SlideShare a Scribd company logo
1 of 19
Download to read offline
  1	
  
	
  
	
   	
  
D r . C h r i s S w a r t z
Y a n a n C a o 	
  
Air	
  Separation	
  Unit	
  	
  
Monica	
  Salib	
  
There	
  is	
  no	
  doubt	
  that	
  optimization	
  is	
  the	
  key	
  for	
  the	
  new	
  engineering	
  future.	
  	
  It	
  has	
  a	
  
significant	
  impact	
  in	
  chemical	
  engineering	
  research.	
  It	
  is	
  the	
  tool	
  that	
  allows	
  us	
  to	
  
improve	
  the	
  existing	
  processes	
  in	
  terms	
  of	
  cost,	
  energy	
  and	
  overall	
  efficiency.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
As	
  chemical	
  engineers,	
  we	
  are	
  expected	
  to	
  develop	
  new	
  computational	
  and	
  
mathematical	
  algorithms	
  that	
  can	
  cope	
  up	
  with	
  the	
  world’s	
  needs.	
  This	
  paper	
  studies	
  
different	
  ASU	
  (Air	
  Separation	
  Unit)	
  optimization	
  strategies	
  with	
  gPROMS	
  and	
  addresses	
  
some	
  of	
  the	
  ASU	
  industrial	
  issues.	
  	
  
Monica	
  Salib	
  
Chemical	
  Engineering	
  
Spring-­‐2015	
  
	
  
	
  
  2	
  
Table	
  of	
  Contents	
  
1.	
   CSTR	
  Steady	
  State	
  Optimization	
  .................................................................................	
  1	
  
2.	
   Batch	
  reactor	
  Dynamic	
  Optimization	
  ........................................................................	
  2	
  
2.1	
   Single	
  Scenario	
  Dynamic	
  Optimization	
  ..........................................................................	
  2	
  
2.2	
  	
  	
  	
  	
  Multi-­‐scenario	
  Dynamic	
  Optimization	
  ...........................................................................	
  4	
  
3.	
   Air	
  Separation	
  Unit	
  ..........................................................................................................	
  5	
  
3.1	
   Overview	
  ...................................................................................................................................	
  5	
  
3.2	
   Air	
  Separation	
  Process	
  .........................................................................................................	
  6	
  
3.3	
   Dynamic	
  Simulation	
  ..............................................................................................................	
  7	
  
4.	
   Steady	
  State	
  Optimization	
  ..........................................................................................	
  10	
  
4.1	
   Objective	
  function	
  formulation	
  .......................................................................................	
  10	
  
4.2	
   Constraints	
  .............................................................................................................................	
  12	
  
4.3	
   Results	
  .....................................................................................................................................	
  13	
  
5.	
   Dynamic	
  Optimization	
  ................................................................................................	
  14	
  
6.	
   Dynamic	
  Optimization	
  Under	
  Uncertainty	
  ...........................................................	
  15	
  
6.1	
   Overview	
  .................................................................................................................................	
  15	
  
6.2	
   Objective	
  function	
  formulation	
  .......................................................................................	
  15	
  
6.3	
   Observations	
  .........................................................................................................................	
  16	
  
7.	
   Economics	
  Dynamic	
  Optimization	
  ..........................................................................	
  16	
  
8.	
   Conclusion	
  .......................................................................................................................	
  17	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
  1	
  
1. CSTR	
  Steady	
  State	
  Optimization	
  
Optimization	
  is	
  highly	
  required	
  to	
  ensure	
  that	
  any	
  given	
  process	
  is	
  operating	
  at	
  its	
  
best	
  feasible	
  conditions.	
  In	
  this	
  example,	
  four	
  isothermal	
  CSTRs	
  are	
  connected	
  in	
  
series.	
  Steady	
  state	
  is	
  assumed	
  throughout	
  the	
  process	
  because	
  of	
  having	
  a	
  fixed	
  
flow	
  rate.	
  The	
  task	
  was	
  to	
  find	
  the	
  most	
  economical	
  operation	
  while	
  staying	
  in	
  the	
  
plant	
  operation	
  limits	
  (constraints),	
  which	
  was	
  ensuring	
  that	
  the	
  summation	
  of	
  all	
  
the	
  volumes	
  is	
  20	
  m!
.	
  To	
  do	
  so,	
  our	
  controls	
  (decision	
  variables)	
  were	
  the	
  volumes	
  
of	
  each	
  CSTR.	
  The	
  optimization	
  task	
  is	
  summarized	
  in	
  Table	
  1	
  below.	
  
Objective	
   Maximize	
  yield	
  of	
  product	
  
Constraint	
   ΣV	
  =20	
  
Controls	
   V	
  of	
  each	
  CSTR	
  
	
  
Two	
  solution	
  approaches	
  were	
  implemented	
  in	
  order	
  to	
  solve	
  this	
  problem	
  in	
  
gPROMS.	
  The	
  starting	
  point	
  is	
  the	
  same,	
  which	
  requires	
  defining	
  the	
  parameters	
  and	
  
the	
  variables.	
  
First,	
  mole	
  balance	
  equations	
  (one	
  for	
  each	
  CSTR)	
  were	
  written	
  in	
  the	
  MODEL	
  
section	
  in	
  gPROMS	
  as	
  shown	
  below	
  in	
  Eqn1-­‐Eqn4.	
  
Eqn  1.                                        Fc! − Fc! − kc!
!.!
V! = 0	
  
Eqn  2.                                        Fc! − Fc! − kc!
!.!
V! = 0	
  
Eqn  3.                                        Fc! − Fc! − kc!
!.!
V! = 0	
  
Eqn  4.                                        Fc! − Fc! − kc!
!.!
V! = 0	
  
	
  
Second,	
  four	
  MODELS	
  were	
  created	
  (one	
  for	
  each	
  CSTR)	
  and	
  then	
  they	
  were	
  linked	
  
together	
  to	
  the	
  upper	
  layer	
  model	
  by	
  defining	
  the	
  inlet	
  concentration	
  of	
  each	
  CSTR	
  
as	
  the	
  outlet	
  of	
  the	
  previous	
  one	
  in	
  series.	
  
  2	
  
The	
  optimization	
  file	
  was	
  created	
  using	
  the	
  information	
  in	
  Table	
  1	
  and	
  the	
  solver	
  
successfully	
  converged	
  giving	
  us	
  same	
  results	
  with	
  both	
  solution	
  strategies.	
  
2. Batch	
  reactor	
  Dynamic	
  Optimization	
  
2.1	
  Single	
  Scenario	
  Dynamic	
  Optimization	
  	
  
A	
  lot	
  of	
  research	
  has	
  been	
  going	
  on	
  dynamic	
  optimization	
  since	
  it	
  is	
  the	
  more	
  
realistic	
  and	
  applicable	
  type	
  in	
  the	
  existing	
  plants.	
  The	
  Ramirez	
  control	
  problem	
  was	
  
examined	
  and	
  the	
  task	
  was	
  to	
  maximize	
  the	
  yield	
  of	
  species	
  B	
  at	
  the	
  final	
  time	
  by	
  
calculating	
  the	
  optimal	
  temperature	
  profile,	
  T	
  (t)	
  for	
  a	
  batch	
  reactor	
  with	
  the	
  
consecutive	
  reactions	
  shown	
  below	
  are	
  carried	
  out.	
  	
  
A
!!
B
!!
C	
  
The	
  material	
  balances	
  for	
  species	
  A	
  (concentration,x!)  and  B  (concentration, x!)	
  are	
  
shown	
  below	
  in	
  Eqn5-­‐Eqn8.	
  
Eqn	
  5.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
!!!(!)
!"
=  −k!(t) ∗ x!(t)	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Eqn	
  6.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
!!!(!)
!"
=  k! t ∗ x! t − k!(t) ∗ x!(t)	
  
	
  
Eqn	
  7.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
                                  k! t = k!" ∗ e
!!"
!"(!)	
  
	
  
Eqn	
  8.	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
                                  k! t = k!" ∗ e
!!"
!"(!)	
  
	
  
	
  
  3	
  
The	
  desired	
  goal	
  was	
  to	
  maximize	
  the	
  yield	
  of	
  species	
  B	
  at	
  the	
  final	
  time,	
  i.e.,	
  
x! t! − x!(t!).	
  	
