns0 + a ln

U
U0

+ b
UV
N
− bu0v0 + c ln

V
Nv0

3.5.2 Find the relationship between the volume and the temperature of an ideal
Van Der Waals fluid... [SUMÁRIO]
Solução:
S = NR ln[(v − b)(cRT)c
] + Ns0 =⇒ (v − b)Tc
= const.
3.5.3 Repeat the problem 3.4-3 for CO2, rather than for a monoatomic ideal gas...
[SUMÁRIO]
Solução:
Recordando S = NR ln[(v − b)(u + a/v)c
] + S0 Consequentemente, numa expansão adiabática,
(v − b)
h
u +
a
v
ic
= const.
também u +
a
u
= cRT
de onde (v − b)Tc
= const.
Então
(vf − b)Tc
f
(vi − b)Tc
i
= 1, e da tabela 3.1(pg.77 do livro), c = 3, 5 e b = 42, 7 × 10−6
m3
Tem-se também que vi = 45 × 10−3
m3
Neste caso b pode ser desprezado, então
vf
vi
'

Ti
Tf
c
=

273
223
3,5
= 2, 03
e ainda vf = 91, 4 litros = 0, 091m3
55
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions
Callen Solutions

More Related Content

What's hot

Soluções circuitos elétricos nilsson - 8ed (inglês)
Soluções circuitos elétricos   nilsson - 8ed (inglês)Soluções circuitos elétricos   nilsson - 8ed (inglês)
Soluções circuitos elétricos nilsson - 8ed (inglês)Maria Fernanda Romeu
 
Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qmAnda Tywabi
 
[Solution manual] fluid mechanics fox & mcdonald
[Solution manual] fluid mechanics fox & mcdonald[Solution manual] fluid mechanics fox & mcdonald
[Solution manual] fluid mechanics fox & mcdonaldIISc Bangalore
 
Van wylen fundamentos da termo dinamica classica 4 ed
Van wylen fundamentos da termo dinamica classica 4 edVan wylen fundamentos da termo dinamica classica 4 ed
Van wylen fundamentos da termo dinamica classica 4 edAdriano Guinzelli
 
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notesQuantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notespolariton
 
lecture notes heat transfer.pdf
lecture notes heat transfer.pdflecture notes heat transfer.pdf
lecture notes heat transfer.pdfLaggo Anelka
 
Questoes Resolvidas Exame Unificado de Fisica 2015-2.pdf
Questoes Resolvidas Exame Unificado de Fisica 2015-2.pdfQuestoes Resolvidas Exame Unificado de Fisica 2015-2.pdf
Questoes Resolvidas Exame Unificado de Fisica 2015-2.pdf17535069649
 
Solução do salinas capitulo 4
Solução do salinas capitulo 4Solução do salinas capitulo 4
Solução do salinas capitulo 4Débora Codognato
 
6th ed solution manual---fundamentals-of-heat-and-mass-transfer
6th ed solution manual---fundamentals-of-heat-and-mass-transfer6th ed solution manual---fundamentals-of-heat-and-mass-transfer
6th ed solution manual---fundamentals-of-heat-and-mass-transferRonald Tenesaca
 
Chapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumChapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumK. M.
 
Heat transfer 5th ed incropera solution manual
Heat transfer 5th ed incropera solution manualHeat transfer 5th ed incropera solution manual
Heat transfer 5th ed incropera solution manualManish Kumar
 
Applied Thermodynamics Pamphlet 2nd edition, 2018 by musadoto
Applied Thermodynamics Pamphlet 2nd edition, 2018 by musadotoApplied Thermodynamics Pamphlet 2nd edition, 2018 by musadoto
Applied Thermodynamics Pamphlet 2nd edition, 2018 by musadotomusadoto
 
972 B3102005 Cullity Chapter 2
972 B3102005 Cullity Chapter 2972 B3102005 Cullity Chapter 2
972 B3102005 Cullity Chapter 2praying1
 

What's hot (20)

Soluções circuitos elétricos nilsson - 8ed (inglês)
Soluções circuitos elétricos   nilsson - 8ed (inglês)Soluções circuitos elétricos   nilsson - 8ed (inglês)
Soluções circuitos elétricos nilsson - 8ed (inglês)
 
Harmonic oscillator
Harmonic oscillatorHarmonic oscillator
Harmonic oscillator
 
Operators n dirac in qm
Operators n dirac in qmOperators n dirac in qm
Operators n dirac in qm
 
[Solution manual] fluid mechanics fox & mcdonald
[Solution manual] fluid mechanics fox & mcdonald[Solution manual] fluid mechanics fox & mcdonald
[Solution manual] fluid mechanics fox & mcdonald
 
Van wylen fundamentos da termo dinamica classica 4 ed
Van wylen fundamentos da termo dinamica classica 4 edVan wylen fundamentos da termo dinamica classica 4 ed
Van wylen fundamentos da termo dinamica classica 4 ed
 
Electromagnetics
ElectromagneticsElectromagnetics
Electromagnetics
 
Quantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notesQuantum Mechanics: Lecture notes
Quantum Mechanics: Lecture notes
 
Specific Heat Capacity
Specific Heat CapacitySpecific Heat Capacity
Specific Heat Capacity
 
lecture notes heat transfer.pdf
lecture notes heat transfer.pdflecture notes heat transfer.pdf
lecture notes heat transfer.pdf
 
Questoes Resolvidas Exame Unificado de Fisica 2015-2.pdf
Questoes Resolvidas Exame Unificado de Fisica 2015-2.pdfQuestoes Resolvidas Exame Unificado de Fisica 2015-2.pdf
Questoes Resolvidas Exame Unificado de Fisica 2015-2.pdf
 
Fullprof Refinement
Fullprof RefinementFullprof Refinement
Fullprof Refinement
 
Solução do salinas capitulo 4
Solução do salinas capitulo 4Solução do salinas capitulo 4
Solução do salinas capitulo 4
 
UCSD NANO106 - 07 - Material properties and tensors
UCSD NANO106 - 07 - Material properties and tensorsUCSD NANO106 - 07 - Material properties and tensors
UCSD NANO106 - 07 - Material properties and tensors
 
6th ed solution manual---fundamentals-of-heat-and-mass-transfer
6th ed solution manual---fundamentals-of-heat-and-mass-transfer6th ed solution manual---fundamentals-of-heat-and-mass-transfer
6th ed solution manual---fundamentals-of-heat-and-mass-transfer
 
Chapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibriumChapter4 semiconductor in equilibrium
Chapter4 semiconductor in equilibrium
 
Steam tables
Steam tablesSteam tables
Steam tables
 
Phonons lecture
Phonons lecturePhonons lecture
Phonons lecture
 
Heat transfer 5th ed incropera solution manual
Heat transfer 5th ed incropera solution manualHeat transfer 5th ed incropera solution manual
Heat transfer 5th ed incropera solution manual
 
Applied Thermodynamics Pamphlet 2nd edition, 2018 by musadoto
Applied Thermodynamics Pamphlet 2nd edition, 2018 by musadotoApplied Thermodynamics Pamphlet 2nd edition, 2018 by musadoto
Applied Thermodynamics Pamphlet 2nd edition, 2018 by musadoto
 
972 B3102005 Cullity Chapter 2
972 B3102005 Cullity Chapter 2972 B3102005 Cullity Chapter 2
972 B3102005 Cullity Chapter 2
 

Similar to Callen Solutions

Modelling the Chaotic Waterwheel
Modelling the Chaotic WaterwheelModelling the Chaotic Waterwheel
Modelling the Chaotic WaterwheelEdward Pode
 
Multicomponent, multiphase flow in porous media with temprature variation wi...
Multicomponent, multiphase flow in porous media with temprature variation  wi...Multicomponent, multiphase flow in porous media with temprature variation  wi...
Multicomponent, multiphase flow in porous media with temprature variation wi...Fidel Vladimir Chuchuca Aguilar
 
Xin-She Yang - Introductory Mathematics for Earth Scientists -Dunedin Academi...
Xin-She Yang - Introductory Mathematics for Earth Scientists -Dunedin Academi...Xin-She Yang - Introductory Mathematics for Earth Scientists -Dunedin Academi...
Xin-She Yang - Introductory Mathematics for Earth Scientists -Dunedin Academi...Aditya Singh
 
Compiled Report
Compiled ReportCompiled Report
Compiled ReportSam McStay
 
URICHUK_ANDREW_MSC_2015
URICHUK_ANDREW_MSC_2015URICHUK_ANDREW_MSC_2015
URICHUK_ANDREW_MSC_2015Andrew Urichuk
 
morten_bakkedal_dissertation_final
morten_bakkedal_dissertation_finalmorten_bakkedal_dissertation_final
morten_bakkedal_dissertation_finalMorten Bakkedal
 
Hamel A. - Variational principles on metric and uniform spaces-Martin-Luther-...
Hamel A. - Variational principles on metric and uniform spaces-Martin-Luther-...Hamel A. - Variational principles on metric and uniform spaces-Martin-Luther-...
Hamel A. - Variational principles on metric and uniform spaces-Martin-Luther-...BfhJe1
 
Report- Monica Salib
Report- Monica SalibReport- Monica Salib
Report- Monica SalibMonica Samir
 
Mechanical vibration by janusz krodkiewski
Mechanical vibration by janusz krodkiewskiMechanical vibration by janusz krodkiewski
Mechanical vibration by janusz krodkiewskinook_kick
 
Mechanical viberation
Mechanical viberationMechanical viberation
Mechanical viberationpatel sandip
 

Similar to Callen Solutions (20)

Modelling the Chaotic Waterwheel
Modelling the Chaotic WaterwheelModelling the Chaotic Waterwheel
Modelling the Chaotic Waterwheel
 
thermal_physics
thermal_physicsthermal_physics
thermal_physics
 
Multicomponent, multiphase flow in porous media with temprature variation wi...
Multicomponent, multiphase flow in porous media with temprature variation  wi...Multicomponent, multiphase flow in porous media with temprature variation  wi...
Multicomponent, multiphase flow in porous media with temprature variation wi...
 
Elementary linear algebra
Elementary linear algebraElementary linear algebra
Elementary linear algebra
 
Xin-She Yang - Introductory Mathematics for Earth Scientists -Dunedin Academi...
Xin-She Yang - Introductory Mathematics for Earth Scientists -Dunedin Academi...Xin-She Yang - Introductory Mathematics for Earth Scientists -Dunedin Academi...
Xin-She Yang - Introductory Mathematics for Earth Scientists -Dunedin Academi...
 
Mech_Project
Mech_ProjectMech_Project
Mech_Project
 
thesis
thesisthesis
thesis
 
Compiled Report
Compiled ReportCompiled Report
Compiled Report
 
Differential equations
Differential equationsDifferential equations
Differential equations
 
URICHUK_ANDREW_MSC_2015
URICHUK_ANDREW_MSC_2015URICHUK_ANDREW_MSC_2015
URICHUK_ANDREW_MSC_2015
 
morten_bakkedal_dissertation_final
morten_bakkedal_dissertation_finalmorten_bakkedal_dissertation_final
morten_bakkedal_dissertation_final
 
Applied Math
Applied MathApplied Math
Applied Math
 
Hamel A. - Variational principles on metric and uniform spaces-Martin-Luther-...
Hamel A. - Variational principles on metric and uniform spaces-Martin-Luther-...Hamel A. - Variational principles on metric and uniform spaces-Martin-Luther-...
Hamel A. - Variational principles on metric and uniform spaces-Martin-Luther-...
 
main
mainmain
main
 
MSc_Project
MSc_ProjectMSc_Project
MSc_Project
 
Cálculo de Tensores
Cálculo de TensoresCálculo de Tensores
Cálculo de Tensores
 
Dn
DnDn
Dn
 
Report- Monica Salib
Report- Monica SalibReport- Monica Salib
Report- Monica Salib
 
Mechanical vibration by janusz krodkiewski
Mechanical vibration by janusz krodkiewskiMechanical vibration by janusz krodkiewski
Mechanical vibration by janusz krodkiewski
 
Mechanical viberation
Mechanical viberationMechanical viberation
Mechanical viberation
 

Recently uploaded

Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 

Recently uploaded (20)

Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 

Callen Solutions

  • 1. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs SOLUTIONS MANUAL THERMODYNAMICS AND AN INTRODUCTION THERMOSTATISTICS SECOND EDITION TO HERBERT B. CALLEN
  • 2. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs Manual de soluções para o livro Thermodyna- mics and an introduction to thermostatistics - second edition. [SUMÁRIO] Este manual de soluções é essencialmente uma tradução do solucionário original, feito pelo próprio Herbert B. Callen e publicado pela editora JOHN WILEY & SONS no ano de 1986 (ISBN 0 471 81993 X). O solucionário original foi feito e publicado na forma manuscrita, sendo essa a principal razão pela qual decidimos editar esse documento. A praticidade e clareza deste manual de soluções o torna uma excelente ferramenta auxiliar para as pessoas que usam o livro-texto, porém deve-se tomar o cuidado de não fazer dessa ferramenta consultiva a principal forma de resolver os problemas, sendo essa nossa principal preocupação em tornar esse material público. O livro thermodynamics and an introduction to thermostatistics apresenta 391 problemas ao todo, e esse manual traz a solução de 346 desses problemas e ainda 7 problemas suplementares e suas respectivas soluções. Tomamos o cuidado de deixar esse documento tão mais fiel ao original quanto fosse possível, tanto nas explicações quanto na disposição das figuras, fazendo pequenas correções e alterações quando necessário e conveniente. Esse manual é um bem público feito por nós estudantes para vocês estudantes. Por favor não o comercialize. Este material, bem como a ciência e não obstante o conhecimento, deve ser acessado por todos e para todos, sendo portanto livre o seu compartilhamento. Comentários, correções, ou mesmo sugestões de solução para qualquer problema do livro ou deste manual, favor enviar para o e-mail solutionscallen@gmail.com, dessa forma podemos mantê-lo sempre atualizado. Goiânia, fevereiro de 2022 πiXeL Karlengs WallRiDeR Feito em L A TEX 2
  • 3. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs Esse PDF foi construído pelas seguintes contribuições: Capa (feita no inkscape) πiXeL e Lactovacilo Capítulos 1, 2, 3, 4, 7, 8, 13*, 15, 16, 17, 18, 19, 20, 21. πiXeL Capítulos 5, 6. WallRiDeR Capítulos 9, 10, 11, 13*. Karlengs Figuras ( feitas no inkscape e tikz) πiXeL, WallRiDeR e Karlengs Um agradecimento especial aos queridos Vinny e Mrsteps que tornaram possível o acesso à obra original. Contato: solutionscallen@gmail.com AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD Feito no Goiás 3
  • 4. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs A quem interessar possa, cuide bem desse solucionário, ele salvou minha vida. —Watney (e um estudante da graduação) 4
  • 5. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs Página do manual original (única página que não é manuscrita) 5
  • 6. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs Sumário [SUMÁRIO] 1 THE PROBLEM AND THE POSTULATES 20 1.3 THE COMPOSITION OF THERMODYNAMIC SYSTEMS . . . . . . 20 1.3.1 One tenth of a kilogram of NaCl and 0.15 kg of sugar (C12H22O11)... . . . 20 1.3.2 Naturally occurring boron has an atomic mass of 10.811 g... . . . . . . . 20 1.3.3 Twenty cubic centimeters each of ethyl alcohol... . . . . . . . . . . . . . . 20 1.3.4 A 0.01 kg sample is composed of 50 molecular percent H2... . . . . . . . 21 1.3.5 A solution of sugar (C12H22O11) in water is 20% sugar by weight... . . . . 21 1.3.6 An aqueous solution of an unidentified solute has a total mass... . . . . . 22 1.3.7 One tenth of a kg of an aqueous solution of HCl is poured... . . . . . . . 22 1.8 QUANTITATIVE DEFINITION OF HEAT-UNITS . . . . . . . . . . . . 23 1.8.1 For the system considered in Example 1, calculate... . . . . . . . . . . . . 23 1.8.2 Calculate the heat transferred to the system considered in... . . . . . . . 23 1.8.3 For a particular gaseous system it has been determined that... . . . . . . 24 1.8.4 For the system of Problem 1.8-3 find the equation of the adiabats... . . . 25 1.8.5 The energy of a particular system, of one mole, is given by ... . . . . . . . 25 1.8.6 For a particular system it is found that if the volume is kept ... . . . . . . 26 1.8.7 Two moles of a particular single-component system are found... . . . . . 26 1.8.8 (Supplementary Problem) A particular single-component system of one mole has adiabats of the form P5/3 = constant . . . . . . . . . . . . 27 1.10 THE ENTROPY MAXIMUM POSTULATES . . . . . . . . . . . . . . . 28 1.10.1 The following ten equations are purported to be fundamental... . . . . . 28 1.10.2 For each of the five physically acceptable fundamental equations... . . . . 29 1.10.3 The fundamental equation of a system A is S = R2 v0θ 1/3 (NV U)1/3 and similarly... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 THE CONDITIONS OF EQUILIBRIUM 31 2.2 EQUATIONS OF STATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.1 Find the three equations of state for a system with the fundamental... . . 31 2.2.2 For the system of problem 2.2-1 find µ as a function of T, V e N . . . . . 31 2.2.3 Show by a diagram (drawn to arbitrary scale) the dependence of... . . . . 31 2.2.4 Find the three equations of state for a system with the fundamental equation u = θ R s2 − Rθ v2 0 v2 . . . . . . . . . . . . . . . . . . . . . . 32 2.2.5 Express µ as a function of T and P for the system of problem 2.2-4 . . . 32 2.2.6 Find the three equations of state for a system with the fundamental equation u = v0θ R s2 v es/R . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2.7 A particular system obeys the relation u = Av−2 exp(s/R)... . . . . . . . 33 2.2.8 Show that, in analogy with equation 2.25, for a system with r components... 33 2.2.9 Show that if a single-component system is such that PV k is constant... . 34 2.3 ENTROPIC INTENSIVE PARAMETERS . . . . . . . . . . . . . . . . . 35 2.3.1 Find the three equations of state in the entropy representation for... . . . 35 2.3.2 Show by a diagram (drawn to arbitrary scale) the dependence of tempe- rature on volume ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.3.3 Find the three equations of state in the entropy representation for ... . . 37 2.3.4 Consider the fundamental equation S = AUn V m Nr where A is a positive constant... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.5 Find the three equations of state for a system with the fundamental relation... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.6 TEMPERATURE UNITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 6
  • 7. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 2.6.1 The temperature of a system composed of ice, water, and water vapor... . 38 2.6.2 The gas constantR is defined as the product of Avogrado’s number... . 38 2.6.3 Two particular systems have the following equations of state... . . . . . . 38 2.6.4 Two systems with the equations of state given in Problem 2.6-3 ... . . . . 39 2.7 MECHANICAL EQUILIBRIUM . . . . . . . . . . . . . . . . . . . . . . . . 39 2.7.1 Three cylinders are fitted with four pistons, as shown in Fig. 2.2 ... . . . 39 2.7.2 Two particular systems have the following equations of state : ... . . . . . 40 2.7.3 The hypothetical problem of equilibrium in a closed composite system ... 40 2.8 EQUILIBRIUM WITH RESPECT TO MATTER FLOW . . . . . . . . 41 2.8.1 The fundamental equation of a particular type of two-component system is... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.8.2 A two-component system gaseous system has a fundamental equation of the form... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.9 CHEMICAL EQUILIBRIUM . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.9.1 The hydrogenation of propane (C3H8) to form methane (CH4) proceeds by the reaction... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3 SOME FORMAL RELATIONSHIPS, AND SAMPLE SYSTEMS 43 3.1 THE EULER EQUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.1 Write each of the five physically acceptable fundamental equations... . . . 43 3.2 THE GIBBS-DUHEM RELATION . . . . . . . . . . . . . . . . . . . . . . 44 3.2.1 Find the relation among T, P, and µ for the system with the fundamental equation... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3 SUMMARY OF FORMAL STRUCTURE . . . . . . . . . . . . . . . . . . 45 3.3.1 A particular system obeys the two equations of state... . . . . . . . . . . 45 3.3.2 It is found that a particular system obeys the relations U = PV and P = BT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.3 A system obeys the equations... . . . . . . . . . . . . . . . . . . . . . . . 46 3.3.4 A system obeys the two equations u = 3 2 Pv and u1/2 = BTv1/3 ... . . . . 47 3.4 THE SIMPLE IDEAL GAS AND MULTICOMPONENT SIMPLE IDEAL GASES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.1 A constant volume ideal gas thermometeris contructed as shown (sche- matically) in Fig. 3.3. ... . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.2 Show that the relation between the volume and the pressure of a mono- atomic ideal gas ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.3 Two moles of a monoatomic ideal gas are at a temperature of 0℃... . . . 48 3.4.4 By carring out the integral R PdV , compute the work done by the gas in Problem 3.4-3... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.4.5 In a particular engine a gas is compressed in the initial stroke of the piston... 49 3.4.6 Find the three equations of state of the simple ideal gas(equation 3.34... 50 3.4.7 Find the four equations of state of a two-component mixture if simple ideal gases... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4.8 If a monoatomic ideal gas is permitted to expand into an evacuated region, thereby increasing its volume... . . . . . . . . . . . . . . . . . . . . . . . 51 3.4.9 A tank has a volume of 0.1m3 and is filled with He gas at a pressure of... 52 3.4.10 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.11 Show that the pressure of a multicomponent simple ideal gas can be written as the sum... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.12 Show that µj, the electrochemical potential of the jth component in a ... 53 3.4.13 An impermeable, diathermal, and rigid partition divides a container into two subvolumes... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7
  • 8. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 3.4.14 Use the results of problem 3.4-11 and 3.4-12 to stablish the results Pα = Pγ e... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4.15 An impermeable, diathermal and rigid partition divides a container into two subvolumes... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.5 THE ˝IDEAL VAN DER WAALS FLUID . . . . . . . . . . . . . . . . . 54 3.5.1 Are each of the listed pairs of equations of state compatible (recall equa- tions 3.46)? ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.5.2 Find the relationship between the volume and the temperature of an ideal Van Der Waals fluid... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.3 Repeat the problem 3.4-3 for CO2, rather than for a monoatomic ideal gas... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.4 Repeat parts (a), (b), e (c) do problema 3.4-5, assuming that η = −1/2 and that gas... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.5.5 Consider a Van Der Waals gas contained in the apparatus described in Problem 3.4-1... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.5.6 One mole of a monoatomic ideal gas and one mole of Cl2 are contained in a rigid cylinder and... . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.5.7 (Supplementary problem) Suppose we wish to account (crudely) for a long-range... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.6 ELECTROMAGNETIC RADIATION . . . . . . . . . . . . . . . . . . . . 58 3.6.1 The universe is considered by cosmologists to be an expanding electro- magnetic cavity containing radiation... . . . . . . . . . . . . . . . . . . . 58 3.6.2 Assuming the electromagnetic radiation filling the universe to be in equi- librium at T = 2.7 K... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.6.3 The density of matter (primarily hydrogen atoms) in intergalactic space is such that... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.7 THE ˝RUBBER BAND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.7.1 For the rubber band model, calculate the fractional change in (L − L0) that results from an increase δT... . . . . . . . . . . . . . . . . . . . . . . 59 3.7.2 A rubber band is stretched by an amount dL, at constant T. Calculate the heat transfer đQ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.7.3 If the energy of the unstretched rubber band were found to increase qua- dratically with T... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.8 UNCONSTRAINABLE VARIABLES; MAGNETIC SYSTEMS . . . . 60 3.8.1 Calculate the three equations of state of the paramagnetic model of equa- tion 3.66. That is, calculate... . . . . . . . . . . . . . . . . . . . . . . . . 60 3.8.2 Repeat problem 3.8-1 for a system with the fundamental equation U = µ0I2 /2Nχ+... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.9 MOLAR HEAT CAPACITY AND OTHER DERIVATIVES . . . . . . 61 3.9.1 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.9.2 Corroborate equation 3.70 for a multicomponent simple ideal gas, showing that both the right- and left-hand... . . . . . . . . . . . . . . . . . . . . . 62 3.9.3 Compute the coefficient of expansion α and the isothermal compressibility κT in terms... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.9.4 Compute CP , CV , κS, e κT for the system in Problem 1.10-(a). With these values... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.9.5 From equations 3.75 and 3.76 show that... . . . . . . . . . . . . . . . . . 63 3.9.6 A simple fundamental equation that exhibits some of the qualitative pro- perties of typical crystaline solids... . . . . . . . . . . . . . . . . . . . . . 64 3.9.7 The density of mercury at various temperatures is given here in grams/cm3 ... 65 3.9.8 For a particular material CP , α, e κT can be represented empirically by power series... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 8