  
After	
  setting	
  up	
  this	
  optimization	
  problem,	
  it	
  was	
  solved	
  in	
  two	
  different	
  ways:	
  
(1) Piecewise	
  constant	
  	
  
(2) Piecewise	
  linear	
  	
  
The	
  main	
  difference	
  between	
  both	
  methods	
  is	
  in	
  the	
  controlled	
  variables.	
  In	
  the	
  
piecewise	
  constant	
  method,	
  it	
  is	
  the	
  temperature	
  that	
  is	
  being	
  changed	
  till	
  it	
  reaches	
  
the	
  optimum	
  value.	
  In	
  the	
  piecewise	
  linear	
  case,	
  it	
  is	
  the	
  slope	
  of	
  the	
  temperature	
  
that	
  changes	
  till	
  it	
  shapes	
  the	
  optimum	
  temperature	
  profile	
  for	
  the	
  process.	
  The	
  
results	
  of	
  both	
  strategies	
  are	
  shown	
  below	
  in	
  Figure	
  1	
  and	
  Figure	
  2.	
  
	
  
Figure	
  1.	
  Piecewise	
  constant	
  optimum	
  Temperature	
  profile	
  
	
  
	
  
	
  
	
  
Figure	
  2.	
  Piecewise	
  linear	
  optimum	
  Temperature	
  profile	
  	
  
  4	
  
It	
  was	
  concluded	
  by	
  looking	
  at	
  the	
  results	
  that	
  the	
  piecewise	
  linear	
  is	
  a	
  better	
  
approach	
  as	
  it	
  converges	
  at	
  a	
  higher	
  yield	
  value	
  even	
  if	
  it	
  takes	
  a	
  little	
  while	
  longer.	
  
2.2	
  Multi-­‐scenario	
  Dynamic	
  Optimization	
  	
  
There	
  is	
  no	
  doubt	
  that	
  a	
  design	
  is	
  more	
  optimum	
  if	
  it	
  can	
  tolerate	
  different	
  reactions	
  
with	
  different	
  parameters	
  and	
  rates.	
  Therefore,	
  taking	
  uncertainty	
  into	
  
consideration	
  in	
  the	
  design	
  stage	
  helps	
  optimize	
  the	
  dynamic	
  performance	
  of	
  the	
  
plant.	
  Using	
  the	
  previous	
  example,	
  nine	
  scenarios	
  were	
  implemented	
  each	
  with	
  a	
  
different	
  combination	
  of	
  k	
  values.	
  
If	
  the	
  changing	
  parameters	
  are	
  the	
  reaction	
  rate	
  constants	
  k!	
  and	
  k!	
  where:	
  
	
  
k!	
  ∈	
  [k!
!"#
, k!
!"#
]	
  
k!	
  ∈	
  [k!
!"#
, k!
!"#
]	
  
Then,	
  a	
  theta	
  (θ)	
  variable	
  is	
  introduced	
  as	
  θ	
  =
k!
k!
	
  and	
  each	
  scenario	
  is	
  assigned	
  to	
  a	
  
different	
  θ	
  combination	
  as	
  illustrated	
  below.	
  
	
  
Scenario	
  1:	
  θ	
  =
k!
!"#
k!
!"#
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Scenario	
  2:	
  θ	
  =
k!
!"#
k!
!"# 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Scenario	
  3:	
  θ	
  =
k!
!"#
k!
!"# 	
  
	
  
Scenario	
  4:	
  θ	
  =
k!
!"#
k!
!"# 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Scenario	
  5:	
  θ	
  =
k!
!"#
k!
!"# 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Scenario	
  6:	
  θ	
  =
k!
!"#
k!
!"# 	
  
	
  
Scenario	
  7:	
  θ	
  =
k!
!"#
k!
!"# 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Scenario	
  8:	
  θ	
  =
k!
!"#
k!
!"# 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Scenario	
  9:	
  θ	
  =
k!
!"#
k!
!"# 	
  
	
  
  5	
  
Generally,	
  the	
  optimization	
  problem	
  follows	
  the	
  same	
  formulation	
  as	
  the	
  single	
  
scenario	
  case.	
  The	
  objective	
  function	
  is	
  the	
  only	
  thing	
  that	
  changes,	
  as	
  it	
  has	
  to	
  
account	
  for	
  all	
  the	
  scenarios’	
  constraints	
  at	
  the	
  same	
  time.	
  The	
  most	
  common	
  
technique	
  for	
  the	
  objective	
  function	
  reformulation	
  is	
  assigning	
  it	
  to	
  the	
  average	
  of	
  
the	
  summation	
  of	
  the	
  scenarios	
  as	
  shown	
  in	
  Eqn	
  9.	
  
	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Eqn9.	
  	
  	
  	
  New_objective_function	
  =	
  
!
!
  ∗ ∑!!!
!!!
  objective  (i)	
  
	
  
Piecewise	
  linear	
  and	
  piecewise	
  constant	
  were	
  again	
  used	
  to	
  solve	
  the	
  optimization.	
  
Piecewise	
  linear	
  proved	
  to	
  be	
  a	
  better	
  approach	
  in	
  solving	
  multi-­‐scenario	
  dynamic	
  
optimization	
  problems	
  as	
  it	
  converged	
  at	
  a	
  higher	
  yield.	
  The	
  only	
  disadvantage	
  it	
  
was	
  the	
  time	
  it	
  needed	
  to	
  converge.	
  
Overall,	
  both	
  methods	
  worked	
  successfully	
  in	
  gPROMS	
  and	
  settled	
  at	
  very	
  close	
  
values.	
  
3. Air	
  Separation	
  Unit	
  	
  
3.1	
  Overview	
  
The	
  air	
  separation	
  industry	
  is	
  essential	
  as	
  it	
  plays	
  an	
  important	
  role	
  in	
  a	
  lot	
  of	
  
markets	
  such	
  as	
  food	
  processing,	
  petrochemicals	
  and	
  healthcare.	
  For	
  a	
  long	
  time	
  in	
  
the	
  air	
  separation	
  industry,	
  the	
  dynamic	
  performance	
  of	
  the	
  plant	
  was	
  assessed	
  by	
  
how	
  capable	
  it	
  is	
  in	
  rejecting	
  disturbances.	
  The	
  idea	
  of	
  switching	
  the	
  operation	
  
points	
  was	
  not	
  relevant	
  due	
  to	
  the	
  usual	
  stability	
  of	
  electricity	
  prices.	
  Recently,	
  this	
  
  6	
  
has	
  not	
  been	
  the	
  case	
  because	
  of	
  the	
  fluctuations	
  in	
  electricity	
  prices	
  in	
  many	
  
regions.	
  Those	
  deregulations	
  in	
  the	
  price	
  cause	
  unexpected	
  rapid	
  changes	
  in	
  the	
  
plant	
  cost	
  since	
  electricity	
  is	
  the	
  main	
  operating	
  cost	
  for	
  the	
  air	
  separation	
  plant.	
  
Therefore,	
  further	
  techniques	
  that	
  take	
  dynamic	
  rapid	
  changes	
  into	
  account	
  should	
  
be	
  adopted	
  as	
  steady	
  state	
  simulation	
  has	
  their	
  limitations.	
  
In	
  this	
  paper,	
  all	
  the	
  studies	
  and	
  results	
  are	
  based	
  on	
  the	
  cryogenic	
  approach	
  of	
  air	
  
separation.	
  It	
  produces	
  large	
  gas	
  phase	
  quantities	
  of	
  air	
  components	
  (Nitrogen,	
  
Oxygen	
  and	
  Argon)	
  and	
  operates	
  at	
  a	
  low	
  temperature	
  distillation.	
  
3.2	
  Air	
  Separation	
  Process	
  
A	
  simple	
  schematic	
  of	
  the	
  main	
  process	
  equipment	
  is	
  shown	
  in	
  Fig	
  3.	
  Further	
  
description	
  of	
  the	
  process	
  can	
  be	
  found	
  in	
  Roffel	
  et	
  al.	
  [2000]	
  and	
  Miller	
  et	
  al.	
  
[2008a].	
  
	
  
  7	
  
	
  
	
  
Fig	
  3.	
  A	
  cryogenic	
  air	
  separation	
  plant	
  that	
  produces	
  argon,	
  oxygen	
  and	
  nitrogen.	
  LAr	
  =	
  Liquid	
  Argon;	
  
L02	
  =	
  Liquid	
  Oxygen;	
  G02	
  =	
  Gas	
  Oxygen;	
  LN2	
  =	
  Liquid	
  Nitrogen;	
  GN2	
  =	
  Gas	
  Nitrogen;	
  PHX	
  =	
  Primary	
  
Heat	
  Exchanger;	
  LC	
  =	
  Lower	
  Column;	
  UC	
  =	
  Upper	
  Column.	
  
3.3Dynamic	
  Simulation	
  
Step	
  tests	
  were	
  conducted	
  to	
  investigate	
  the	
  effect	
  of	
  certain	
  input	
  changes	
  on	
  the	
  
dynamic	
  performance	
  of	
  the	
  process.	
  Fig	
  4.	
  Shows	
  the	
  output	
  results	
  of	
  the	
  product	
  
impurity,	
  air	
  feed,	
  reflux	
  and	
  GN2	
  production	
  upon	
  -­‐5%	
  change	
  in	
  inlet	
  volumetric	
  
air	
  feed.	
  Fig	
  5.	
  Shows	
  the	
  dynamic	
  response	
  of	
  the	
  product	
  impurity,	
  gas	
  draw	
  
fraction	
  rate,	
  reflux	
  and	
  GN2	
  production	
  after	
  being	
  subjected	
  to	
  a	
  positive	
  step	
  
change	
  in	
  the	
  gas	
  draw	
  rate.	
  
  8	
  
	
  
	
  
	
  
	
  
Figure	
  4.	
  Dynamic	
  response	
  of	
  selected	
  scaled	
  variables	
  to	
  a	
  negative	
  step	
  change	
  in	
  the	
  air	
  feed	
  
	
  
	
  
  9	
  
	
  
	
  
	
  
	
  
	
  
	
  
Figure	
  5.	
  Dynamic	
  response	
  of	
  selected	
  scaled	
  variables	
  to	
  a	
  negative	
  step	
  change	
  in	
  the	
  air	
  feed.	
  
	
  
While	
  keeping	
  all	
  other	
  inputs	
  fixed	
  in	
  the	
  system,	
  as	
  the	
  gas	
  draw	
  fraction	
  
increases,	
  GN2	
  production	
  increases	
  and	
  reflux	
  rate	
  decreases.	
  The	
  system	
  tries	
  to	
  
reach	
  a	
  new	
  equilibrium	
  steady	
  state	
  but	
  since	
  the	
  reflux	
  rate	
  is	
  much	
  lower	
  than	
  
before	
  relative	
  to	
  the	
  air	
  feed	
  at	
  the	
  new	
  steady	
  state,	
  the	
  product	
  impurity	
  
increases	
  significantly.	
  
  10	
  
4. Steady	
  State	
  Optimization	
  	
  
4.1	
  Objective	
  function	
  formulation	
  
This	
  paper	
  focuses	
  on	
  optimizing	
  the	
  air	
  separation	
  unit	
  so	
  that	
  it	
  can	
  handle	
  the	
  
frequent	
  changes	
  in	
  demand	
  and	
  electricity.	
  Normally,	
  the	
  plant	
  runs	
  steadily	
  under	
  
certain	
  operating	
  points.	
  
When	
  a	
  change	
  in	
  demand/electricity	
  price	
  occurs,	
  the	
  plant	
  is	
  adjusted	
  to	
  operate	
  
at	
  a	
  new	
  set	
  of	
  operating	
  conditions.	
  	
  Therefore,	
  the	
  plant	
  is	
  expected	
  to	
  operate	
  at	
  
steady	
  state	
  all	
  the	
  time	
  except	
  that	
  time	
  during	
  the	
  transition	
  between	
  the	
  
operating	
  points.	
  
Since	
  the	
  plant	
  is	
  assumed	
  to	
  be	
  steady,	
  we	
  have	
  to	
  ensure	
  that	
  all	
  operation	
  points	
  
are	
  feasible	
  and	
  optimum.	
  Hence,	
  a	
  steady	
  state	
  economical	
  optimization	
  is	
  
performed,	
  not	
  only	
  to	
  make	
  sure	
  that	
  all	
  operation	
  point	
  are	
  economically	
  
optimum,	
  but	
  also	
  to	
  serve	
  as	
  a	
  guideline	
  in	
  the	
  dynamic	
  transition	
  optimization	
  as	
  
well.	
  The	
  steady	
  state	
  optimization	
  takes	
  the	
  form	
  shown	
  in	
  Eqn	
  10.	
  
	
  
Eqn. 10        max Φ!! = C!"# F!"#  !"#$ + F!"#$ − C!"!#W!"#$ − C!"#$F!"#$	
  
	
  
Subject	
  to:	
  
f	
  (x	
  =	
  0,	
  x,	
  z,	
  u	
  ,	
  p)	
  =0	
  
g(x,	
  z,	
  u	
  ,	
  p)	
  =0	
  
h	
  (x	
  ,	
  z,	
  u	
  ,	
  p)	
  <	
  0	
  
	
  
  11	
  
Where:	
  
x	
  =	
  differential	
  state	
  vector	
  
z	
  =	
  algebraic	
  state	
  vector	
  
u	
  =	
  control	
  input	
  vector	
  
• u!=	
  Inlet	
  volumetric	
  air	
  flow	
  rate	
  under	
  standard	
  conditions	
  
• u!=	
  Liquid	
  molar	
  air	
  flow	
  rate	
  to	
  the	
  column	
  
• u!=	
  Liquid	
  Nitrogen	
  production	
  rate	
  (Distillate)	
  
• u!=	
  Gas	
  draw	
  fraction	
  
• u!=	
  Evaporation	
  rate	
  of	
  liquid	
  nitrogen	
  for	
  unsatisfied	
  demand	
  
p	
  =	
  parameter	
  vector	
  
C!"#=	
  Sales	
  price	
  of	
  gas	
  nitrogen	
  	
  
C!"!#, C!"#$=	
  Costs	
  associated	
  with	
  compression	
  and	
  evaporation	
  
F!"#  !"#$=	
  Flow	
  rate	
  of	
  GN	
  2	
  produced	
  
F!"#$=	
  Rate	
  of	
  evaporation	
  of	
  pre-­‐stored	
  liquid	
  N2	
  
W!"#$=	
  Power	
  consumption	
  of	
  the	
  compressor	
  
	
  
A	
  detailed	
  plant	
  configuration	
  with	
  labeled	
  variables,	
  parameters	
  and	
  inputs	
  is	
  
shown	
  in	
  Figure	
  5	
  below.	
  
	
  
  12	
  
	
  
	
  
Figure	
  5.	
  	
  Plant	
  configuration	
  with	
  labeled	
  decision	
  variables	
  
4.2Constraints	
  	
  
There	
  are	
  different	
  types	
  of	
  constraints	
  that	
  we	
  need	
  to	
  put	
  in	
  consideration	
  to	
  
make	
  sure	
  that	
  the	
  plant	
  runs	
  without	
  violating	
  the	
  physics/chemical	
  laws	
  or	
  
the	
  operational	
  conditions	
  along	
  with	
  satisfying	
  the	
  customer’s	
  needs.	
  All	
  the	
  
constraints	
  are	
  categorized	
  and	
  summarized	
  in	
  Table	
  2	
  below	
  
Table	
  2.	
  Constraints	
  for	
  steady	
  state	
  optimization	
  
Operational	
  Constraints	
   Product	
  Specification	
   Modeling	
  Constraints	
  	
  
Compressor	
  Surge	
  	
   Demand	
  Satisfaction	
   Pressure	
  in	
  PHX	
  
Flooding	
  	
   No	
  Overproduction	
   Temp	
  diff.	
  in	
  IRC	
  
	
   Product	
  Purity	
   	
  
	
  
  13	
  
Each	
  constraint	
  mentioned	
  above	
  is	
  modelled	
  by	
  an	
  equation	
  that	
  has	
  a	
  certain	
  	
  	
  	
  	
  
tolerance.	
  The	
  goal	
  is	
  always	
  to	
  minimize	
  the	
  tolerance	
  to	
  approach	
  zero	
  
4.3Results	
  
It	
  was	
  observed	
  that	
  the	
  initial	
  guess	
  plays	
  an	
  important	
  role	
  in	
  the	
  optimization	
  
process	
  in	
  terms	
  of	
  the	
  converging	
  time	
  and	
  value.	
  That	
  is	
  due	
  to	
  the	
  non-­‐
convexity	
  from	
  the	
  nonlinear	
  model.	
  Therefore,	
  different	
  initial	
  guesses	
  were	
  
provided	
  and	
  the	
  best	
  point	
  was	
  reported.	
  