  • 9. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 3.9.9 Calculate the molar entropy s(T, P0) for fixed pressure P0 and for tem- perature T in the vicinity of ... . . . . . . . . . . . . . . . . . . . . . . . 66 3.9.10 By analogy with equations 3.70 and 3.71 show that for a paramagnetic system... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.9.11 By analogy with equations 3.70 and 3.71 show that for a paramagnetic system... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.9.12 The magnetic analogues of the molar heat capacities CP and Cv are CB and CI. Calculate... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.9.13 The (isothermal) molar magnetic susceptibility is defined by ... . . . . . . 67 3.9.14 Calculate the adiabatic molar susceptibility... . . . . . . . . . . . . . . . 68 3.9.15 Calculate the isothermal and adiabatic molar susceptibilities (defined in Problem 3.9-13 and 3.9-14)... . . . . . . . . . . . . . . . . . . . . . . . . 68 3.9.16 Show that for the system of Problem 3.8-2... . . . . . . . . . . . . . . . . 68 3.9.17 Calculate the heat transfer to a particular system if 1 mole is taken from (T0, P0) to (2T0, 2P0)... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.9.18 (Supplementary Problem) A particular substance is known to have α = 5/(4T), κT = 2/(P + P0)... . . . . . . . . . . . . . . . . . . . . . . . 69 4 REVERSIBLE PROCESSES AND THE MAXIMUM WORK THEOREM 70 4.1 POSSIBLE AND IMPOSSIBLE PROCESSES . . . . . . . . . . . . . . . 70 4.1.1 One mole of a monatomic ideal gas and one mole of an idela Van der Waals fluid (Section 3.5)... . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.1.2 A rubber band (Section 3.7) is initially at temperature TB and length LB. One mole of a monatomic ideal gas... . . . . . . . . . . . . . . . . . 71 4.1.3 Supose the two systems in Example 1 were to have heat capacities of the form C(T) = DTn , with n 0 ... . . . . . . . . . . . . . . . . . . . . . . 71 4.2 QUASI-STATIC AND REVERSIBLE PROCESSES . . . . . . . . . . . 72 4.2.1 Does every reversible process coincide with a quasi-static locus? Does every quasi-static locus coincide with a reversible process ?... . . . . . . . 72 4.2.2 Consider a monatomic ideal gas in a cylinder fitted with a piston. The walls of the cylinder and the piston are adiabatic. ... . . . . . . . . . . . 72 4.2.3 A monatomic ideal gas is permitted to expand by a free expansion from V to V + dV ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.2.4 In the temperature range of interest a system obeys the equations T = Av2 /s and P = −2Av ln(s/s0)... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3 RELAXATION TIMES AND IRREVERSIBILITY . . . . . . . . . . . . 73 4.3.1 A cylinder of length L and cross-sectional area A is divided into two equal-volume chambers by a piston, held at... . . . . . . . . . . . . . . . 73 4.4 HEAT FLOW: COUPLED SYSTEMS AND REVERSAL OF PRO- CESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4.1 Each of two bodies has a heat capacity given, in the temperature range of interest, by C = A + BT ... . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4.2 Consider again the system of Problem 4.4-1. LEt a third body be avai- lable, with heat capacity C3 = BT... . . . . . . . . . . . . . . . . . . . . 74 4.4.3 Prove that the entropy change in a heat flow process, as given in equation 4.5, is intrinsically positive. . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4.4 Show that if two bodies have equal heat capacities, eqach of which is constant (independent of temperature), the equilibrium temperature... . . 75 4.4.5 Over a limited temperature range the heat capacity at constant volume of a particular type of system is inversely proportional... . . . . . . . . . 76 9
  • 10. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 4.4.6 A series of N + 1 large vats of water have temperatures T0, T1, T2, ..., TN (with Tn Tn−1). A small body with heat capacity C... . . . . . . . . . . 76 4.5 THE MAXIMUM WORK THEOREM . . . . . . . . . . . . . . . . . . . . 77 4.5.1 One mole of a monatomic ideal gas is contained in a cylinder of volume 10−3 m3 at temperature of 400 K... . . . . . . . . . . . . . . . . . . . . . 77 4.5.2 Consider the following process for the system of Problem 4.5-1. The ideal gas is first expanded adiabatically ... . . . . . . . . . . . . . . . . . . . . 77 4.5.3 Describe how the gas of the preceding two problems could be brought to the desired final state by a free expansion. ... . . . . . . . . . . . . . . . . 78 4.5.4 The gasous system of Problem 4.5-1 is to be restored to its initial state. Both states have temperature 400 K... . . . . . . . . . . . . . . . . . . . 78 4.5.5 If the thermal reservoir of Problem 4.5-1 were to be replaced by a rever- sible heat source having a heat capacity of ... . . . . . . . . . . . . . . . . 78 4.5.6 A system can be taken from state A to state B (where SB = SA) either (a) directly along the adiabat S = constant, or (b) along the isochore AC... 79 4.5.7 Consider the maximum work theorem in the case in which the specified final state of the subsystem has lower... . . . . . . . . . . . . . . . . . . . 79 4.5.8 If SB SA and UB UA does this imply that the delivered work is negative ? Prove your assertion... . . . . . . . . . . . . . . . . . . . . . . 79 4.5.9 Two identical bodies each have constant and equal heat capacities (C1 = C2 = C, a constant). In addition a reversible work source is available... . 80 4.5.10 Two identical bodies eqch have heat capacities (at constant volume) of C(T) = a/T... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.5.11 Two bodies have heat capacities (at constant volume) of C1 = aT and C2 = 2bT... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.5.12 One mole of an ideal Van der Waals fluid is contained in a cylinder fitted with a piston. The initial temperature of the gas... . . . . . . . . . . . . 81 4.5.13 A system has a temperature-independent heat capacity C. The system is initially at temperature Ti and a heat reservoir... . . . . . . . . . . . . 81 4.5.14 If the temperature of the atmosphere is 5℃on a winter day and if 1 Kg of water at 90 ℃is... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.5.15 A rigid cylinder contains an internal adiabatic piston separating it into two chambers, of volume V10 and V20. ... . . . . . . . . . . . . . . . . . . 82 4.5.16 Each of three identical bodies has a temperature-independent heat capa- city C. The three bodies... . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.5.17 Each of two bodies has a heat capacity given by C = A + 2BT... . . . . . 83 4.5.18 A particular system has the equations of state T = As/v1/2 and P = T2 /4Av1/2 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.5.19 A particular type of system obeys the equations T = u b and P = avT... . 84 4.5.20 Suppose that we have a system in some initial state (we may think of a tank of hot, compressed gas as an example) and... . . . . . . . . . . . . . 84 4.5.21 An antartic meteorological station suddenly loses all of its fuel. It has N moles of an inert ideal Van der Waals fluidat... . . . . . . . . . . . . . 85 4.5.22 A geothermalpower source is available to drive an oxygen production plant. The geothermal source is simply a ... . . . . . . . . . . . . . . . . 85 4.6 COEFFICIENTS OF ENGINE, REFRIGERATOR, AND HEAT PUMP PERFORMANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.6.1 A temperature of 0.001 K is accessible in low temperature laboratories with moderate effort. If the price... . . . . . . . . . . . . . . . . . . . . . 86 4.6.2 A home is to be maintained at 70F, and the external temperature is 50F. One method of heating... . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 10
  • 11. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 4.6.3 A household refrigerator is maintained at a temperature of 35°F. Every time the door is opened, warm material... . . . . . . . . . . . . . . . . . . 86 4.6.4 Heat is extracted from a bath of liquid helium at a temperature of 4.2 K. The high-temperature reservoir is a ... . . . . . . . . . . . . . . . . . . . 86 4.6.5 Assume that a particular body has the equation of state U = NCT with NC = 10 J/K and assume that this equation... . . . . . . . . . . . . . . 87 4.6.6 One mole of a monatomic ideal gas is allowed to expand isothermally from an initial volume of 10 liter to a final... . . . . . . . . . . . . . . . . 87 4.6.7 Give a constructive solutionof Example 2 of Section 4.1. Your solution may be based on the following procedure... . . . . . . . . . . . . . . . . . 87 4.6.8 Assume that 1 mole of an ideal Van der Waals fluid is expanded isother- mally, at temperature Th, from an initial... . . . . . . . . . . . . . . . . . 88 4.6.9 Two moles of a monatomic ideal gas are to be taken from an initial state (Pi, Vi) to a final state... . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.6.10 Assume the process in Problem 4.6-9 to occur along the locus P = B/V 2 , where B = PiV 2 i . Apply the... . . . . . . . . . . . . . . . . . . . . . . . . 90 4.6.11 Assume the process in Problem 4.6-9 to occur along a straight-line locus in the T − V plane. Integrate along... . . . . . . . . . . . . . . . . . . . . 91 4.7 THE CARNOT CYCLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.7.1 Repeat the calculation of Example 5 assuming the working substanceof the auxiliary system to be 1 mole... . . . . . . . . . . . . . . . . . . . . . 91 4.7.2 Calculate the work and the heat transfers in each stage of the carnot cycle for the auxiliary system being an... . . . . . . . . . . . . . . . . . . 93 4.7.3 A primary subsystemin the initial state A is to be brought reversibly to a specified final state B. A reversible... . . . . . . . . . . . . . . . . . . 93 4.7.4 The fundamental equation of a particular fluid is UN1/2 V 1/2 = A(S−R)3 where A... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.7.5 One mole of the simple paramagnetic model systemof equation 3.66 is to be used as the auxiliary system of... . . . . . . . . . . . . . . . . . . . 94 4.7.6 Repeat Problem 4.7-4 using the rubber bandmodel of section 3.7 as the auxiliary system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.7.7 (Supplementary Problem) Repeat Problem 4.7-4 if the working subs- tance is one mole of.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.8 MEASURABILITY OF THE TEMPERATURE AND OF THE EN- TROPY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.8.1 To corroborate equation 4.22 show that ∂P ∂s T = − ∂T ∂v P ... . . . . . . . 96 4.9 OTHER CRITERIA OF ENGINE PERFORMANCE; POWER OUT- PUT AND ˝ENDOREVERSIBLE ENGINES  . . . . . . . . . . . . . . 97 4.9.1 Show that the efficiency of an endoreversible engine, maximized for power output, is always less than εCarnot... . . . . . . . . . . . . . . . . . . . . . 97 4.9.2 Suppose the conductance σh (= σc) to be such that 1 KW is transfered to the system (as heat flux) if its... . . . . . . . . . . . . . . . . . . . . . 97 4.9.3 Consider an endoreversible engine for which the high temperature reser- voir is boiling water (100℃) and... . . . . . . . . . . . . . . . . . . . . . . 97 4.9.4 Assume that one cycle of the engine of Problem 4.9-3 takes 20 s and that the condutance σh = σc = 100 W/K... . . . . . . . . . . . . . . . . . . . 98 4.10 OTHER CYCLIC PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . 98 4.10.1 Assuming that the working gas is a monatomic ideal gas, plot a T − S diagram for the Otto cycle. . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.10.2 Assuming that the working gas is a simple ideal gas (with temperature- independent heat capacities), show that the engine efficiency of the Otto cycle... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 11