Also,	
  the	
  system	
  responds	
  differently	
  in	
  terms	
  of	
  active	
  constraints	
  (when	
  the	
  
final	
  value	
  is	
  very	
  close	
  to	
  one	
  of	
  the	
  bounds)	
  depending	
  on	
  the	
  change	
  it	
  was	
  
subjected	
  to.	
  For	
  instance,	
  as	
  demand	
  increases,	
  both	
  flooding	
  and	
  impurity	
  
constraints	
  are	
  active	
  because	
  the	
  system	
  has	
  to	
  settle	
  at	
  its	
  maximum	
  level	
  of	
  
impurity.	
  However,	
  as	
  demand	
  decreases,	
  the	
  compressor	
  surge	
  constraint	
  is	
  
the	
  active	
  one	
  because	
  of	
  the	
  decrease	
  in	
  the	
  flow	
  rate.	
  
The	
  steady	
  state	
  optimization	
  results	
  upon	
  demand	
  fluctuations	
  (-­‐30%	
  to	
  +30%)	
  
are	
  reported	
  in	
  Table	
  3.	
  	
  Those	
  output	
  results	
  were	
  used	
  again	
  as	
  a	
  target	
  to	
  
dynamic	
  optimization.	
  
	
  
Table	
  3.	
  Steady	
  state	
  optimization	
  results	
  for	
  demand	
  fluctuations	
  
	
  
**	
  Data	
  in	
  the	
  Table	
  are	
  scaled	
  values	
  for	
  company	
  confidentiality	
  	
  
	
   -­‐30%	
   -­‐20%	
   -­‐10%	
   0%	
   10%	
   20%	
   30%	
  
LN2	
  production	
  rate	
   0.0002	
   0.0002	
   0.0002	
   0.0002	
   0.0002	
   0.0002	
   0.0002	
  
Gas	
  draw	
  rate	
  fraction	
   0.058	
   0.068	
   0.0754	
   0.0758	
   0.0758	
   0.076	
   0.076	
  
Air	
  feed	
  volumetric	
  flow	
  rate	
   29.998	
   30	
   30.4	
   33.8	
   37.075	
   38.2	
   38.212	
  
Liquid	
  air	
  to	
  the	
  column	
   6.84	
   6.5434	
   6.21	
   5.356	
   4.6202	
   2.5288	
   2.5288	
  
Evaporation	
  rate	
   0	
   0	
   0	
   0	
   0	
   2.176	
   5.64	
  
  14	
  
5. Dynamic	
  Optimization	
  	
  
Steady	
  state	
  optimization	
  provided	
  us	
  with	
  feasible	
  optimal	
  operating	
  points.	
  
However,	
  it	
  did	
  not	
  account	
  for	
  the	
  transitions	
  between	
  those	
  points.	
  Hence,	
  
dynamic	
  optimization	
  is	
  conducted	
  to	
  switch	
  from	
  the	
  base	
  optimal	
  case	
  to	
  the	
  
new	
  operation	
  point	
  upon	
  demand	
  fluctuations.	
  
The	
  objective	
  function	
  is	
  formulated	
  differently	
  as	
  it	
  is	
  no	
  longer	
  a	
  cost	
  based	
  
one	
  but	
  rather	
  a	
  trajectory	
  demand	
  tracking	
  function	
  as	
  shown	
  in	
  Eqn	
  11.	
  
	
  
Eqn  11.                min Φ = t! 1 −
F!"#  !"#$ t
F!"#  !"#$
∗
  
!!!
!!
  dt + w! 1 −
u! t!
u!
∗
!!!
!!!
	
  
Where	
   𝑤!	
  represents	
  the	
  weights	
  assigned	
  to	
  the	
  manipulated	
  variables	
  as	
  
shown	
  below:	
  
w!"#  !""#   = w!"#  !"# = w!"#  !"#$ = 1	
  
w!"# = 0.1	
  
The	
  problem	
  was	
  solved	
  using	
  5	
  control	
  intervals	
  with	
  a	
  tolerance	
  of	
  1E-­‐5.	
  The	
  
number	
  of	
  control	
  intervals	
  is	
  critical	
  in	
  the	
  optimization	
  problem	
  formulation.	
  
It	
  has	
  to	
  be	
  big	
  enough	
  for	
  capturing	
  the	
  control	
  behaviour	
  but	
  not	
  too	
  big	
  for	
  
unwanted	
  oscillations	
  in	
  the	
  results.	
  
The	
  time	
  was	
  divided	
  into	
  three	
  periods	
  with	
  an	
  input	
  slope	
  of	
  0	
  to	
  the	
  first	
  and	
  
last	
  period.	
  This	
  ensures	
  that	
  both	
  the	
  start	
  and	
  end	
  point	
  operate	
  at	
  optimal	
  
feasible	
  steady	
  state.	
  Also,	
  a	
  dummy	
  variable	
  was	
  introduced	
  to	
  represent	
  the	
  
slowest	
  variable	
  in	
  the	
  process.	
  By	
  minimizing	
  that	
  variable,	
  we	
  guarantee	
  that	
  
our	
  system	
  converge	
  at	
  a	
  steady	
  state.	
  
  15	
  
The	
  solution	
  time	
  in	
  the	
  air	
  separation	
  unit	
  is	
  too	
  long	
  compared	
  to	
  the	
  one	
  in	
  
the	
  batch	
  reactor.	
  That	
  concludes	
  that	
  the	
  complexity	
  of	
  the	
  problem	
  is	
  a	
  key	
  
variable	
  that	
  affects	
  the	
  solution	
  time.	
  
6. Dynamic	
  Optimization	
  Under	
  Uncertainty	
  	
  
6.1	
  Overview	
  
	
  
The	
  bigger	
  picture	
  comes	
  into	
  place	
  after	
  the	
  individual	
  demand	
  dynamic	
  
optimization	
  cases	
  have	
  successfully	
  converged.	
  The	
  task	
  gets	
  more	
  complicated	
  
because	
  our	
  objective	
  is	
  not	
  only	
  to	
  optimize	
  the	
  operating	
  conditions	
  and	
  the	
  
trajectory	
  for	
  certain	
  demand	
  percentage	
  change;	
  instead	
  it	
  is	
  finding	
  the	
  
conditions	
  that	
  are	
  optimum	
  overall	
  regardless	
  of	
  the	
  fluctuations.	
  
	
  The	
  approach	
  used	
  to	
  tackle	
  the	
  uncertainty	
  is	
  very	
  similar	
  to	
  the	
  “Multi-­‐
scenario	
  dynamic	
  optimization”	
  one	
  in	
  section	
  2.2	
  regarding	
  the	
  batch	
  reactor.	
  	
  
6.2	
  Objective	
  function	
  formulation	
  
	
  
Since	
  the	
  solution	
  time	
  increases	
  drastically	
  in	
  uncertainty	
  problems,	
  only	
  two	
  
cases	
  (0%	
  demand	
  change	
  +	
  10%	
  demand	
  change)	
  were	
  solved	
  simultaneously	
  
to	
  better	
  understand	
  the	
  capabilities	
  and	
  limitations	
  of	
  gPROMS	
  in	
  handling	
  
those	
  complex	
  problems.	
  
The	
  problem	
  formulation	
  was	
  very	
  similar	
  to	
  the	
  single	
  case	
  dynamic	
  
optimization.	
  The	
  difference	
  was	
  mainly	
  including	
  both	
  cases	
  into	
  one	
  single	
  
process	
  and	
  having	
  the	
  new	
  objective	
  function	
  (Φ∗
)	
  capturing	
  both	
  of	
  them	
  as	
  
explained	
  by	
  Eqn	
  12.	
  
	
  
  16	
  
Eqn	
  12.	
  	
  	
  	
  	
  Φ∗
=	
  Φ! + Φ!	
  
Where:	
  
Φ!	
  =	
  Objective	
  function	
  of	
  the	
  0%	
  demand	
  change	
  case	
  
Φ!	
  =	
  Objective	
  function	
  of	
  the	
  10%	
  demand	
  change	
  case	
  
All	
  the	
  optimization	
  elements	
  were	
  handled	
  in	
  the	
  same	
  manner	
  as	
  the	
  single	
  
case	
  with	
  only	
  the	
  difference	
  of	
  having	
  two	
  of	
  each	
  manipulated	
  
variable/constraint,	
  one	
  representing	
  each	
  case.	
  
6.3	
  Observations	
  	
  
	
  
Multiple	
  factors	
  were	
  observed	
  to	
  affect	
  the	
  optimization	
  under	
  uncertainty	
  
more	
  than	
  just	
  the	
  number	
  of	
  the	
  control	
  intervals.	
  
Based	
  on	
  the	
  results	
  reported	
  in	
  Table	
  4,	
  relaxing	
  the	
  bounds	
  seems	
  to	
  be	
  an	
  
important	
  key	
  that	
  affects	
  the	
  ability	
  of	
  the	
  optimization	
  to	
  converge.	
  Also,	
  using	
  
the	
  dynamic	
  optimization	
  results	
  as	
  initial	
  guesses	
  plays	
  an	
  important	
  role	
  in	
  
terms	
  of	
  the	
  solution	
  time.	
  
Table	
  4.	
  Observations	
  in	
  uncertainty	
  dynamic	
  optimization	
  trials	
  with	
  fixed	
  control	
  intervals	
  
	
  
	
   Provided	
  initial	
  guess	
  from	
  
previous	
  optimization	
  
Relaxed	
  
bounds 	
  
Optimization	
  
converged	
  
Solution	
  
time	
  
Trial	
  1	
   ✖	
   ✖	
   ✖	
   -­‐	
  
Trial	
  2	
   ✓	
   ✖	
   ✖	
   -­‐	
  
Trial	
  3	
   ✖	
   ✓	
   ✓	
   6.6	
  h	
  
Trial	
  4	
   ✓	
   ✓	
   ✓	
   2.6	
  h	
  
	
  
7. Economics	
  Dynamic	
  Optimization	
  
Another	
  economical	
  base	
  approach	
  was	
  tried	
  out	
  to	
  optimize	
  the	
  dynamic	
  
process.	
  The	
  objective	
  function	
  was	
  not	
  formulated	
  to	
  track	
  the	
  demand	
  
  17	
  
trajectory	
  as	
  before	
  but	
  rather	
  to	
  maximize	
  the	
  accumulation	
  of	
  the	
  profit.	
  
The	
  constraints	
  and	
  controls	
  were	
  handled	
  in	
  the	
  same	
  manner	
  as	
  the	
  
demand	
  trajectory	
  case.	
  The	
  optimization	
  successfully	
  converged	
  in	
  30	
  min	
  
for	
  the	
  10%	
  demand	
  change	
  case	
  and	
  that	
  is	
  promising	
  as	
  the	
  solution	
  time	
  is	
  
very	
  short	
  compared	
  to	
  the	
  demand	
  based	
  one.	
  	
  
8. Conclusion	
  
The	
  research	
  is	
  still	
  ongoing	
  to	
  better	
  optimize	
  the	
  air	
  separation	
  process,	
  as	
  it	
  
is	
  the	
  primary	
  supplier	
  for	
  our	
  everyday	
  vital	
  chemicals.	
  The	
  design	
  has	
  got	
  a	
  
lot	
  of	
  interesting	
  possibilities	
  that	
  should	
  be	
  examined	
  in	
  future	
  work.	
  For	
  
instance,	
  the	
  introduction	
  of	
  external	
  liquid	
  nitrogen	
  and	
  the	
  addition	
  of	
  a	
  vent	
  
stream	
  after	
  the	
  compressor	
  can	
  be	
  some	
  promising	
  alternatives.	
  Also,	
  more	
  
cases	
  should	
  be	
  solved	
  simultaneously	
  to	
  achieve	
  a	
  better	
  operating	
  point.	
  
	
  	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

More Related Content

What's hot

International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 
Computational Analysis of Heat sink or Extended Surface
Computational Analysis of Heat sink or Extended SurfaceComputational Analysis of Heat sink or Extended Surface
Computational Analysis of Heat sink or Extended SurfaceIRJET Journal
 
HYDROTHERMAL COORDINATION FOR SHORT RANGE FIXED HEAD STATIONS USING FAST GENE...
HYDROTHERMAL COORDINATION FOR SHORT RANGE FIXED HEAD STATIONS USING FAST GENE...HYDROTHERMAL COORDINATION FOR SHORT RANGE FIXED HEAD STATIONS USING FAST GENE...
HYDROTHERMAL COORDINATION FOR SHORT RANGE FIXED HEAD STATIONS USING FAST GENE...ecij
 
Short term Multi Chain Hydrothermal Scheduling Using Modified Gravitational S...
Short term Multi Chain Hydrothermal Scheduling Using Modified Gravitational S...Short term Multi Chain Hydrothermal Scheduling Using Modified Gravitational S...
Short term Multi Chain Hydrothermal Scheduling Using Modified Gravitational S...IJARTES
 

What's hot (8)

International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
Computational Analysis of Heat sink or Extended Surface
Computational Analysis of Heat sink or Extended SurfaceComputational Analysis of Heat sink or Extended Surface
Computational Analysis of Heat sink or Extended Surface
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
 
Unu gtp-sc-04-13
Unu gtp-sc-04-13Unu gtp-sc-04-13
Unu gtp-sc-04-13
 
HYDROTHERMAL COORDINATION FOR SHORT RANGE FIXED HEAD STATIONS USING FAST GENE...
HYDROTHERMAL COORDINATION FOR SHORT RANGE FIXED HEAD STATIONS USING FAST GENE...HYDROTHERMAL COORDINATION FOR SHORT RANGE FIXED HEAD STATIONS USING FAST GENE...
HYDROTHERMAL COORDINATION FOR SHORT RANGE FIXED HEAD STATIONS USING FAST GENE...
 
Short term Multi Chain Hydrothermal Scheduling Using Modified Gravitational S...
Short term Multi Chain Hydrothermal Scheduling Using Modified Gravitational S...Short term Multi Chain Hydrothermal Scheduling Using Modified Gravitational S...
Short term Multi Chain Hydrothermal Scheduling Using Modified Gravitational S...
 
TOC I&ECPDD Oct67
TOC I&ECPDD Oct67TOC I&ECPDD Oct67
TOC I&ECPDD Oct67
 
Poster MSC11 Jun 2019
Poster MSC11 Jun 2019Poster MSC11 Jun 2019
Poster MSC11 Jun 2019
 

Similar to Report- Monica Salib

Brake_Disc_Geometry_Optimization
Brake_Disc_Geometry_OptimizationBrake_Disc_Geometry_Optimization
Brake_Disc_Geometry_OptimizationAditya Vipradas
 
morten_bakkedal_dissertation_final
morten_bakkedal_dissertation_finalmorten_bakkedal_dissertation_final
morten_bakkedal_dissertation_finalMorten Bakkedal
 
Master's_Thesis_XuejiaoHAN
Master's_Thesis_XuejiaoHANMaster's_Thesis_XuejiaoHAN
Master's_Thesis_XuejiaoHANXuejiao Han
 
Pad semesteraufgabe finalreport
Pad semesteraufgabe finalreportPad semesteraufgabe finalreport
Pad semesteraufgabe finalreportHaris Ahmed
 
Report 5 - Mechanical - Low Carbon and Renewable Technology
Report 5 - Mechanical - Low Carbon and Renewable TechnologyReport 5 - Mechanical - Low Carbon and Renewable Technology
Report 5 - Mechanical - Low Carbon and Renewable TechnologyUthishran Ratnakumar
 
Engn4625 e brick1_2014_ circuitanalysismaths
Engn4625 e brick1_2014_ circuitanalysismathsEngn4625 e brick1_2014_ circuitanalysismaths
Engn4625 e brick1_2014_ circuitanalysismathssskara
 
Chemistry 81 MtSAC Dr. V. Prutyanov Spring 2020 Me.docx
Chemistry 81 MtSAC Dr. V. Prutyanov Spring 2020        Me.docxChemistry 81 MtSAC Dr. V. Prutyanov Spring 2020        Me.docx
Chemistry 81 MtSAC Dr. V. Prutyanov Spring 2020 Me.docxpoulterbarbara
 
Asu December 2010 Application For Bio Pcm
Asu December 2010 Application For Bio PcmAsu December 2010 Application For Bio Pcm
Asu December 2010 Application For Bio Pcmenergy4you
 
Thesis-MitchellColgan_LongTerm_PowerSystem_Planning
Thesis-MitchellColgan_LongTerm_PowerSystem_PlanningThesis-MitchellColgan_LongTerm_PowerSystem_Planning
Thesis-MitchellColgan_LongTerm_PowerSystem_PlanningElliott Mitchell-Colgan
 