  • 12. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 4.10.3 Assuming that the working gas is a simples ideal gas(with temperature- independent heat capacities), show that the engine efficiency of the Bray- ton cycle ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 4.10.4 Assuming that the working gas is a monatomic ideal gas, plot a T − S diagram of the Brayton cycle. . . . . . . . . . . . . . . . . . . . . . . . . 99 4.10.5 Assuming that the working gas is a monatomic ideal gas, plot a T − S diagram of the air-standart diesel cycle. . . . . . . . . . . . . . . . . . . . 99 5 ALTERNATIVE FORMULATIONS AND LEGENDRE TRANSFORMATI- ONS 99 5.1 THE ENERGY MINIMUM PRINCIPLE . . . . . . . . . . . . . . . . . . 99 5.1.1 Formulate a proof that the energy minimum principle implies the entropy maximum ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.1.2 An adiabatic, impermeable and fixed piston separates a cylinder into two chambers... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.2 LEGENDRE TRANSFORMATIONS . . . . . . . . . . . . . . . . . . . . . 100 5.2.1 The equation y = x2 /10 describes a parabola. ... . . . . . . . . . . . . . . 100 5.2.2 Let y = AeBx ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.3 THERMODINAMIC POTENTIALS . . . . . . . . . . . . . . . . . . . . . 101 5.3.1 Find the fundamental equation of a monatomic ideal gas in the Helmholtz representation, ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.3.2 Find the fundamental equation of the ideal van der Waals fluid (Section 3.5) in the Helmholtz representation... . . . . . . . . . . . . . . . . . . . 102 5.3.3 Find the fundamental equation of electromagnetic radiation in the Helmholtz representation... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.3.4 Justify the following recipe for obtaining a plot of F(V ) from a plot of G(P)... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.3.5 From the first acceptable fundamental equation in Problem 1.10-1 calcu- late the fundamental equation... . . . . . . . . . . . . . . . . . . . . . . . 103 5.3.6 From the second acceptable fundamental equation in Problem 1.10-1 cal- culate the... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.7 The enthalpy of a particular system is H = AS2 N−1 ln(P/P0)... . . . . . 104 5.3.8 In Chapter 15 it is shown by a statistical mechanical calculation that the fundamental equation... . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.9 Show, for the two-level system of Problem 5.3-8, that as the temperature increases from zero... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.3.10 Show that the Helmholtz potential of a mixture of simple ideal gases is the... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 5.3.11 A mixture of two monatomic ideal gases is contained in a volume V at temperature T... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.3.12 A system obeys the fundamental relation (s − s0)4 = avu2 ... . . . . . . . 106 5.3.13 For a particular system it is found that u = (3 2 )Pv and P = AvT4 ... . . . 106 5.3.14 For a particular system (of 1 mole) the quantity (v + a)f is known to be a function of... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4 GENERALIZED MASSIEU FUNCTIONS . . . . . . . . . . . . . . . . . 107 5.4.1 Find the fundamental equation of a monatomic ideal gas in the represen- tation... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.4.2 Find the fundamental equation of electromagnetic radiation (Section 3.6)...108 5.4.3 Find the fundamental equation of the ideal van der Waals fluid in the representation ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 12
  • 13. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 6 THE EXTREMUM PRINCIPLE IN THE LEGENDRE TRANSFORMED REPRESENTATIONS 109 6.2 THE HELMHOLTZ POTENTIAL . . . . . . . . . . . . . . . . . . . . . . . 109 6.2.1 Calculate the pressure on each side of the internal piston in Example 1, for ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2.2 Two ideal van der Waals fluids are contained in a cylinder, separated by an internal ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2.3 Two subsystems are contained within a cylinder and are separated by an internal piston... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.3 THE ENTHALPY: THE JOULE-THOMSOM OR ˝THROTTLING PROCESS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.3.1 A hole is opened in the wall separating two chemically identical single- component subsystems ... . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.3.2 A gas has the following equations of state ... . . . . . . . . . . . . . . . . 111 6.3.3 Show that for an ideal van der Waals fluid ... . . . . . . . . . . . . . . . . 111 6.3.4 One mole of a monatomic ideal gas is in a cylinder with a movable piston on the other ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3.5 Assume that the gas of Problem 6.3-4 is an ideal van der Waals fluid with the van der Waals... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.4 THE GIBBS POTENTIAL; CHEMICAL REACTIONS . . . . . . . . . 112 6.4.1 One half mole of H2S, 3 4 mole of H2O, 2 moles of H2, and... . . . . . . . 113 7 MAXWELL RELATIONS 113 7.2 A THERMODYNAMIC MNEMONIC DIAGRAM . . . . . . . . . . . . 113 7.2.1 In the immediate vicinity of the state T0, v0 the volume of a particular ... 113 7.2.2 For a particular system of 1 mole, in the vicinity of a particular state ... . 114 7.2.3 Show that the relation α = 1 T implies ... . . . . . . . . . . . . . . . . . . 114 7.3 A PROCEDURE FOR THE REDUCTION OF DERIVATIVES IN SINGLE-COMPONENT SYSTEMS . . . . . . . . . . . . . . . . . . . . . 114 7.3.1 Thermodynamicists sometimes refer to the first TdS equationand ... . 114 7.3.2 Show that the second equation in the preceding problem leads directly ... 115 7.3.3 Calculate (∂H/∂V )T,N in terms of the standart quantities... . . . . . . . 115 7.3.4 Reduce the derivative (∂v/∂s)P ... . . . . . . . . . . . . . . . . . . . . . . 115 7.3.5 Reduce the derivative (∂s/∂f)v ... . . . . . . . . . . . . . . . . . . . . . . 115 7.3.6 Reduce the derivative (∂s/∂f)P ... . . . . . . . . . . . . . . . . . . . . . 116 7.3.7 Reduce the derivative (∂s/∂v)h ... . . . . . . . . . . . . . . . . . . . . . . 116 7.4 SOME SIMPLE APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . 116 7.4.1 In the analysis of a Joule-Thomson experiment we may be given the initial ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.4.2 The adiabatic bulk modulus is defined by ... . . . . . . . . . . . . . . . . 117 7.4.3 Evaluate the change in temperature in an infinitesimal free expansion of ...117 7.4.4 Show that equation 7.46 can be written as ... . . . . . . . . . . . . . . . . 117 7.4.5 A 1% decrease in volume of a system is carried out adiabatically. Find ... 117 7.4.6 Two moles of an imperfect gas occupy a volume of 1 liter and are at ... . 118 7.4.7 Show that (∂cv/∂v)T = T(∂2 P/∂T2 )v and evaluate this ... . . . . . . . . 118 7.4.8 Show that ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.4.9 One mole of the system of Problem 7.4-8 is expanded isothermally ... . . 119 7.4.10 A system obeys the van der Waals equation of state. One mole ... . . . . 119 7.4.11 Two moles of O2 are initially at a pressure of 105 Pa and a temperature ...119 7.4.12 A ball bearing of mass 10g just fits in a vertical glass tube of ... . . . . . 119 7.4.13 Calculate the change in the molar internal energy in a throttling ... . . . 120 7.4.14 Assuming that a gas undergoes a free expansion and that the ... . . . . . 120 13
  • 14. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 7.4.15 One mole of an ideal van der Waals fluid is contained in a vessel ... . . . 120 7.4.16 Assuming the expansion of the ideal van der Waals fluid of ... . . . . . . 121 7.4.17 It is observed that an adiabatic decrease in molar volume of 1% ... . . . . 121 7.4.18 A cylinder is fitted with a piston, and the cylinder contains helium ... . . 121 7.4.19 The cylinder in Problem 7.4-18 is initially filled with 1 10 mole of ... . . . . 122 7.4.20 A system is composed of I mole of a particular substance. In the ... . . . 122 7.4.21 A system is composed of I mole of a particular substance. Two ... . . . . 123 7.4.22 The constant-volume heat capacity of a particular simple system is ... . . 124 7.4.23 A system is expanded along a straight line in the P − v plane, from ... . 124 7.4.24 A nonideal gas undergoes a throttling process (i.e., a Joule-Thomson expansion) ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.5 GENERALIZATIONS: MAGNETIC SYSTEMS . . . . . . . . . . . . . . 126 7.5.1 Calculate the magnetic Gibbs potentialU(T, Be) for the paramagnetic ...126 7.5.2 Repeat Problem 7.5-1 for the system with the fundamental equation given ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 7.5.3 Calculate (∂I/∂T)s for the paramagnetic model of equation 3.66. ... . . . 126 7.5.4 Show that ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8 STABILITY OF THERMODYNAMIC SYSTEMS 127 8.1 INTRINSIC STABILITY OF THERMODYNAMIC SYSTEMS . . . . 127 8.1.1 To establish the inequality 8.6 expand the left-hand side of 8.5 in a Taylor...127 8.1.2 Consider the fundamental equation of a monatomic ideal gas and show... 128 8.2 STABILITY CONDITIONS FOR THERMODYNAMIC POTENTIALS128 8.2.1 a) Show that in the region X 0 the function Y = Xn is concave... . . . 128 8.2.2 Prove that... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 8.2.3 Show that stability requires equations 8.15 and... . . . . . . . . . . . . . 129 8.2.4 (Supplementary Problem) Of the five nominally-acceptable funda- mental.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 8.3 PHYSICAL CONSEQUENCES OF STABILITY . . . . . . . . . . . . . 130 8.3.1 Explain on intuitive grounds why cP ≥ cv and κT ≥ κS ... . . . . . . . . . 130 8.3.2 Show that the fundamental equation of a monatomic ideal gas satisfies the... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8.3.3 Show that the van der Waals equation of state does not satisfy the criteria...131 8.3.4 (Supplementary Problem)Show that the stability conditions 8.20-8.21 imply... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 8.3.5 (Supplementary Problem) An isochore and an adiabat intersect at... . 132 8.5 THE LE CHATELIER-BRAUN PRINCIPLE . . . . . . . . . . . . . . . . 132 8.5.1 A system is in equilibrium with its environment at a common temperature...132 9 FIRST-ORDER PHASE TRANSITIONS 133 9.1 FIRST-ORDER PHASE TRANSITIONS IN SINGLE COMPONENT SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 9.1.1 The slopes os all three curves in Fig. 9.5 are... . . . . . . . . . . . . . . . 133 9.2 THE DISCONTINUITY IN THE ENTROPY - LATENT HEAT . . . 133 9.2.1 In a particular solid-liquid phase transition the... . . . . . . . . . . . . . 133 9.2.2 Discuss the equilibrium that eventually results if a solid is... . . . . . . . 134 9.3 THE SLOPE OF COEXISTENCE CURVES; THE CLAYPEYRON EQUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 9.3.1 A particular liquid boils at 127 °C at a pressure of 800 mmHg ... . . . . . 134 9.3.2 A long vertical column is closed at the bottom and open the top ... . . . 134 9.3.3 It is found that a certain boils at a temperature of 95 °C at the top ... . . 135 9.3.4 Two weights are hung on the ends of a wire, which passes ... . . . . . . . 136 14
  • 15. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 9.3.5 In the vicinity of the triple point the vapor presure of liquid ammonia... . 136 9.3.6 Let x be the mole fraction of solid phase in a solid-liquid two-phase system...137 9.3.7 A particular material has a latent heat of vaporization of... . . . . . . . . 138 9.3.8 Draw the phase diagram, in the Be − T plane, fora simple ... . . . . . . . 138 9.3.9 A system has cohexistence curves similar to those shown ... . . . . . . . . 139 9.4 UNSTABLE ISOTHERMS AND FIRST-ORDER PHASE TRANSI- TIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 9.4.1 Show that the difference in molar volumes across a coexistente curve is ... 139 9.4.2 Derive the expression for vc, Pc and Tc given in Example 1 ... . . . . . . . 140 9.4.3 Using the van der Waals constants for H2O as given in table 3.1... . . . . 140 9.4.4 Show that for sufficiently low temperature the van der Waals isotherm... 141 9.4.5 Is the fundamental equation of an ideal van der Waals fluid... . . . . . . . 141 9.4.6 Explicitly derive the relationship among ṽg, ṽl, as given ... . . . . . . . . . 141 9.4.7 A particular substance satisfies yhe van der Waals equation of state... . . 142 9.4.8 Using the two points as T̃ = 0, 95 and T̃ = 1 on... . . . . . . . . . . . . . 142 9.4.9 Plot the van der Waals isotherm, in reduced variables... . . . . . . . . . . 143 9.4.10 Repeat problem 9.4-8 in the range... . . . . . . . . . . . . . . . . . . . . 143 9.4.11 Two mols of a van der Waals fluid are maintained at ... . . . . . . . . . . 143 9.6 FIRST-OERDER PHASE TRANSITIONS IN MULTICOMPONENT SYSTEMS - GIBBS PHASE RULE . . . . . . . . . . . . . . . . . . . . . . 144 9.6.1 In a particular system, solute A and solute B are each dissolved... . . . . 144 9.6.2 If g, the molar Gibbs function, is a convex of x1, x2 ... . . . . . . . . . . . 145 9.6.3 Show that the conditions of stability in a multicomponent system ... . . . 145 9.7 PHASE DIAGRAMS FOR BINARY SYSTEMS . . . . . . . . . . . . . . 146 9.7.1 In a particular system, solute A and solute B are each dissolved... . . . . 146 9.7.2 Show that if a small fraction (−dN/N) of the material is boiled off ... . . 146 9.7.3 The phase diagram of a solution of A in B, at a pressure of 1 atm ... . . . 147 10 CRITICAL PHENOMENA 148 10.6 SCALING AND UNIVERSALITY . . . . . . . . . . . . . . . . . . . . . . 148 10.6.1 Show that the following identities hold among ... . . . . . . . . . . . . . . 148 10.6.2 Are classical values of the critical exponents consistent... . . . . . . . . . 148 11 THE NERNST POSTULATE 149 11.1 NERNST’S POSTULATE, AND THE PRINCIPLE OF THOMSEN AND BERTHELOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 11.1.1 Does the two-level system of problem 5.3-8 satisfy ... . . . . . . . . . . . 149 13 PROPERTIES OF MATERIALS 149 13.2 CHEMICAL REACTIONS IN IDEAL GASES . . . . . . . . . . . . . . 149 13.2.1 How is the equilibrium constant of the reaction in the Example ... . . . . 149 13.2.2 What are the mole fractions of the reaction in the Example ... . . . . . . 149 13.2.3 In the Example, what would the final mole fractions ... . . . . . . . . . . 150 13.2.4 In an ideal gas reaction an increase in presure at constant temperature ... 150 13.2.5 In an ideal gas reaction an increase in presure at constant temperature ... 151 13.2.6 At temperatures above ∼ 500 K phosphorus pentachloride dissociates ... 151 13.2.7 A system containing 0.02 Kg of CO and 0.02 Kg of O2... . . . . . . . . . 152 13.2.8 Apply equation 13.8 to a single-component general ideal gas ... . . . . . . 153 13.2.9 An experimenter finds that water vapor is 0.53% dissociated... . . . . . . 153 13.3 SMALL DEVIATIONS FROM ˝IDEALITY -THE VIRIAL EXPAN- SION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 13.3.1 In a thermostatistical model in which each atom is treated as ... . . . . . 153 13.3.2 Expand the mechanical equation of state of Van de Waals gas ... . . . . . 154 15