M2 Internship report rare-earth nickelates
M2 Internship report rare-earth nickelatesM2 Internship report rare-earth nickelates
M2 Internship report rare-earth nickelatesYiteng Dang
 

Similar to Report- Monica Salib (20)

Brake_Disc_Geometry_Optimization
Brake_Disc_Geometry_OptimizationBrake_Disc_Geometry_Optimization
Brake_Disc_Geometry_Optimization
 
thesis
thesisthesis
thesis
 
Report_Final
Report_FinalReport_Final
Report_Final
 
report
reportreport
report
 
morten_bakkedal_dissertation_final
morten_bakkedal_dissertation_finalmorten_bakkedal_dissertation_final
morten_bakkedal_dissertation_final
 
Master's_Thesis_XuejiaoHAN
Master's_Thesis_XuejiaoHANMaster's_Thesis_XuejiaoHAN
Master's_Thesis_XuejiaoHAN
 
Pad semesteraufgabe finalreport
Pad semesteraufgabe finalreportPad semesteraufgabe finalreport
Pad semesteraufgabe finalreport
 
CADances-thesis
CADances-thesisCADances-thesis
CADances-thesis
 
Thesis lebanon
Thesis lebanonThesis lebanon
Thesis lebanon
 
Thesis
ThesisThesis
Thesis
 
Report 5 - Mechanical - Low Carbon and Renewable Technology
Report 5 - Mechanical - Low Carbon and Renewable TechnologyReport 5 - Mechanical - Low Carbon and Renewable Technology
Report 5 - Mechanical - Low Carbon and Renewable Technology
 
Thesis augmented
Thesis augmentedThesis augmented
Thesis augmented
 
UROP MPC Report
UROP MPC ReportUROP MPC Report
UROP MPC Report
 
Engn4625 e brick1_2014_ circuitanalysismaths
Engn4625 e brick1_2014_ circuitanalysismathsEngn4625 e brick1_2014_ circuitanalysismaths
Engn4625 e brick1_2014_ circuitanalysismaths
 
main
mainmain
main
 
Chemistry 81 MtSAC Dr. V. Prutyanov Spring 2020 Me.docx
Chemistry 81 MtSAC Dr. V. Prutyanov Spring 2020        Me.docxChemistry 81 MtSAC Dr. V. Prutyanov Spring 2020        Me.docx
Chemistry 81 MtSAC Dr. V. Prutyanov Spring 2020 Me.docx
 
Asu December 2010 Application For Bio Pcm
Asu December 2010 Application For Bio PcmAsu December 2010 Application For Bio Pcm
Asu December 2010 Application For Bio Pcm
 
Thesis-MitchellColgan_LongTerm_PowerSystem_Planning
Thesis-MitchellColgan_LongTerm_PowerSystem_PlanningThesis-MitchellColgan_LongTerm_PowerSystem_Planning
Thesis-MitchellColgan_LongTerm_PowerSystem_Planning
 
Asian basket options
Asian basket optionsAsian basket options
Asian basket options
 
M2 Internship report rare-earth nickelates
M2 Internship report rare-earth nickelatesM2 Internship report rare-earth nickelates
M2 Internship report rare-earth nickelates
 