  • 16. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 13.3.3 Show that the second virial coefficient of gaseous nitrogen (Fig. 13.2) ... . 154 13.3.4 The simplest analytic form suggested by the qualitative shape of B(T) ... 154 13.3.5 A porous plugexperiment is carried out by installing a porous plug in ...155 13.5 DILUTE SOLUTIONS: OSMOTIC PRESSURE AND VAPOR PRES- SURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 13.5.1 Assuming the latent heat of vaporization of a fluid to be constant ... . . . 156 13.5.2 One hundred grams of a particular solute are dissolved in one ... . . . . . 156 13.5.3 If 20 grams of sugar (C12H22O11), are dissolved in 250 cm3 of water ... . 156 15 STATISTICAL MECHANICS IN THE ENTROPY REPRESENTATION: THE MICROCANONICAL FORMALISM 157 15.1 PHYSICAL SIGNIFICANCE OF THE ENTROPY FOR CLOSED SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 15.1.1 A system is composed of two harmonic oscillators each of natural fre- quency ω0 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 15.1.2 A system is composed of two harmonic oscillators of natural frequencies ω0 e 2ω0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 15.2 THE EINSTEIN MODEL OF A CRYSTALLINE SOLID . . . . . . . . 158 15.2.1 Calculate the molar heat capacity of the Einstein model by equation 15.7. 158 15.2.2 Obtain an equation for the mean quantum number n̄ of an Einstein ... . . 158 15.2.3 Assume that the Einstein frequency ω0 for a particular crystal depends upon the molar volume... . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 15.3 THE TWO-STATE SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . 160 15.3.1 In the two-state model system of this section suppose the excited state energy ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 15.4 A POLYMER MODEL-THE RUBBER BAND REVISITED . . . . . . 160 15.4.1 Is the sign correct in equation 15.19 ? Explain . . . . . . . . . . . . . . 160 15.4.2 Eliminate U/ε between equations 15.23 and 15.24 and show that the formal solution is equation 15.25... . . . . . . . . . . . . . . . . . . . . . 160 15.4.3 A rubber band consisting of n polymer chains is stretched from zero ... . 161 15.4.4 Calculate the heat capacity at constant length for a rubber bandconsisting of n polymer... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 15.4.5 Calculate the heat capacity at constant length for a rubber bandconsisting of n polymer... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 15.5 COUNTING TECHNIQUES AND THEIR CIRCUMVENTION; HIGH DIMENSIONALITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 15.5.1 To stablish equation 15.29 le Ωn be the hyperplane in n dimensions. ... . 162 15.5.2 Recalling that lim x→0 (1 + x)1/x = e... . . . . . . . . . . . . . . . . . . . . . 162 15.5.3 Calculate the fraction of the hypervolume between the radii 0.9r and r ... 162 16 THE CANONICAL FORMALISM: STATISTICAL MECHANICS IN HELMHOLTZ REPRESENTATION 162 16.1 THE PROBABILITY DISTRIBUTION . . . . . . . . . . . . . . . . . . . 162 16.1.1 Show the equation 16.13 is equivalent to U = F + TS... . . . . . . . . . . 162 16.1.2 From the canonical algorithm expressed by equations... . . . . . . . . . . 162 16.1.3 Show that S/kB = β2 ∂F/∂β and thereby express S... . . . . . . . . . . . 163 16.1.4 Show that cv = −β(∂s/∂β)v and thereby express cv in ... . . . . . . . . . 163 16.2 ADDITIVE ENERGIES AND FACTORIZABILITY OF THE PAR- TITION SUM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 16.2.1 Consider a system of three particles, each different. The first ... . . . . . 163 16.2.2 Show that for the two level system the Helmholtz potential calculated in...163 16.2.3 Is the energy additive over the particles of a gas if the particles are ... . . 164 16
  • 17. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 16.2.4 Calculate the heat capacity per mode from the fundamental equation ... . 164 16.2.5 Calculate the energy per mode from equation 16.24. What is the leading...164 16.2.6 A binary alloy is composed of ÑA atoms of type A and ÑB... . . . . . . . 164 16.2.7 A paramagnetic salt is composed of 1 mole of noninteracting ions, each ... 165 16.3 INTERNAL MODES IS A GAS . . . . . . . . . . . . . . . . . . . . . . . . 165 16.3.1 Calculate the average rotational energy per molecule and the rotational ...165 16.3.2 Calculate the rotational contribution of the Helmholtz potential per ... . 166 16.3.3 A particular heteronuclear diatomic gas has one vibrational mode, of ... . 166 16.4 PROBABILITIES IN FACTORIZABLE SYSTEMS . . . . . . . . . . . . 166 16.4.1 The probability that the ith element is in its jth orbital... . . . . . . . . 166 16.4.2 Demonstrate the equivalence of the fundamental equations found in... . . 166 16.5 STATISTICAL MECHANICS OF SMALL SYSTEMS: ENSEMBLES 167 16.5.1 The energies of the orbital states of a given molecule ar such that ... . . . 167 16.5.2 A hydrogen atim in equilibrium with a radiation field at temperature ... . 167 16.5.3 A small system has two normal modes of vibration, with natural... . . . . 167 16.5.4 DNA, the genetic molecule deoxyribonucleic acid, exists as a ... . . . . . 168 16.5.5 Calculate the probability that a harmonic oscillator of natural ... . . . . . 168 16.5.6 A small system has two energy levels, of energies 0 and ε... . . . . . . . . 169 16.5.7 Two simple harmonic oscillators, each of natural frequency ω... . . . . . . 169 16.6 DENSITY OF STATES AND DENSITY OF ORBITAL STATES . . . 170 16.6.1 Show that the number of orbital states in the energy interval... . . . . . . 170 16.6.2 For the particles of a gas ε = p2 /2m = (~2 /2m)k2 ... . . . . . . . . . . . . 170 16.6.3 For excitations obeying the spectral relation ω = Akn , n 0... . . . . . . 170 16.7 THE DEBYE MODEL OF NONMETALLIC CRYSTALS . . . . . . . . 170 16.7.1 Calculate the energy of a cristal in the Debye approximation. Show ... . . 170 16.7.2 Calculate the entropy of a cristal in the Debye approximation, and... . . 171 16.7.3 The frequency ω(λ) of the vibrational mode of wave ... . . . . . . . . . . 171 16.8 ELECTROMAGNETIC RADIATION . . . . . . . . . . . . . . . . . . . . 171 16.8.1 Show that including the zero-point energies˝of the electromagnetic... . . 171 16.8.2 Show that the energy per unit volume of electromagnetic radiation... . . 172 16.8.3 Evaluating the number of photons per unit volume in the frequency... . . 172 16.8.4 Since radiation within a cavity propagates isotropically with velocity c... 172 16.10THE CLASSICAL IDEAL GAS . . . . . . . . . . . . . . . . . . . . . . . . 172 16.10.1Show that the calculation of Z = zÑ , with z given by equation... . . . . . 172 16.10.2Show that the fundamental equations of a “multicomponent simple gas”... 172 16.10.3The factors (1/Ñ1!)(1/Ñ2!) in equation 16.74 give and additive ... . . . . 173 16.10.4Consider a particle of mass m in a cubic container of volume V... . . . . 173 16.10.5A single particle is contained in a vessel of volume 2V which... . . . . . . 173 17 ENTROPY AND DISORDER: GENERALIZED CANONICAL FORMU- LATIONS 174 17.1 ENTROPY AS A MEASURE OF DISORDER . . . . . . . . . . . . . . . 174 17.1.1 Consider the quantity x ln x in the limit x → 0.Show... . . . . . . . . . . 174 17.1.2 Prove that the disorder, defined in equation 17.6, is nonnegative... . . . . 174 17.1.3 Prove that the quantity −k P j fj is maximum if all the... . . . . . . . . . 174 17.2 DISTRIBUTIONS OF MAXIMAL DISORDER . . . . . . . . . . . . . . 175 17.2.1 Show that the maximum value of disorder, as calculate in this section... . 175 17.2.2 Given the identification of the disorder as the entropy, and of ... . . . . . 175 17.3 THE GRAND CANONICAL FORMALISM . . . . . . . . . . . . . . . . 175 17.3.1 Calculate (∂ log Z/∂β)βµ directly from equation 17.27... . . . . . . . . . . 175 17.3.2 A system is contained in a cylinder with diathermal impermeable walls... 175 17.3.3 For the surface adsorption model of the preceding example, investigate... 175 17
  • 18. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 17.3.4 Suppose the adsorption model to be augmented by assuming that two... . 176 17.3.5 Calculate the fundamental equation of the polymer model of section ... . 177 17.3.6 A system contains Ñ sites and Ñ electrons. At a given site... . . . . . . . 177 17.3.7 Carbon monoxide molecules (CO) can be adsorbed at specific sites on a solid... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 18 QUANTUM FLUIDS 178 18.1 QUANTUM PARTICLES: A “FERMION PRE-GAS MODEL” . . . . 178 18.1.1 Obtain the mean number of particles in the fermion pre-gras model... . . 178 18.1.2 The entropy of a system is given by S = −kB P j fj, where fj... . . . . . 178 18.1.3 Apply equation 17.27 for U to the fundamental equation of the... . . . . 179 18.1.4 Show that df/dε = −β/4 at ε = µ. With this result ... . . . . . . . . . . 179 18.1.5 Show that Fig. 17.2 (of f(ε, T) as a function of ε) is ... . . . . . . . . . . 179 18.1.6 Suppose f(ε, T) is to be approximated as a function of... . . . . . . . . . 179 18.2 THE IDEAL FERMI FLUID . . . . . . . . . . . . . . . . . . . . . . . . . . 180 18.2.1 Prove equations c, g, h, i and j of table 18.1 (for fermions only)... . . . . 180 18.3 THE CLASSICAL LIMIT AND THE QUANTUM CRITERION . . . 180 18.3.1 Calculate the definite integrals appearing in equations 18.25 and... . . . . 180 18.3.2 Validate the interpretation of λT as the “thermall wavelength”by... . . . . 180 18.4 THE STRONG QUANTUM REGIME: ELECTRONS IN A METAL . 180 18.4.1 Show that equation 18.32 can be interpreted as µ0 = ~2 k2 f where... . . . . 180 18.4.2 Derive equation 18.35 by the following sequence of operations: ... . . . . 180 18.6 NONCONSERVED IDEAL BOSON FLUIDS: ELECTROMAGNE- TIC RADIATION REVISITED . . . . . . . . . . . . . . . . . . . . . . . . 181 18.6.1 Calculate the number of photons in the lowest orbital state... . . . . . . . 181 18.6.2 (a) In applying the grand canonical formalismo...(b) Denoting the ... . . 181 18.7 BOSE CONDENSATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 18.7.1 Show that equations 18.56 and 18.58, for Ñe and U, respectively... . . . . 181 18.7.2 Show that F3/2(1), F5/2(1) and F0 5/2(1) are all finite... . . . . . . . . . . . 181 18.7.3 Show that the explicit inclusion of the orbital ground state... . . . . . . . 182 19 FLUCTUATIONS 182 19.2 MOMENTS OF THE ENERGY FLUCTUATIONS . . . . . . . . . . . . 182 19.2.1 A molecule has a vibrational mode of natural frequency ω. The ... . . . . 182 19.2.2 Calculate the third central moment for the molecule in the preceding problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 19.2.3 Calculate the mean square deviation of the energy contained within a... . 182 19.3 GENERAL MOMENTS AND CORRELATION MOMENTS . . . . . . 183 19.3.1 An ideal gas is in contact with a thermal and a pressure reservoir... . . . 183 19.3.2 Repeat Problem 19.3-1 for a van der Waals gas (recall Problem 3.8-3). . 183 19.3.3 A conceptual subsystem of N moles in a single-component simple... . . . 183 19.3.4 What is the order of magnitude of the mean square deviation of the... . . 184 19.3.5 Consider a small volume V within a two-component simple system... . . . 184 19.3.6 Consider a small quantity of matter consisting of a fixed number N... . . 184 19.3.7 Show that the density fluctuations of an ideal gas are given by... . . . . . 185 19.3.8 Show that the relative root mean square deviation in density of ... . . . . 185 19.3.9 The dielectric constant ε of a fluid varies with... . . . . . . . . . . . . . . 185 19.3.10If light of intensity I0 is incident on a region of volume V, which... . . . . 185 19.3.11The classical theory of fluctuations, due to Einstein, proceeds from... . . 186 18
  • 19. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 20 VARIATIONAL PROPERTIES, PERTURBATION EXPANSIONS, AND MEAN FIELD THEORY 186 20.1 THE BOGOLIUBOV VARIATIONAL THEOREM . . . . . . . . . . . . 186 20.1.1 Derive equation (h) of Example 1, fisrt showing that for a harmonic... . . 186 20.1.2 Solve the quartic potential problem of Example 2 assuming the... . . . . 186 20.1.3 Complete Example 2 by writing the Helmholtz potential F(T, α)... . . . . 187 20.1.4 Consider a particle in a quadratic potential V (x) = ax2 /2a2 . Despite... . 187 20.2 MEAN FIELD THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 20.2.1 Formulate the exact solution of the two-particle Ising model... . . . . . . 188 20.2.2 Formulate mean field theory for the three state Ising model... . . . . . . . 188 20.2.3 For the Heisenberg ferromagntic model the Hamiltonian is... . . . . . . . 189 20.2.4 A metallic surface is covered by a monomolecular layer of Ñ ... . . . . . . 189 20.2.5 Solve the preceding problem if the molecules can exist in three steric... . 190 20.2.6 In the classic Heisenberg model each spin can take any orientation... . . . 191 20.2.7 2Ñ two-valued Ising spins are arranged sequentially on a circle... . . . . . 191 20.2.8 Consider a sequence of 2Ñ alternating A sites and B sites... . . . . . . . 192 21 POSTLUDE: SYMMETRY AND THE CONCEPTUAL FOUNDATIONS OF THERMOSTATISTICS 192 21.1 STATISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 21.1.1 The probability of throwing a “seven ”on two dice can be viewed as ... . . 192 21.1.2 Associate the value +1 with one side of a coin (head) and... . . . . . . . 192 21.5 BROKEN SYMMETRY AND GOLDSTONE’S THEOREM . . . . . . 192 21.5.1 Draw a longitudinal vibrational mode in a one-dimensional system... . . . 192 19
  • 20. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 1 THE PROBLEM AND THE POSTULATES [SUMÁRIO] 1.3 THE COMPOSITION OF THERMODYNAMIC SYSTEMS [SUMÁRIO] 1.3.1 One tenth of a kilogram of NaCl and 0.15 kg of sugar (C12H22O11)... [SUMÁRIO] Solução: Os pesos moleculares são : Na : 0, 023 kg; Cl : 0, 035 kg; C : 0, 012 kg; O : 0, 016 kg; Então temos que NaCl : 0, 058 kg C12H12O11 : 0, 34 kg Temos que o número de mols dos três componentes do sistema é : 0, 1 kg NaCl = 1, 7 mols 0, 15 kg C12H12O11 = 0, 44 mol 0, 5 kg H2O = 28 mol ∴ Total de mol = 30 As frações molares são : Fração molar de NaCl = 0, 057 Fração molar de C12H12O11 = 0, 015 Fração molar de H2O = 0, 93 ∴ V olume molar = 0, 55 × 10−3 m3 30 mol = 18 × 10−6 m3 /mol 1.3.2 Naturally occurring boron has an atomic mass of 10.811 g... [SUMÁRIO] Solução: X × 10, 0129 + (1 − X) × 11, 0093 = 10, 811 Assim a fração molar de 10 B é X = 0, 199 1.3.3 Twenty cubic centimeters each of ethyl alcohol... [SUMÁRIO] Solução: Álcool etílico, C2H5OH : densidade = 0, 79 g/cm3 Álcool metílico CH3OH : densidade = 0, 81 g/cm3 Água H2O : densidade = 1 g/cm3 NC2H5OH = (0, 79 g/cm3 ) × (20 cm3 )/(46 g/mol) = 0, 34 mol NCH3OH = (0, 81 g/cm3 ) × (20 cm3 )/(32 g/mol) = 0, 51 mol NH2O = (1 g/cm3 ) × (20 cm3 )/(18 g/mol) = 1, 11 mol O número de mols é ∴ N = NC2H5OH + NCH3OH + NH2O = 1, 96 mol 20
  • 21. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs e as frações molares dos componentes do sistema são XC2H5OH = 0, 34 mol 1, 96 mol = 0, 17 XCH3OH = 0, 51 mol 1, 96 mol = 0, 26 XH2O = 1, 11 mol 1, 96 mol = 0, 57 1.3.4 A 0.01 kg sample is composed of 50 molecular percent H2... [SUMÁRIO] Solução: Seja N o número de mols na amostra inicialmente. Portanto massa do H2 = 0, 5N × 2 × 10−3 kg = 10−3 N kg massa do HD = 0, 3N × 2 × 10−3 kg = 0, 9 × 10−3 N kg massa do D2 = 0, 2N × 4 × 10−3 kg = 0, 8 × 10−3 N kg Massa total = 0, 01 kg = (1 + 0, 9 + 0, 8) × 10−3 N kg ∴ N = 10−2 2, 7 × 10−3 = 3, 7 mol Número inicial de mols de D2 = 0, 2 × 3, 7 = 0, 74 mol Seja N0 o número de mols de D2 a ser adicionado. Então 0, 3 = 0, 74 mol + N0 3, 7 mol + N0 N0 = 0, 53mol ∴ Massa de D2 = 0, 53 × 4 × 10−3 kg = 2, 1 × 10−3 kg 1.3.5 A solution of sugar (C12H22O11) in water is 20% sugar by weight... [SUMÁRIO] Solução: Massa da Água(water) = M(water) = 0, 8M(solution) Massa de açúcar(sugar) = M(sugar) = 0, 2M(Solution) N(water) = 0, 8M(solution) 0, 018 = 44, 44M(solution) N(sugar) = 0, 2M(solution) 0, 34 = 0, 588M(solution) ∴ Xsugar = N(sugar) N(sugar) + N(water) = 0, 588M(solution) 0, 588M(solution) + 44, 44M(solution) = 0, 013 Ou ∴ Xsugar = 1, 3% 21
  • 22. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 1.3.6 An aqueous solution of an unidentified solute has a total mass... [SUMÁRIO] Solução: Seja Ms a massa molecular (peso molecular) do soluto e N o número total de mols na amostra original ∴ (0, 1N) × Ms + (0, 9N) × 18 × 10−3 = 0, 1029 × 10−3 kg Depois de adicionar 2 mols (= 36 × 10−3 kg) de H2O : 0, 1N N + 2 = 0, 07 ou N = 4, 67 Onde Ms = 0, 0584 kg Consequentemente NaCl é um palpite razoável. 1.3.7 One tenth of a kg of an aqueous solution of HCl is poured... [SUMÁRIO] Solução: Massa molar de HCl = 1, 01 + 35, 45 = 36, 46 Massa molar de NaOH = 22, 99 + 16 + 1, 01 = 40, 00 Massa molar de H2O = 2, 02 + 16 = 18, 02 Massa molar de NaCl = 22, 99 + 35, 45 = 58, 44 Solução ácida: Massa= 0, 9N×MH2O+0, 1N×MHCl = (0, 9×18, 02+0, 1×36, 46)N×10−3 = 0, 1 kg N = 5, 034 mol ∴ N0 H2O = 0, 9N = 4, 53 mol N0 HCl = 0, 1N = 0, 50 mol Solução básica: 0, 2 kg = (0, 75 × 18, 02 + 0, 25 × 40) × 10−3 = 23, 52N0 N0 = 8, 503 mol ∴ N0 H2O = 3 4 × 8, 503 = 6, 38 mol N0 NaOH = 0, 25N0 = 2, 13 mol Então NaOH + HCl −→ NaCl + H2O O HCl é a quantidade limite, e apenas 0, 5 mol de NaOH podem reagir. A composição final é NaCl : 0, 5 mol NaOH : 1, 63 mol HCl : 0 mol H2O : 4, 53 + 6, 38 + 0, 5 = 11, 41 mol O número total de mols é = 13, 54, que está de acordo com o número original (Note que a reação química preserva o número total de mols). Então XNaCl = 0, 04 ; XNaOH = 0, 12 ; XH2O = 0, 84 22
  • 23. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 1.8 QUANTITATIVE DEFINITION OF HEAT-UNITS [SUMÁRIO] 1.8.1 For the system considered in Example 1, calculate... [SUMÁRIO] Solução: Denote este estado por E; Note que é a meio caminho entre os estados B e D. Note também que ao longo da linha de V constante, a energia é diretamente proporcional a P. Isto é dU = 3 2 V dP (V constante) Consequentemente UE = 1 2 (UD + UB) = 1 2 (967, 5 − 112, 5) Tomando UA = 0 temos UE = 427, 5J 1.8.2 Calculate the heat transferred to the system considered in... [SUMÁRIO] Solução: 10⁵ 5x10⁴ 10⁴ V P 10⁻³ 8x10⁻³ A E W = − R Pdv = −(Área sombreada) A área sombreada é um trapézio. Áreatrapézio = B + b 2 × h W=−7, 5 × 104 × 7 × 10−3 = −525J UE = 427, 5J (Do problema 1.8-1) UE − UA = WA→E + QA→E 427, 5 = −525 + QA→E ∴ QA→E = 952, 5J 23
  • 24. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 1.8.3 For a particular gaseous system it has been determined that... [SUMÁRIO] Solução: P(MPa) V(m³) 0,01 0,03 0,5 0,2 A B C Faça UA ≡ 0, Então U = 2, 5PV − 5 × 103 J ∴ UB = 104 J, UC = 7, 5 × 103 J WAB = − R B A PdV = −P∆V = −4 × 103 Joules e UB − UA = WAB + QAB ∴ QAB = 14 × 103 J (Um fluxo de energia na forma de calor entra no sistema) de forma similar : WBC = − R C B PdV = área abaixo da linha BC = 7 × 103 J QBC = UC − UB − WBC = −2, 5 × 103 − 7 × 103 = −9, 5 × 103 Joules Finalmente WCA = 0 UA−UC = QCA+WCA, QCA = −7, 5×103 J (Fluxo de energia na forma de calor sai do sistema) Para checar, note que o trabalho realizado no ciclo é WAB +WBC +WCA = 3×103 J e a energia na forma de calor que entrou no ciclo é 14 × 103 J − 9, 5 × 103 J − 7, 5 × 103 J = −3 × 103 J. A Soma do trabalho e da energia na forma de calor transferidos é zero, exatamente como deveria ser. Agora nos resta calcular Q e W para o processo de A para B ao longo da parábola P = 105 + 109 (V − 0, 02)2 P(MPa) V(m³) 0,01 0,03 0,2 A B 0,1 WAB = − R 0,03 0,01 PdV = − R 0,03 0,01 [105 + 109 (V − 0, 02)2 ]dV WAB = − 105 (VB − VA) + 109 (V − 0, 02)3 3 0,03 0,01 Então WAB = −2, 7 × 103 J Q = ∆U − W = 104 + 2, 7 × 103 ∴ Q = 12, 7 × 103 Joules 24
  • 25. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 1.8.4 For the system of Problem 1.8-3 find the equation of the adiabats... [SUMÁRIO] Solução: U = 2, 5PV + const. Então dU = 2, 5PdV + 2, 5V dP Mas ao longo de uma adiabata, temos que dU = −PdV ∴ 2, 5PdV + 2, 5V dP = −PdV , assim 7 dV V + 5 dP P = 0 Integrando, ficamos com 7 ln V V0 + 5 ln P P0 = 0 ∴ V 7 P5 = V 7 0 P5 0 1.8.5 The energy of a particular system, of one mole, is given by ... [SUMÁRIO] Solução: dU = 2APV dP + AP2 dV = −PdV ∴ A dP 1 + AP = − 1 2 dV V ln(1 + AP) = − 1 2 ln V + const. (1 + AP)V 1/2 = const Obs : Para onde foi o A que multiplica dP 1 + AP na segunda linha? Figura 1: reprodução da solução original, feita pelo próprio Callen, onde ele questiona sobre o “A” 25
  • 26. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 1.8.6 For a particular system it is found that if the volume is kept ... [SUMÁRIO] Solução: P V P' P0 V0 (P',V0) (P0,V0) (P,V) Primeiro, encontre a energia ao longo da isocórica V = V0. Ao longo da isocórica nenhum trabalho é realizado, portanto : U(P0 , V0) = U0 + Q0 = U0 + A(P0 − P0) Agora considere o ponto (P, V ). A adiabata através desse ponto intercepta a isocórica V0 em P0 = P(V/V0)γ . Consequentemente U(P, V ) − U(P0 , V0) = − R V V0 P00 dV 00 = −P R V V0 (V/V 00 )γ dV 00 = −PV γ [V 1−γ − V 1−γ 0 ] 1 − γ = − P 1 − γ V − V0 V V0 γ ou U(P, V ) = U0 + A P V V0 γ − P0 + PV γ − 1 1 − V V0 γ−1 # 1.8.7 Two moles of a particular single-component system are found... [SUMÁRIO] Solução: Resposta U = 2 N APV 2 26
  • 27. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 1.8.8 (Supplementary Problem) A particular single-component system of one mole has adiabats of the form P5/3 = constant (that is, the pressure and the volume obey the given relationship when when the system is enclosed by an adiabatic, impermeable wall). The system is fitter with a stirrer, as in the example of this section. If the system is adiabatically insulated and main- tained at constant volume, and if an amount of work dW (= torque × dθ) is transmitted (by an external torque turning the stirrer through an angle dθ), the pressure of the system is observed to increase by an amount dP, where (AV + BV5/3 )dP = d̄W (torque × dθ) Find the internal energy as a function of P, V and N. [SUMÁRIO] Solução: P v P' P0 v0 (P',v0) (P0,v0) (P,v) Primeiro encontramos a escala de energia ao longo da isocórica v = v0: u = u0 + (Av0 + Bv 5/3 0 ) × (P − P0) Agora escolhemos um ponto arbitrário P1, v1. A adiabata através desse ponto intercepta a isocórica v = v0 no ponto P0 = P1 v1 v0 5/3 . O trabalho realizado no processo de levar o sistema de (P0 , v0) para (P1, v1) ao longo da adiabata é : W = − Z v1 v0 Pdv = − Z v1 v0 P1 v1 v 5/3 dv = − 3 2 P1v1 v1 v0 2/3 − 1 # então u(P1, v1) = u(P0 , v0) − 3 2 P1v1 v1 v0 2/3 − 1 # E portanto u(P1, v1) = u0 + (Av0 + Bv 5/3 0 ) P1 v1 v0 5/3 − P0 # − 3 2 P1v1 v1 v0 2/3 − 1 # Então, para um sistema de N moles (e também retirando os subscritos em P1 e v1): U(P, V, N) = Nu0 + N(Av0 + Bv 5/3 0 ) P v v0 5/3 − P0 # − 3 2 NPv v v0 2/3 − 1 # 27
  • 28. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 1.10 THE ENTROPY MAXIMUM POSTULATES [SUMÁRIO] 1.10.1 The following ten equations are purported to be fundamental... [SUMÁRIO] Solução: Precisamos encontrar as 5 equações supostamente fundamentais que são fisicamente inadimis- síveis e indicar quais postulados são violados por cada uma. Fisicamente aceitável (a) S = R2 v0θ 1/3 (NV U)1/3 Não viola nenhum postulado. Viola algum postulado (b) S = R θ2 1/3 NU V 2/3 Não é homogênea de primeira ordem. Fisicamente aceitável (c) S = R θ 1/2 NU + RθV 2 v2 0 1/2 Não viola nenhum postulado. Viola algum postulado (d) S = R2 θ v3 0 V 3 /NU Não é uma função monotonicamente crescente e também viola o postulado de Nernst. Fisicamente aceitável (e) S = R3 v0θ2 1/5 [N2 V U2 ]1/5 Não viola nenhum postulado. Viola algum postulado (f) S = NRln(UV/N2 Rθv0) Viola o postulado de Nernst. Fisicamente aceitável (g) S = R θ 1/2 [NU]1/2 exp(−V 2 /2N2 v2 0) Não viola nenhum postulado Viola algum postulado (h) S = R θ 1/2 (NU)1/2 exp − UV NRθv0 Não é homogênea de primeira ordem nem uma função monotonicamente crescente de U 28
  • 29. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs Fisicamente aceitável (i) U = v0θ R S2 V exp(S/NR) Não viola nenhum postulado. Viola algum postulado (j) U = Rθ v0 NV 1 + S NR exp(−S/NR) Não é homogênea de primeira ordem nem uma função monotonicamente crescente de U Obs: O postulado de Nernst ao qual o autor se refere é o postulado reformulado por Planck, e que o Callen chama de Postulado IV. Discussões mais detalhadas a respeito desse postulado podem ser vistas na página 30 do capítulo 1 e no capítulo 11 do livro. Postulado IV.A entropia de qualquer sistema se anula no estado para o qual (∂U/∂S)V,N1,...,Nr = 0 (isto é, no zero de temperatura) 1.10.2 For each of the five physically acceptable fundamental equations... [SUMÁRIO] Solução: (a) U = 1 NV v0θ R2 S3 (c) U = θS2 NR − RθV 2 Nv2 0 (e) U = N−1 V −1/2 v0θ R3 1/2 S5/2 (g) U = θS2 NR exp V 2 N2v2 0 (i) U = v0θ R S2 V exp S NR 29