Report- Monica Salib

  • 1.   1         D r . C h r i s S w a r t z Y a n a n C a o   Air  Separation  Unit     Monica  Salib   There  is  no  doubt  that  optimization  is  the  key  for  the  new  engineering  future.    It  has  a   significant  impact  in  chemical  engineering  research.  It  is  the  tool  that  allows  us  to   improve  the  existing  processes  in  terms  of  cost,  energy  and  overall  efficiency.                                   As  chemical  engineers,  we  are  expected  to  develop  new  computational  and   mathematical  algorithms  that  can  cope  up  with  the  world’s  needs.  This  paper  studies   different  ASU  (Air  Separation  Unit)  optimization  strategies  with  gPROMS  and  addresses   some  of  the  ASU  industrial  issues.     Monica  Salib   Chemical  Engineering   Spring-­‐2015      
  • 2.   2   Table  of  Contents   1.   CSTR  Steady  State  Optimization  .................................................................................  1   2.   Batch  reactor  Dynamic  Optimization  ........................................................................  2   2.1   Single  Scenario  Dynamic  Optimization  ..........................................................................  2   2.2          Multi-­‐scenario  Dynamic  Optimization  ...........................................................................  4   3.   Air  Separation  Unit  ..........................................................................................................  5   3.1   Overview  ...................................................................................................................................  5   3.2   Air  Separation  Process  .........................................................................................................  6   3.3   Dynamic  Simulation  ..............................................................................................................  7   4.   Steady  State  Optimization  ..........................................................................................  10   4.1   Objective  function  formulation  .......................................................................................  10   4.2   Constraints  .............................................................................................................................  12   4.3   Results  .....................................................................................................................................  13   5.   Dynamic  Optimization  ................................................................................................  14   6.   Dynamic  Optimization  Under  Uncertainty  ...........................................................  15   6.1   Overview  .................................................................................................................................  15   6.2   Objective  function  formulation  .......................................................................................  15   6.3   Observations  .........................................................................................................................  16   7.   Economics  Dynamic  Optimization  ..........................................................................  16   8.   Conclusion  .......................................................................................................................  17                                        
  • 3.   1   1. CSTR  Steady  State  Optimization   Optimization  is  highly  required  to  ensure  that  any  given  process  is  operating  at  its   best  feasible  conditions.  In  this  example,  four  isothermal  CSTRs  are  connected  in   series.  Steady  state  is  assumed  throughout  the  process  because  of  having  a  fixed   flow  rate.  The  task  was  to  find  the  most  economical  operation  while  staying  in  the   plant  operation  limits  (constraints),  which  was  ensuring  that  the  summation  of  all   the  volumes  is  20  m! .  To  do  so,  our  controls  (decision  variables)  were  the  volumes   of  each  CSTR.  The  optimization  task  is  summarized  in  Table  1  below.   Objective   Maximize  yield  of  product   Constraint   ΣV  =20   Controls   V  of  each  CSTR     Two  solution  approaches  were  implemented  in  order  to  solve  this  problem  in   gPROMS.  The  starting  point  is  the  same,  which  requires  defining  the  parameters  and   the  variables.   First,  mole  balance  equations  (one  for  each  CSTR)  were  written  in  the  MODEL   section  in  gPROMS  as  shown  below  in  Eqn1-­‐Eqn4.   Eqn  1.                                        Fc! − Fc! − kc! !.! V! = 0   Eqn  2.                                        Fc! − Fc! − kc! !.! V! = 0   Eqn  3.                                        Fc! − Fc! − kc! !.! V! = 0   Eqn  4.                                        Fc! − Fc! − kc! !.! V! = 0     Second,  four  MODELS  were  created  (one  for  each  CSTR)  and  then  they  were  linked   together  to  the  upper  layer  model  by  defining  the  inlet  concentration  of  each  CSTR   as  the  outlet  of  the  previous  one  in  series.  
  • 4.   2   The  optimization  file  was  created  using  the  information  in  Table  1  and  the  solver   successfully  converged  giving  us  same  results  with  both  solution  strategies.   2. Batch  reactor  Dynamic  Optimization   2.1  Single  Scenario  Dynamic  Optimization     A  lot  of  research  has  been  going  on  dynamic  optimization  since  it  is  the  more   realistic  and  applicable  type  in  the  existing  plants.  The  Ramirez  control  problem  was   examined  and  the  task  was  to  maximize  the  yield  of  species  B  at  the  final  time  by   calculating  the  optimal  temperature  profile,  T  (t)  for  a  batch  reactor  with  the   consecutive  reactions  shown  below  are  carried  out.     A !! B !! C   The  material  balances  for  species  A  (concentration,x!)  and  B  (concentration, x!)  are   shown  below  in  Eqn5-­‐Eqn8.   Eqn  5.                                               !!!(!) !" =  −k!(t) ∗ x!(t)                                                        Eqn  6.                                               !!!(!) !" =  k! t ∗ x! t − k!(t) ∗ x!(t)     Eqn  7.                                                            k! t = k!" ∗ e !!" !"(!)     Eqn  8.                                                            k! t = k!" ∗ e !!" !"(!)      
  • 5.   3   The  desired  goal  was  to  maximize  the  yield  of  species  B  at  the  final  time,  i.e.,   x! t! − x!(t!).     After  setting  up  this  optimization  problem,  it  was  solved  in  two  different  ways:   (1) Piecewise  constant     (2) Piecewise  linear     The  main  difference  between  both  methods  is  in  the  controlled  variables.  In  the   piecewise  constant  method,  it  is  the  temperature  that  is  being  changed  till  it  reaches   the  optimum  value.  In  the  piecewise  linear  case,  it  is  the  slope  of  the  temperature   that  changes  till  it  shapes  the  optimum  temperature  profile  for  the  process.  The   results  of  both  strategies  are  shown  below  in  Figure  1  and  Figure  2.     Figure  1.  Piecewise  constant  optimum  Temperature  profile           Figure  2.  Piecewise  linear  optimum  Temperature  profile    
  • 6.   4   It  was  concluded  by  looking  at  the  results  that  the  piecewise  linear  is  a  better   approach  as  it  converges  at  a  higher  yield  value  even  if  it  takes  a  little  while  longer.   2.2  Multi-­‐scenario  Dynamic  Optimization     There  is  no  doubt  that  a  design  is  more  optimum  if  it  can  tolerate  different  reactions   with  different  parameters  and  rates.  Therefore,  taking  uncertainty  into   consideration  in  the  design  stage  helps  optimize  the  dynamic  performance  of  the   plant.  Using  the  previous  example,  nine  scenarios  were  implemented  each  with  a   different  combination  of  k  values.   If  the  changing  parameters  are  the  reaction  rate  constants  k!  and  k!  where:     k!  ∈  [k! !"# , k! !"# ]   k!  ∈  [k! !"# , k! !"# ]   Then,  a  theta  (θ)  variable  is  introduced  as  θ  = k! k!  and  each  scenario  is  assigned  to  a   different  θ  combination  as  illustrated  below.     Scenario  1:  θ  = k! !"# k! !"#                            Scenario  2:  θ  = k! !"# k! !"#                                      Scenario  3:  θ  = k! !"# k! !"#     Scenario  4:  θ  = k! !"# k! !"#                          Scenario  5:  θ  = k! !"# k! !"#                                        Scenario  6:  θ  = k! !"# k! !"#     Scenario  7:  θ  = k! !"# k! !"#                            Scenario  8:  θ  = k! !"# k! !"#                                        Scenario  9:  θ  = k! !"# k! !"#    
  • 7.   5   Generally,  the  optimization  problem  follows  the  same  formulation  as  the  single   scenario  case.  The  objective  function  is  the  only  thing  that  changes,  as  it  has  to   account  for  all  the  scenarios’  constraints  at  the  same  time.  The  most  common   technique  for  the  objective  function  reformulation  is  assigning  it  to  the  average  of   the  summation  of  the  scenarios  as  shown  in  Eqn  9.                                                                Eqn9.        New_objective_function  =   ! !  ∗ ∑!!! !!!  objective  (i)     Piecewise  linear  and  piecewise  constant  were  again  used  to  solve  the  optimization.   Piecewise  linear  proved  to  be  a  better  approach  in  solving  multi-­‐scenario  dynamic   optimization  problems  as  it  converged  at  a  higher  yield.  The  only  disadvantage  it   was  the  time  it  needed  to  converge.   Overall,  both  methods  worked  successfully  in  gPROMS  and  settled  at  very  close   values.   3. Air  Separation  Unit     3.1  Overview   The  air  separation  industry  is  essential  as  it  plays  an  important  role  in  a  lot  of   markets  such  as  food  processing,  petrochemicals  and  healthcare.  For  a  long  time  in   the  air  separation  industry,  the  dynamic  performance  of  the  plant  was  assessed  by   how  capable  it  is  in  rejecting  disturbances.  The  idea  of  switching  the  operation   points  was  not  relevant  due  to  the  usual  stability  of  electricity  prices.  Recently,  this  
  • 8.   6   has  not  been  the  case  because  of  the  fluctuations  in  electricity  prices  in  many   regions.  Those  deregulations  in  the  price  cause  unexpected  rapid  changes  in  the   plant  cost  since  electricity  is  the  main  operating  cost  for  the  air  separation  plant.   Therefore,  further  techniques  that  take  dynamic  rapid  changes  into  account  should   be  adopted  as  steady  state  simulation  has  their  limitations.   In  this  paper,  all  the  studies  and  results  are  based  on  the  cryogenic  approach  of  air   separation.  It  produces  large  gas  phase  quantities  of  air  components  (Nitrogen,   Oxygen  and  Argon)  and  operates  at  a  low  temperature  distillation.   3.2  Air  Separation  Process   A  simple  schematic  of  the  main  process  equipment  is  shown  in  Fig  3.  Further   description  of  the  process  can  be  found  in  Roffel  et  al.  [2000]  and  Miller  et  al.   [2008a].    
  • 9.   7       Fig  3.  A  cryogenic  air  separation  plant  that  produces  argon,  oxygen  and  nitrogen.  LAr  =  Liquid  Argon;   L02  =  Liquid  Oxygen;  G02  =  Gas  Oxygen;  LN2  =  Liquid  Nitrogen;  GN2  =  Gas  Nitrogen;  PHX  =  Primary   Heat  Exchanger;  LC  =  Lower  Column;  UC  =  Upper  Column.   3.3Dynamic  Simulation   Step  tests  were  conducted  to  investigate  the  effect  of  certain  input  changes  on  the   dynamic  performance  of  the  process.  Fig  4.  Shows  the  output  results  of  the  product   impurity,  air  feed,  reflux  and  GN2  production  upon  -­‐5%  change  in  inlet  volumetric   air  feed.  Fig  5.  Shows  the  dynamic  response  of  the  product  impurity,  gas  draw   fraction  rate,  reflux  and  GN2  production  after  being  subjected  to  a  positive  step   change  in  the  gas  draw  rate.  
  • 10.   8           Figure  4.  Dynamic  response  of  selected  scaled  variables  to  a  negative  step  change  in  the  air  feed      
  • 11.   9               Figure  5.  Dynamic  response  of  selected  scaled  variables  to  a  negative  step  change  in  the  air  feed.     While  keeping  all  other  inputs  fixed  in  the  system,  as  the  gas  draw  fraction   increases,  GN2  production  increases  and  reflux  rate  decreases.  The  system  tries  to   reach  a  new  equilibrium  steady  state  but  since  the  reflux  rate  is  much  lower  than   before  relative  to  the  air  feed  at  the  new  steady  state,  the  product  impurity   increases  significantly.  
  • 12.   10   4. Steady  State  Optimization     4.1  Objective  function  formulation   This  paper  focuses  on  optimizing  the  air  separation  unit  so  that  it  can  handle  the   frequent  changes  in  demand  and  electricity.  Normally,  the  plant  runs  steadily  under   certain  operating  points.   When  a  change  in  demand/electricity  price  occurs,  the  plant  is  adjusted  to  operate   at  a  new  set  of  operating  conditions.    Therefore,  the  plant  is  expected  to  operate  at   steady  state  all  the  time  except  that  time  during  the  transition  between  the   operating  points.   Since  the  plant  is  assumed  to  be  steady,  we  have  to  ensure  that  all  operation  points   are  feasible  and  optimum.  Hence,  a  steady  state  economical  optimization  is   performed,  not  only  to  make  sure  that  all  operation  point  are  economically   optimum,  but  also  to  serve  as  a  guideline  in  the  dynamic  transition  optimization  as   well.  The  steady  state  optimization  takes  the  form  shown  in  Eqn  10.     Eqn. 10        max Φ!! = C!"# F!"#  !"#$ + F!"#$ − C!"!#W!"#$ − C!"#$F!"#$     Subject  to:   f  (x  =  0,  x,  z,  u  ,  p)  =0   g(x,  z,  u  ,  p)  =0   h  (x  ,  z,  u  ,  p)  <  0    
  • 13.   11   Where:   x  =  differential  state  vector   z  =  algebraic  state  vector   u  =  control  input  vector   • u!=  Inlet  volumetric  air  flow  rate  under  standard  conditions   • u!=  Liquid  molar  air  flow  rate  to  the  column   • u!=  Liquid  Nitrogen  production  rate  (Distillate)   • u!=  Gas  draw  fraction   • u!=  Evaporation  rate  of  liquid  nitrogen  for  unsatisfied  demand   p  =  parameter  vector   C!"#=  Sales  price  of  gas  nitrogen     C!"!#, C!"#$=  Costs  associated  with  compression  and  evaporation   F!"#  !"#$=  Flow  rate  of  GN  2  produced   F!"#$=  Rate  of  evaporation  of  pre-­‐stored  liquid  N2   W!"#$=  Power  consumption  of  the  compressor     A  detailed  plant  configuration  with  labeled  variables,  parameters  and  inputs  is   shown  in  Figure  5  below.    
  • 14.   12       Figure  5.    Plant  configuration  with  labeled  decision  variables   4.2Constraints     There  are  different  types  of  constraints  that  we  need  to  put  in  consideration  to   make  sure  that  the  plant  runs  without  violating  the  physics/chemical  laws  or   the  operational  conditions  along  with  satisfying  the  customer’s  needs.  All  the   constraints  are  categorized  and  summarized  in  Table  2  below   Table  2.  Constraints  for  steady  state  optimization   Operational  Constraints   Product  Specification   Modeling  Constraints     Compressor  Surge     Demand  Satisfaction   Pressure  in  PHX   Flooding     No  Overproduction   Temp  diff.  in  IRC     Product  Purity      
  • 15.   13   Each  constraint  mentioned  above  is  modelled  by  an  equation  that  has  a  certain           tolerance.  The  goal  is  always  to  minimize  the  tolerance  to  approach  zero   4.3Results   It  was  observed  that  the  initial  guess  plays  an  important  role  in  the  optimization   process  in  terms  of  the  converging  time  and  value.  That  is  due  to  the  non-­‐ convexity  from  the  nonlinear  model.  Therefore,  different  initial  guesses  were   provided  and  the  best  point  was  reported.   Also,  the  system  responds  differently  in  terms  of  active  constraints  (when  the   final  value  is  very  close  to  one  of  the  bounds)  depending  on  the  change  it  was   subjected  to.  For  instance,  as  demand  increases,  both  flooding  and  impurity   constraints  are  active  because  the  system  has  to  settle  at  its  maximum  level  of   impurity.  However,  as  demand  decreases,  the  compressor  surge  constraint  is   the  active  one  because  of  the  decrease  in  the  flow  rate.   The  steady  state  optimization  results  upon  demand  fluctuations  (-­‐30%  to  +30%)   are  reported  in  Table  3.    Those  output  results  were  used  again  as  a  target  to   dynamic  optimization.     Table  3.  Steady  state  optimization  results  for  demand  fluctuations     **  Data  in  the  Table  are  scaled  values  for  company  confidentiality       -­‐30%   -­‐20%   -­‐10%   0%   10%   20%   30%   LN2  production  rate   0.0002   0.0002   0.0002   0.0002   0.0002   0.0002   0.0002   Gas  draw  rate  fraction   0.058   0.068   0.0754   0.0758   0.0758   0.076   0.076   Air  feed  volumetric  flow  rate   29.998   30   30.4   33.8   37.075   38.2   38.212   Liquid  air  to  the  column   6.84   6.5434   6.21   5.356   4.6202   2.5288   2.5288   Evaporation  rate   0   0   0   0   0   2.176   5.64  
  • 16.   14   5. Dynamic  Optimization     Steady  state  optimization  provided  us  with  feasible  optimal  operating  points.   However,  it  did  not  account  for  the  transitions  between  those  points.  Hence,   dynamic  optimization  is  conducted  to  switch  from  the  base  optimal  case  to  the   new  operation  point  upon  demand  fluctuations.   The  objective  function  is  formulated  differently  as  it  is  no  longer  a  cost  based   one  but  rather  a  trajectory  demand  tracking  function  as  shown  in  Eqn  11.     Eqn  11.                min Φ = t! 1 − F!"#  !"#$ t F!"#  !"#$ ∗   !!! !!  dt + w! 1 − u! t! u! ∗ !!! !!!   Where   𝑤!  represents  the  weights  assigned  to  the  manipulated  variables  as   shown  below:   w!"#  !""#   = w!"#  !"# = w!"#  !"#$ = 1   w!"# = 0.1   The  problem  was  solved  using  5  control  intervals  with  a  tolerance  of  1E-­‐5.  The   number  of  control  intervals  is  critical  in  the  optimization  problem  formulation.   It  has  to  be  big  enough  for  capturing  the  control  behaviour  but  not  too  big  for   unwanted  oscillations  in  the  results.   The  time  was  divided  into  three  periods  with  an  input  slope  of  0  to  the  first  and   last  period.  This  ensures  that  both  the  start  and  end  point  operate  at  optimal   feasible  steady  state.  Also,  a  dummy  variable  was  introduced  to  represent  the   slowest  variable  in  the  process.  By  minimizing  that  variable,  we  guarantee  that   our  system  converge  at  a  steady  state.  
  • 17.   15   The  solution  time  in  the  air  separation  unit  is  too  long  compared  to  the  one  in   the  batch  reactor.  That  concludes  that  the  complexity  of  the  problem  is  a  key   variable  that  affects  the  solution  time.   6. Dynamic  Optimization  Under  Uncertainty     6.1  Overview     The  bigger  picture  comes  into  place  after  the  individual  demand  dynamic   optimization  cases  have  successfully  converged.  The  task  gets  more  complicated   because  our  objective  is  not  only  to  optimize  the  operating  conditions  and  the   trajectory  for  certain  demand  percentage  change;  instead  it  is  finding  the   conditions  that  are  optimum  overall  regardless  of  the  fluctuations.    The  approach  used  to  tackle  the  uncertainty  is  very  similar  to  the  “Multi-­‐ scenario  dynamic  optimization”  one  in  section  2.2  regarding  the  batch  reactor.     6.2  Objective  function  formulation     Since  the  solution  time  increases  drastically  in  uncertainty  problems,  only  two   cases  (0%  demand  change  +  10%  demand  change)  were  solved  simultaneously   to  better  understand  the  capabilities  and  limitations  of  gPROMS  in  handling   those  complex  problems.   The  problem  formulation  was  very  similar  to  the  single  case  dynamic   optimization.  The  difference  was  mainly  including  both  cases  into  one  single   process  and  having  the  new  objective  function  (Φ∗ )  capturing  both  of  them  as   explained  by  Eqn  12.    
  • 18.   16   Eqn  12.          Φ∗ =  Φ! + Φ!   Where:   Φ!  =  Objective  function  of  the  0%  demand  change  case   Φ!  =  Objective  function  of  the  10%  demand  change  case   All  the  optimization  elements  were  handled  in  the  same  manner  as  the  single   case  with  only  the  difference  of  having  two  of  each  manipulated   variable/constraint,  one  representing  each  case.   6.3  Observations       Multiple  factors  were  observed  to  affect  the  optimization  under  uncertainty   more  than  just  the  number  of  the  control  intervals.   Based  on  the  results  reported  in  Table  4,  relaxing  the  bounds  seems  to  be  an   important  key  that  affects  the  ability  of  the  optimization  to  converge.  Also,  using   the  dynamic  optimization  results  as  initial  guesses  plays  an  important  role  in   terms  of  the  solution  time.   Table  4.  Observations  in  uncertainty  dynamic  optimization  trials  with  fixed  control  intervals       Provided  initial  guess  from   previous  optimization   Relaxed   bounds   Optimization   converged   Solution   time   Trial  1   ✖   ✖   ✖   -­‐   Trial  2   ✓   ✖   ✖   -­‐   Trial  3   ✖   ✓   ✓   6.6  h   Trial  4   ✓   ✓   ✓   2.6  h     7. Economics  Dynamic  Optimization   Another  economical  base  approach  was  tried  out  to  optimize  the  dynamic   process.  The  objective  function  was  not  formulated  to  track  the  demand  
  • 19.   17   trajectory  as  before  but  rather  to  maximize  the  accumulation  of  the  profit.   The  constraints  and  controls  were  handled  in  the  same  manner  as  the   demand  trajectory  case.  The  optimization  successfully  converged  in  30  min   for  the  10%  demand  change  case  and  that  is  promising  as  the  solution  time  is   very  short  compared  to  the  demand  based  one.     8. Conclusion   The  research  is  still  ongoing  to  better  optimize  the  air  separation  process,  as  it   is  the  primary  supplier  for  our  everyday  vital  chemicals.  The  design  has  got  a   lot  of  interesting  possibilities  that  should  be  examined  in  future  work.  For   instance,  the  introduction  of  external  liquid  nitrogen  and  the  addition  of  a  vent   stream  after  the  compressor  can  be  some  promising  alternatives.  Also,  more   cases  should  be  solved  simultaneously  to  achieve  a  better  operating  point.