  • 30. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 1.10.3 The fundamental equation of a system A is S = R2 v0θ 1/3 (NVU)1/3 and similarly... [SUMÁRIO] Solução: SA = R2 v0θ 1/3 (NAVAUA)1/3 VA = 9 × 10−6 m3 , NA = 3 SB = R2 v0θ 1/3 (NBVBUB)1/3 VB = 4 × 10−6 m3 , NB = 2 UA + UB = 80J Faça S0 = S R2v0θ ∴ S0 A = 3 × 10−2 U 1/3 A e S0 B = 2 × 10−2 U 1/3 B S0 = S0 A + S0 B = 3 × 801/3 × 10−2 × ξ1/3 + 2 3 (1 − ξ)1/3 Onde ξ = UA/80 1 − ξ = UB/80 Para maximizar fazemos dS0 dξ = 0 dS0 dξ = 3 × 801/3 × 10−2 × 1 3 ξ−2/3 − 2 9 (1 − ξ)−2/3 = 0 Então ξ = 2 3 −3/2 (1 − ξ) ⇒ ξ = 0, 6475295549 ou arredondando ξ = 0, 65 ∴ UA = 80ξ = 52J e UB = 80(1 − ξ) = 28J ________ 3x(80)1/3 x10-2 S' Figura 2: Entropia como função de UA/(UA + UB) com o máximo em ξ = 0, 65 30
  • 31. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 2 THE CONDITIONS OF EQUILIBRIUM [SUMÁRIO] 2.2 EQUATIONS OF STATE [SUMÁRIO] 2.2.1 Find the three equations of state for a system with the fundamental equation U = v0θ R2 S3 NV ... [SUMÁRIO] Solução: T = ∂U ∂S = 3 v0θ R2 S2 NV −P = ∂U ∂V = − v0θ R2 S3 NV 2 µ = ∂U ∂N = − v0θ R2 S3 N2V Para corroborar com o fato de que as três equações de estado são homogêneas de ordem zero (Isto é, T, P e µ são parâmetros intensivos) fazemos : T(λS, λV, λN) = 3 v0θ R2 (λS)2 (λN)(λV ) = 3 v0θ R2 S2 NV = T(S, V, N) −P(λS, λV, λN) = − v0θ R2 (λS)3 (λN)(λV )2 = − v0θ R2 S3 NV 2 = −P(S, V, N) µ(λS, λV, λN) = − v0θ R2 (λS)3 (λN)2(λV ) = − v0θ R2 S3 N2V = µ(S, V, N) 2.2.2 For the system of problem 2.2-1 find µ as a function of T, V e N [SUMÁRIO] Solução: Eliminando S das equações de estado T(S, V, N) e µ(S, V, N) do problema 2.2-1, µ = −3−3/2 v0θ R2 −1/2 T3/2 v1/2 2.2.3 Show by a diagram (drawn to arbitrary scale) the dependence of... [SUMÁRIO] Solução: Eliminando S das equações de estado T(S, V, N) e −P(S, V, N) do problema 2.2-1 P = 1 3 R2 3v0θ 1/2 NT3 V 1/2 31
  • 32. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs P V T1 T2 T2T1 Figura 3: Isotermas no diagrama PV 2.2.4 Find the three equations of state for a system with the fundamental equation u = θ R s2 − Rθ v2 0 v2 [SUMÁRIO] Solução: u = θ R s2 − Rθ v2 0 v2 ou U = θ R S2 N − Rθ v2 0 V 2 N T = ∂u ∂s v = 2 θ R s , P = − ∂u ∂v s = 2 Rθ v2 0 v µ = ∂U ∂N = − θ R S2 N2 + Rθ v2 0 V 2 N2 = − θ R s2 + Rθ v2 0 v2 ∴ µ = −u 2.2.5 Express µ as a function of T and P for the system of problem 2.2-4 [SUMÁRIO] Solução: Eliminando S e v das três equações de estado do problema anterior, temos que : µ = − 1 4 R θ T2 + v2 0 4Rθ P2 32
  • 33. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 2.2.6 Find the three equations of state for a system with the fundamental equation u = v0θ R s2 v es/R [SUMÁRIO] Solução: T = ∂u ∂s v = 2 v0θ R s v es/R + v0θ R2 s2 v es/R −P = ∂u ∂v s = − v0θ R s2 v2 es/R Para encontrar µ, reescreva a equação fundamental como U = v0θ R S2 V eS/NR ∴ µ = v0θ R S2 V eS/NR × − S N2R = − v0θ R2 S3 N2 eS/NR 2.2.7 A particular system obeys the relation u = Av−2 exp(s/R)... [SUMÁRIO] Solução: T = ∂u ∂s = A R v−2 es/R P = − ∂u ∂v = 2Av−3 es/R Com s constante, então Tf T0 = v2 0 v2 f ! e Pf P0 = v0 vf 3 ∴ Tf T0 = Pf P0 2/3 Ou Tf = T0 22/3 = 0, 63T0 ⇒ Tf = 0, 63T0 2.2.8 Show that, in analogy with equation 2.25, for a system with r components... [SUMÁRIO] Solução: Seja u = u(s, v, x1, ..., xr), xj ≡ Nj/N, N ≡ P j=1 Nj du = ∂u ∂s ds + ∂u ∂v dv + r P j=1 ∂u ∂xj dxj = Tds − Pdv + r P j=1 µjdxj 33
  • 34. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs mas r P j=1 dxj = 0 ou dxr = − r−1 P j=1 dxj ∴ du = Tds − Pdv + r−1 X j=1 (µj − µr)dxj 2.2.9 Show that if a single-component system is such that PVk is constant... [SUMÁRIO] Solução: Nos é dado que PV k = g(s), onde g é uma função arbitrária. Agora seja u = u(s, v) e P = − ∂u ∂v = − g(s) vk Integrando, u = − g(s) (k − 1)vk−1 + h(s), h é uma função arbitrária ∴ u = Pvk (k − 1)vk−1 + h(s) = Pv k − 1 + h(s) Mas de Pvk = g(s) sabemos que s é uma função de Pvk ∴ u = Pv k − 1 + f(Pvk ), f é uma função arbitrária ou U = 1 k − 1 PV + Nf(PV k /Nk ) 34
  • 35. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 2.3 ENTROPIC INTENSIVE PARAMETERS [SUMÁRIO] 2.3.1 Find the three equations of state in the entropy representation for... [SUMÁRIO] Solução: s = R3/2 v 1/2 0 θ !2/5 u2/5 v1/5 1 T = ∂s ∂u = 2 5 R3/2 v 1/2 0 θ !2/5 u−3/5 v1/5 Reescrevendo − − − − − − − − − → 1 T = 2 5 v 1/2 0 θ R3/2 !−2/5 v1/5 u3/5 P T = ∂s ∂v = 1 5 R3/2 v 1/2 0 θ !2/5 u2/5 v−4/5 Reescrevendo − − − − − − − − − → P T = 1 5 v 1/2 0 θ R3/2 !−2/5 u2/5 v4/5 Para a equação de estado µ T = − ∂S ∂N utilizamos as relações s = S N = SN−1 , v = V N = V N−1 e u = U N = UN−1 , que para esse problema, são, s = SN−1 , v1/5 = V 1/5 N−1/5 e u2/5 = U2/5 N−2/5 . Assim, temos SN−1 = R3/2 v 1/2 0 θ !2/5 U2/5 N−2/5 V 1/5 N−1/5 =⇒ SN−1 = R3/2 v 1/2 0 θ !2/5 U2/5 V 1/5 N−2/5 N−1/5 SN−1 = R3/2 v 1/2 0 θ !2/5 U2/5 V 1/5 N−3/5 =⇒ S = R3/2 v 1/2 0 θ !2/5 U2/5 V 1/5 N2/5 | {z } Calcularemos µ T a partir dessa equação µ T = − ∂S ∂N = − 2 5 R3/2 v 1/2 0 θ !2/5 U2/5 V 1/5 N−3/5 , Note que (N−3/5 = N−2/5N−1/5) =⇒ µ T = − 2 5 R3/2 v 1/2 0 θ !2/5 U2/5 V 1/5 N−2/5 N−1/5 =⇒ µ T = − 2 5 R3/2 v 1/2 0 θ !2/5 U2/5 N−2/5 V 1/5 N−1/5 =⇒ µ T = − 2 5 R3/2 v 1/2 0 θ !2/5 u2/5 v1/5 Reescrevendo − − − − − − − − − → µ T = − 2 5 v 1/2 0 θ R3/2 !−2/5 u2/5 v1/5 Portanto, as três equações de estado na representação entrópica são : 1 T = 2 5 v 1/2 0 θ R3/2 !−2/5 v1/5 u3/5 , P T = 1 5 v 1/2 0 θ R3/2 !−2/5 u2/5 v4/5 , µ T = − 2 5 v 1/2 0 θ R3/2 !−2/5 u2/5 v1/5 35
  • 36. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 2.3.2 Show by a diagram (drawn to arbitrary scale) the dependence of tempera- ture on volume ... [SUMÁRIO] Solução: T v P=P2 P=P1 P2P1 Obtemos a relação de dependência entre T e v eliminando u das equações de estado 1 T e P T do problema anterior, que são : 1 T = 2 5 R3/2 v 1/2 0 θ !2/5 u−3/5 v1/5 P T = 1 5 R3/2 v 1/2 0 θ !2/5 u2/5 v−4/5 Isolando u na primeira equação 1 T , temos : u = 2 5 5/3 R3 v0θ2 1/3 v1/3 T5/3 Substituindo u na equação de estado P T , encontramos : P T = 1 5 R3 v0θ2 1/5 2 5 2/3 R3 v0θ2 2/15 v2/15 T2/3 # v−4/5 =⇒ P = 2 5 2/3 1 5 R3 v0θ2 1/3 | {z } = A (=Constante) T5/3 v2/3 Assim T5 v2 = AP3 ou ainda T = AP3/5 v2/5 , onde A = Cte = 2 5 2/3 1 5 R3 v0θ2 1/3 36
  • 37. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 2.3.3 Find the three equations of state in the entropy representation for ... [SUMÁRIO] Solução: s = R θ 1/2 u1/2 e−v/v0 A partir dessa equação fundamental, as equações de estado calculadas são : 1 T = ∂s ∂u v = 1 2 R θ 1/2 u−1/2 e−v/v0 P T = ∂s ∂v u = − 1 v0 R θ 1/2 u1/2 e−v/v0 µ T = − ∂S ∂N V,U = − ∂ ∂N R θ 1/2 U1/2 N1/2 e−V/Nv0 # = R θ 1/2 u1/2 e−v/v0 1 2 − v v0 2.3.4 Consider the fundamental equation S = AUn Vm Nr where A is a positive constant... [SUMÁRIO] Solução: a) Para que S seja homogênea de primeira ordem, devemos ter : n + m + r = 1 , ou r = 1 − n − m daí S = NA U N n V N m b) 1 T = ∂S ∂U = nA U N n−1 V N m ou T = 1 nA u1−n vm mas se u → 0 em T = 0 devemos ter 1 − n 0 ou n 1 Também, multiplicando as equações acima por T e S TS = 1 n U , ou U = nTS e eliminando U na equação de estado acima Tn = n−n A−1 s1−n v−m e se T → 0 na medida em que s → 0 devemos ter 0 n 1 c) Finalmente P T = ∂S ∂V = mA U N n V N m−1 e eliminando T da equação térmica de estado (primeira linha de (b)) P = m n U V Se P cresce com U/V , m/n 0, ou m 0 Consequentemente devemos ter m 0 e 0 n 1 37
  • 38. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 2.3.5 Find the three equations of state for a system with the fundamental rela- tion... [SUMÁRIO] Solução: a,b) 1 T = R v + 1 u2v 0, P T = R u + 1 uv2 , − µ T = R −uv − 3 uv c) s = 1 T u + P T v − µ T = Ru v + 1 u2v + R uv + 1 uv − R uv + 3 uv = uv − (uv)−1 d) Dividindo as duas primeiras equações de estado, P = u/v ou u = Pv e substituindo na relação fundamental s R = uv − 1 uv = Pv2 − 1 Pv2 P v P=const/v2 Ou ainda Pv2 =Função de s. Portanto as adiabatas são dadas por Pv2 = const 2.6 TEMPERATURE UNITS [SUMÁRIO] 2.6.1 The temperature of a system composed of ice, water, and water vapor... [SUMÁRIO] Solução: T(℃) = T(K) − 273, 15 = (373, 15 − 273, 15) ± 0, 01 = (100, 00 ± 0, 01)℃ T(°R) = 9 5 T(K) = (671, 67 ± 0, 02)°R T(°F) = T(°R) − 459, 67 = 9 5 T(℃) − 32 = (212, 00 ± 0, 02)°F 2.6.2 The gas constantR is defined as the product of Avogrado’s number... [SUMÁRIO] Solução: R = 8, 314 × 5 9 J/mol °F = 4, 619J/mol °F 2.6.3 Two particular systems have the following equations of state... [SUMÁRIO] Solução: T(1) = T(2) =⇒ 2 3 U(1) RN(1) = 2 5 U(2) RN(2) ou 5U(1) = 2U(2) . Também U(1) + U(2) = 2, 5 × 103 J =⇒ U(1) = 714, 3J e U(2) = 1785, 7J 38
  • 39. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 2.6.4 Two systems with the equations of state given in Problem 2.6-3 ... [SUMÁRIO] Solução: U (1) 0 = 3 2 RN(1) T (1) 0 = 3 2 × 8, 314 × 2 × 250 = 6235, 5J U (2) 0 = 5 2 RN(2) T (2) 0 = 5 2 × 8, 314 × 3 × 350 = 21824, 25J ∴ U(1) + U(2) = 28060J e novamente 5U(1) = 2U(2) =⇒ U(1) = 8017J e U(2) = 20043J 2.7 MECHANICAL EQUILIBRIUM [SUMÁRIO] 2.7.1 Three cylinders are fitted with four pistons, as shown in Fig. 2.2 ... [SUMÁRIO] Solução: 1 3 2 Figura 4: Three volume-coupled system δU(1) + δU(2) + δU(3) = 0 e δV (3) = −3δV (1) − 3 2 δV (2) Então δS = 1 T(1) δU(1) + 1 T(2) δU(2) + 1 T(3) δU(3) − P(1) T(1) δV (1) − P(2) T(2) δV (2) − P(3) T(3) δV (3) Eliminando δU(3) e δV (3) das duas últimas equações, δS = 1 T(1) − 1 T(3) δU(1) + 1 T(2) − 1 T(1) δU(2) − P(1) T(1) − 3 P(3) T(3) δV (1) − P(2) T(2) − 3 2 P(3) T(3) δV (2) portanto δS = 0 Cada uma das quatro diferenciais δU(1) , δU(2) , δV (1) , δV (2) são arbitrárias, daí T(1) = T(2) = T(3) , P(1) = 3P(3) , 2P(2) = 3P(3) 39
  • 40. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 2.7.2 Two particular systems have the following equations of state : ... [SUMÁRIO] Solução: 1 T(1) = 3 2 R N(1) U(1) e P(1) T(1) = R N(1) V (1) , N(1) = 0, 5mol = 1 2 mol 1 T(2) = 5 2 R N(2) U(2) e P(2) T(2) = R N(2) V (2) , N(2) = 0, 75mol = 3 4 mol T (1) 0 = 200K , T (2) 0 = 300K , V (1) 0 + V (2) 0 = 20 litros = 20 × 10−3 m3 Se o pistão intermediário é móvel e diatérmico, encontrar os volumes, energias, pressões e temperaturas finais. 1 T(1) = 1 T(2) e P(1) T(1) = P(2) T(2) . Logo, T(1) = T(2) e P(1) = P(2) Mas U(1) + U(2) = 3 2 N(1) RT(1) + 5 2 N(2) RT(2) = (1245 + 4669)J = 5914J ∴ 3 2 × 1 2 + 5 2 × 3 4 × R × Tf = 5914J R = 8, 314472 Joule/mol − Kelvin Tf = 271 K P(1) T(1) = P(2) T(2) ou N(1) V (1) = N(2) V (2) ∴ V (2) = 3 2 V (1) Também V (1) + V (2) = 20 × 10−3 m3 Consequentemente V (1) = 8 × 10−3 m3 = 8 litros , V (2) = 12 × 10−3 m3 = 12 litros P(1) = P(2) = 0, 5 × R × 271K 8 × 10−3m3 P(1) = P(2) = 1, 41 × 105 Pa U(1) = 3 2 N(1) RT e U(2) = 5 2 N(2) RT U(1) = 1690J e U(2) = 4220J 2.7.3 The hypothetical problem of equilibrium in a closed composite system ... [SUMÁRIO] Solução: A equação fundamental é S = S(1) (U(1) , V (1) ) + S(2) (U(2) , V (2) ) note que suprimimos o número de mols na notação. A condição para o volume é (condição de fechamento ou completeza) V (1) + V (2) = V = constante 40
  • 41. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs E nós devemos formalizar o significado de restrição adiabática. Desde que nenhum fluxo de energia na forma de calor seja permitido pela parede, a troca de energia de cada subsistema é devida inteiramente pelo termo do trabalho, e a restrição adiabática é expressa pela condição que (condição adiabática) dU(1) = −P(1) dV (1) ; dU(2) = −P(2) dV (2) A mudança na entropia total em um processo virtual é agora, dS = 1 T(1) dU(1) + P(1) T(1) dV (1) + 1 T(2) dU(2) + P(2) T(2) dV (2) Inserindo a condição adiabática, a quantidade dS se anula identicamente. Era de se esperar inserir a condição do volume (condição de fechamento ou completeza) e então fazer dS = 0 para obter a condição de equilíbrio, mas o desaparecimento da quantidade dS no meio do caminho durante os cálculos certamente inviabiliza a continuação da análise. Como esperado dos fun- damentos físicos, uma solução matemática do problema não existe. Entretanto, uma solução parcial pode ser obtida, para a segunda condição de fechamento que ainda não escrevemos, que deve ser aplicada para todo problema na representação entrópica. Esta é a condição de fechamento para a energia U(1) + U(2) = U = constante Assim, temos dU(1) = −dU(2) E, inserindo as condições adiabáticas −P(1) dV (1) = P(2) dV (2) Finalmente, da equação da condição do volume encontramos dV (1) = −dV (2) , Consequente- mente P(1) = P(2) Novamente, esta caracterização necessária mas não suficiente do estado de equilíbrio está em concordância com nossas expectativas nos fundamentos físicos. 2.8 EQUILIBRIUM WITH RESPECT TO MATTER FLOW [SUMÁRIO] 2.8.1 The fundamental equation of a particular type of two-component system is... [SUMÁRIO] Solução: Para cada subsistema temos 1 T = ∂S ∂U = 3 2 NR U e P T = NR V , e ainda − µ1 T = A + R ln U3/2 V N5/2 − 5 2 R − R ln N1 (N1 + N2) = R ln U3/2 V N1N3/2 + A − 5 2 R Mas 1 T(1) = 1 T(2) ou N (2) 1 + N (2) 2 U(1) = N (2) 1 + N (2) 2 U(2) e µ (1) 1 T(1) = µ (2) 1 T(2) ou [U(1) ]3/2 [N (1) 1 + N (1) 2 ]3/2N (1) 1 = [U(2) ]3/2 [N (2) 1 + N (2) 2 ]3/2N (2) 1 41
  • 42. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs Elevando a primeira dessas equações a 3/2, e multiplicando as equações, obtemos N (1) 1 = N (2) 1 , consequentemente N (1) 1 = N (2) 1 = 0, 75 Para encontrar as energias e temperaturas : As energias iniciais eram : U(1) = 3 2 N(1) RT(1) = 562, 5R U(2) = 3 2 N(2) RT(2) = 562, 5R As energias finais são : U(1) = 3 2 × 1, 5 × RT , U(2) = 3 2 × 1, 5 × RT Portanto, U(1) + U(2) = 4, 125RT Então, 4, 125RT = 2 × 562, 5R =⇒ T = 272, 7K Encontrando as pressões : (PV = NRT) P(1) V (1) = N(1) RT(1) =⇒ P(1) = 6, 8 × 105 Pa P(2) V (2) = N(2) RT(2) =⇒ P(2) = 5, 7 × 105 Pa 2.8.2 A two-component system gaseous system has a fundamental equation of the form... [SUMÁRIO] Solução: Para cada subvolume 1 T = 1 3 AU−2/3 V 1/3 N1/3 , P T = 1 3 AU1/3 V −2/3 N1/3 Ou ainda T = 3 A U2 NV 1/3 , P = U/V , − µ1 T = 1 3 AU1/3 V 1/3 N−2/3 + B N2 N − N1N2 N2 Então U = A 3 3 T3 (NV )1/2 E isto é suficiente para determinar Te : 2T3 e = T3 l + T3 r Se Tr = 2Tl =⇒ 2T3 e = 9T3 l =⇒ Te = 1, 651Tl Também, eliminando U da equação para µ/T : − µ1 T = 1 9 A2 T V N 1/2 + B N2 N − N1N2 N2 Então, igualando µ1/T em cada subsistema, 1 9 A2 TeV 1/2 N −1/2 1l = 1 9 A2 TeV 1/2 N1r + 1 2 −1/2 + B N2 N1r + N2 − N1rN2 (N1r + N2)2 42
  • 43. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs Mas B = A 3 2 TlV 1/2 Portanto, TeN −1/2 1l = Te N1r + 1 2 −1/2 + Tl 1 2N1r + 1 − 2N1r (2N1r + 1)2 Assim temos que, 3 2 − N1r −1/2 = N1r + 1 2 −1/2 + Tl Te (2N1r + 1)−2 Então, 3 2 − N1r −1/2 − N1r + 1 2 −1/2 − 0, 6057(2N1r + 1)2 = 0 Isto pode ser resolvido por tentativa e erro utilizando uma calculadora ou um computador. Feito corretamente, você deve concluir que, N1r = 0, 84 N1l = 1, 5 − 0, 84 = 0, 66 2.9 CHEMICAL EQUILIBRIUM [SUMÁRIO] 2.9.1 The hydrogenation of propane (C3H8) to form methane (CH4) proceeds by the reaction... [SUMÁRIO] Solução: µC1H8 + 2µH2 = 3µCH4 O que é formalmente indentico ao exemplo 1 da seção 2.7 3 SOME FORMAL RELATIONSHIPS, AND SAMPLE SYSTEMS [SUMÁRIO] 3.1 THE EULER EQUATION [SUMÁRIO] 3.1.1 Write each of the five physically acceptable fundamental equations... [SUMÁRIO] Solução: (a) S = C[UV N]1/3 , C ≡ R2 v0θ 1/3 43
  • 44. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs Então, S = C 3 U−2/3 V 1/3 N1/3 | {z } 1/T U + C 3 U1/3 V −2/3 N1/3 | {z } P/T V + C 3 U1/3 V 1/3 N−2/3 | {z } −µ/T N (c) S = C NU + Rθ v2 0 V 2 1/2 , C ≡ R θ 1/2 Então, S = CN 2 NU + Rθ v2 0 V 2 −1/2 | {z } 1/T U + CRθ v2 0 V NU + Rθ v2 0 V 2 −1/2 | {z } P/T V + C 2 U NU + Rθ v2 0 V 2 −1/2 | {z } −µ/T N (e) S = C[N2 V U]1/5 S = 2 5 CU[N2 V U]−4/5 | {z } 1/T U + 1 5 C[N2 V U]−4/5 | {z } P/T V + 2 5 CN[N2 V U]−4/5 | {z } −µ/T N (g) e (i) são similares 3.2 THE GIBBS-DUHEM RELATION [SUMÁRIO] 3.2.1 Find the relation among T, P, and µ for the system with the fundamental equation... [SUMÁRIO] Solução: A equação fundamental é : U = v2 0θ R3 S4 NV 2 Então, T = 4 v2 0θ R3 S3 NV 2 P = 2 v2 0θ R3 S4 NV 3 µ = − v2 0θ R3 S4 N2V 2 Das duas primeiras equações =⇒ T/P = 2V/S Da primeira e terceira equação =⇒ µ/T = −S/4N Reescrevendo a primeira equação temos, 44
  • 45. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs T = 4 v2 0θ R3 S N S V 2 = 4 v2 0θ R3 −4 µ T 2 P T 2 ∴ T = −(2)6 v2 0θ R3 µP2 3.3 SUMMARY OF FORMAL STRUCTURE [SUMÁRIO] 3.3.1 A particular system obeys the two equations of state... [SUMÁRIO] Solução: Dadas as equações T = 3As2 /v e P = As3 /v, encontre µ(s, v) e a equação fundamental. (a) dµ = −sdT + vdP = −sd[3As2 /v] + vd[As3 /v] = −3A s2 v ds + A s3 v2 dv = −d[As3 /v] ⇒ dµ = −d[As3 /v] Z dµ = Z −d[As3 /v] ∴ µ = −As3 /v + cte Podemos tomar a constante igual a zero (cte = 0) Assim, µ(s, v) = −As3 /v Então a equação de Euler será: U = TS − PV + µN ou ainda u = Ts − Pv + µ ∴ u = 3As2 v s − A s3 v v − A s3 v Ou de forma mais sucinta, U = A S3 NV (b) 45
  • 46. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs Pela integração direta da equação de Euler na forma molar : du = Tds − Pdv = 3A s2 v ds − A s3 v dv = d[A s3 v ] ⇒ Z du = Z d A s3 v Fazendo a constante de integração igual a zero, concluímos que : U = A S3 NV 3.3.2 It is found that a particular system obeys the relations U = PV and P = BT2 [SUMÁRIO] Solução: As equações envolvem U e estão portanto na representação entrópica. Escreva como : 1 T = B1/2 v1/2 u1/2 e P T = B1/2 u1/2 v1/2 Então, ds = 1 T du + P T dv = B1/2 v1/2 u1/2 du + B1/2 u1/2 v1/2 dv = 2B1/2 d[u1/2 v1/2 ] ∴ s = 2B1/2 u1/2 v1/2 + const. ou S = 2B1/2 U1/2 V 1/2 + Ns0 3.3.3 A system obeys the equations P = − NU NV − 2AVU and T = 2C U1/2 V1/2 N − 2AU eAU/N ... [SUMÁRIO] Solução: Escreva as equações na forma P T = − 1 2 C−1 u1/2 v3/2 eAu e 1 T = 1 2 C−1 u−1/2 v−1/2 [1 − 2Au]e−Au ∴ ds = 1 2 C−1 e−Au 1 − 2Au √ uv du − u1/2 v3/2 dv 46
  • 47. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs Faça s = Dun vm e−Au (tentativa e erro!) ∴ ds = D[(nun−1 vm − Aun vm )]e−Au du + mun vm−1 e−Au dv Isto está de acordo se tomarmos n = 1/2, m = −1/2, D = C−1 ∴ s = C−1 r u v e−Au 3.3.4 A system obeys the two equations u = 3 2 Pv and u1/2 = BTv1/3 ... [SUMÁRIO] Solução: As equações estão na representação entrópica, então escrevemos 1 T = Bu−1/2 v1/3 e P T = 2 3 Bu1/2 v−2/3 Então ds = 1 T du + P T dv = Bv1/3 du u1/2 + 2 3 Bu1/2 dv v2/3 = 2Bd(u1/2 v1/3 ) ∴ s = 2Bu1/2 v1/3 + s0 ou S = 2BU1/2 V 1/3 N1/6 + Ns0 3.4 THE SIMPLE IDEAL GAS AND MULTICOMPONENT SIM- PLE IDEAL GASES [SUMÁRIO] 3.4.1 A constant volume ideal gas thermometeris contructed as shown (sche- matically) in Fig. 3.3. ... [SUMÁRIO] Solução: NENHUMA SOLUÇÃO PARA ESSE PROBLEMA NO MOMENTO 3.4.2 Show that the relation between the volume and the pressure of a monoato- mic ideal gas ... [SUMÁRIO] Solução: Para um gás simples S = Ns0 + NR ln U U0 −c V V0 N0 N #c+1 47
  • 48. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs Se S = const, uc v = uc 0v0e[(s−s0)/R] ∴ (cRT)c v = (cRT0)c v0e[(s−s0)/R] (Pv)c v = (P0v0)c v0e[(s−s0)/R] Pv c+1 c = P0v c+1 c 0 e(s−s0)/c = const. Então, para um gás ideal monoatômico, c = 3/2 Pv5/3 = h P0v 5/3 0 e−2s0/3R i e2s/3R = const 3.4.3 Two moles of a monoatomic ideal gas are at a temperature of 0℃and a volume... [SUMÁRIO] Solução: S = N N0 S0 + NR ln U U0 3/2 V V0 N N0 −5/2 # Em S = const., U3/2 V = const =⇒ 3 2 NRT 3/2 V = const. =⇒ T3/2 V = const. Vf = vi Ti Tf 3/2 = 45 273 223 3/2 litros = 61 litros = 61 × 10−3 m3 Também, PV = NRT Portanto, Pi = NRTi Vi = 0, 101MPa e Pf = NRTf Vf = 0, 061MPa 3.4.4 By carring out the integral R PdV, compute the work done by the gas in Problem 3.4-3.. [SUMÁRIO] Solução: Do problema 3.4-2, PV 5/3 = const. (−W) = Z PdV = Z Vf Vi Pi Vi V 5/3 dV = − 3 2 PiV 5/3 i [V −2/3 f −V −2/3 i ] = − 3 2 PiVi Vf Vi −2/3 − 1 # Então (−W) = − 3 2 × (1, 01 × 105 ) × (45 × 10−3 ) 61 45 −2/3 − 1 # 48
  • 49. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs Logo (−W) = 12, 5 × 102 Joules Também Ui = 3 2 NRTi = 3 × 8, 314 × 273 = 6810 Joules Uf = 3 2 NRTf = 3 × 8, 314 × 223 = 5560 Joules ∆U = 12, 4 × 102 Joules 3.4.5 In a particular engine a gas is compressed in the initial stroke of the piston... [SUMÁRIO] Solução: (a) W = − Z V1 V0 PdV = −NR Z V1 V0 T dV V = − NRT0 V η 0 Z V1 V0 V η−1 dV = − NRT0 η V1 V0 η − 1 W = NR η (T0 − T1) (b) ∆U = 3 2 NR(T1 − T0) Onde T1 = V1 V0 η T0 (c) Q = ∆U − W = 3 2 NR(T1 − T0) + NR η (T1 − T0) ∴ Q = 3 2 + 1 η NR(T1 − T0) (d) S = Ns0 + 3 2 NR ln U U0 + NR ln V V0 − 5 2 NR ln N N0 = Ns0 + 3 2 NR ln T T0 + NR ln V V0 − 5 2 NR ln N N0 49
  • 50. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs ∴ dS = 3 2 NR dT T + NR dV V = 3 2 NRη dV V + NR dV V = 3 2 η + 1 NR dV V ∴ Tds = 3 2 η + 1 NRT0 V η−1 V η 0 dV Então Q = Z TdV = 3 2 η + 1 NRT0 1 η V V0 ηV1 V0 = 3 2 + 1 η NRT0 V1 V0 η − 1 ∴ 3 2 + 1 η NR(T1 − T0) O que bate com a letra (c) (e) Para checar η = − 2 3 se Q = 0 Então PV = NRT = NR V V0 η T0 ou ainda PV 1−η = const ou PV 5/3 = const. E esta é a conhecida forma de uma adiabata. 3.4.6 Find the three equations of state of the simple ideal gas(equation 3.34... [SUMÁRIO] Solução: S = Ns0 + NcR ln U Nu0 + NR ln V Nv0 Então 1 T = NcR U e P T = NR V ∴ − µ T = ∂S ∂N = s0 + cR ln U Nu0 + R ln V Nv0 − (1 + c)R 3.4.7 Find the four equations of state of a two-component mixture if simple ideal gases... [SUMÁRIO] Solução: S = X j Njsj0 + X j NjcjR ln T T0 + X j NjR ln V NjV0 ; U = X j Njcj ! RT 50
  • 51. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs ∴ S = X j Njsj0 + X j Njcj ! R ln       U P j Njcj ! RT0       + X j NjR ln V NjV0 Então 1 T = X j Njcj R U P T = X j Nj R V − µ T = sj0 + cjR ln    U P j NjcjRT0    − cjR + R ln V NjV0 − R Para verificar a equação de Euler, calculamos U T + P T V − X j µjNj T U T +P T V − P j µjNj T =U P j NjcjR U +V P j NjR V + P j  sj0 +cjR ln   U P j NjcjRT0  −cjR+R ln V NjV0 −R  Nj O lado direito desta equação é exatamente o S da segunda linha da solução. 3.4.8 If a monoatomic ideal gas is permitted to expand into an evacuated region, thereby increasing its volume... [SUMÁRIO] Solução: Responda na ordem inversa, ou seja, (c), (b) e depois (a). S = Ns0 + NR ln U U0 3/2 V V0 N N0 −5/2 # (a) De PV = NRT Pf Pi = Vi Vf = 1 λ =⇒ Pf = Pi λ (b) de U = 3 2 NRT =⇒ Tf = Ti (c) Se Uf = Ui e Vf /Vi = λ então ∆S = Sf − Si = NR ln(Vf ) − NR ln(Vi) = NR ln Vf Vi ∴ ∆S = NR ln(λ) 51
  • 52. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 3.4.9 A tank has a volume of 0.1m3 and is filled with He gas at a pressure of... [SUMÁRIO] Solução: U1 = 3 2 P1V1 , U2 = 3 2 P2V2, Uf = 3 2 Pf Vf = 3 2 Pf (V1 + V2) e Uf = U1 + U2 Então 3 2 Pf (V1 + V2) = 3 2 P1V1 + 3 2 P2V2 ∴ Pf = P1V1 + P2V2 V1 + V2 = 5 × 106 × 0.1 + 6 × 106 × 0, 15 0, 25 = 5, 6 × 106 Pa 3.4.10 ... [SUMÁRIO] Solução: (a) P1V1 = N1RT1 ou 5 × 106 × 0, 1 = N1 × 8, 314 × 300 então N1 = 200, 5 mols P2V2 = N2RT2 ou 6 × 106 × 0, 15 = N2 × 8, 314 × 350 então N2 = 309, 3 mols Pf Vf = (N1 + N2)RTf ou 5, 6 × 106 × 0, 25 = 509, 8 × 8, 134 × Tf ∴ Tf = 330 K (b) Novamente N1 = 200, 5 e N2 = 309, 3 Então U1 + U2 = Uf Logo 3 2 N1RT1 + 5 2 N2RT2 = 3 2 N1RTf + 5 2 N2RTf =⇒ Tf = 336 K Note também que 3 2 P1V1 + 5 2 P2V2 = 3 2 N1 + 5 2 N2 Pf Vf N1 + N2 =⇒ Pf = 5, 7 × 106 Pa 3.4.11 Show that the pressure of a multicomponent simple ideal gas can be written as the sum... [SUMÁRIO] Solução: P = NRT V e N = X i Ni =⇒ P = X i NiRT V ≡ X i Pi 52
  • 53. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs 3.4.12 Show that µj, the electrochemical potential of the jth component in a ... [SUMÁRIO] Solução: Nós temos S = X j Njsj0 + X j NjcjR ln T T0 + X j NjR ln V Njv0 quando T = U R P j Njcj − µj T = ∂S ∂Nj U1,... = sj0 + cjR ln T T0 + 1 T X j Njcj ! R ∂T ∂Nj U + R ln V Njv0 − R Mas ∂T ∂Nj = − U R cj ( P j Njcj)2 = − Tcj P j Njcj ∴ − µj T = sj0 + cjR ln T T0 − cjR + R ln V Njv0 − R =⇒ µj = −RT ln V Njv0 + RT 1 + cj − cj ln T T0 − sj0 R ∴ µj = RT ln Pj RTv0 + RT 1 + cj − cj ln T T0 − sj0 R 3.4.13 An impermeable, diathermal, and rigid partition divides a container into two subvolumes... [SUMÁRIO] Solução: Do problema anterior µj = −RT ln V Njv0 + RT 1 + cj − cj ln T T0 − sj0 R e µ (1) H2 = µ (2) H2 ∴ −RT ln V0 N (1) H2 v0 ! = −RT ln V0 N (2) H2 v0 ! Ou N (1) H2 = N (2) H2 = 1 2 mol ∴ P(1) = N (1) H2 RT V0 = 1 2 RT V0 e P(2) = [N (2) H2 + N (2) Ne]RT V0 = 7 2 RT V0 3.4.14 Use the results of problem 3.4-11 and 3.4-12 to stablish the results Pα = Pγ e... [SUMÁRIO] Solução: A pressão parcial de A em β, ou PA β , é igual a Pα 53
  • 54. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs A pressão parcial de B em β, ou PB β , é igual a Pγ ∴ Pβ = PA β + PB β = Pα + Pγ Também, por simetria, Pα = Pγ =⇒ Pβ = 2Pα 3.4.15 An impermeable, diathermal and rigid partition divides a container into two subvolumes... [SUMÁRIO] Solução: Note que U = X j NjcjRT, e desde que a energia total seja constante, a temperatura é constante. Inicialmente PH2 = nRT nV0 = RT V0 PHe = mRT mV0 = RT V0 Finalmente P = (n + m)RT (n + m)V0 = RT V0 =⇒ não há variação na pressão Então a variação na entropia é igual a entropia de mistura. Veja o texto logo abaixo da equação 3.40 no livro-texto (entropy of mixing-pg 69). ∴ ∆s = −R X j Nj ln Nj N = −R n ln n n + m + m ln m n + m 3.5 THE IDEAL VAN DER WAALS FLUID[SUMÁRIO] 3.5.1 Are each of the listed pairs of equations of state compatible (recall equations 3.46)... [SUMÁRIO] Solução: (a) U = aPv e Pv2 = bT Escreva as equações como P T = b v2 , e (dividindo por P = u/av), =⇒ 1 T = ab uv Então ∂ ∂u P T ? = ∂ ∂v 1 T se torna ∂ ∂u b v2 ? = ∂ ∂v ab uv , ou 0 ? = − ab uv2 =⇒ não é compatível (b) U = aPv2 e Pv2 = bT 54
  • 55. AAEEIIOOOOOOUUFGMPRRRLLLNSTTVD solutionscallen@gmail.com πiXeL WallRiDeR Karlengs ∴ P T = b v2 e 1 T = ab u Então ∂ ∂u P T = ∂ ∂v 1 T , ou 0 = 0 =⇒ Compatível (c) P = u v c + buv a + buv e T = u a + buv ∴ P T = c v + bu e 1 T = a u + bv ∴ ∂ ∂u P T = ∂ ∂v 1 T (= b) =⇒ compatível Para encontrar as equações fundamentais para os casos (b) e (c) : (b) ds = 1 T du + P T dv = ab u du + b v2 dv ⇒ S − S0 = abN ln U N − b N2 V (c) ds = a u + bv du+ c v + bu dv ⇒ S = Ns0 + a ln U U0 + b UV N − bu0v0 + c ln V Nv0 3.5.2 Find the relationship between the volume and the temperature of an ideal Van Der Waals fluid... [SUMÁRIO] Solução: S = NR ln[(v − b)(cRT)c ] + Ns0 =⇒ (v − b)Tc = const. 3.5.3 Repeat the problem 3.4-3 for CO2, rather than for a monoatomic ideal gas... [SUMÁRIO] Solução: Recordando S = NR ln[(v − b)(u + a/v)c ] + S0 Consequentemente, numa expansão adiabática, (v − b) h u + a v ic = const. também u + a u = cRT de onde (v − b)Tc = const. Então (vf − b)Tc f (vi − b)Tc i = 1, e da tabela 3.1(pg.77 do livro), c = 3, 5 e b = 42, 7 × 10−6 m3 Tem-se também que vi = 45 × 10−3 m3 Neste caso b pode ser desprezado, então vf vi ' Ti Tf c = 273 223 3,5 = 2, 03 e ainda vf = 91, 4 litros = 0, 091m3 55