BADDI UNIVERSITY OF EMERGING
SCIENCE AND TECHNOLOGY
STATISTICS FORMULA’S
Sahil Gautam
17PBA058
MEAN
Formula Individual Discrete Continuous
Direct ∑ X
N
∑f X
N
∑ f m
N
Short Cut
A+∑d
N
A+∑ f d
N
A+∑ f d
N
Step Deviation A+∑ f d * i
N
A+∑ f d * i
N
COMBINED MEAN WEIGHTED MEAN
N1 X1 + N2 X2
N1 + N2
∑ W X
∑ W
MEDIAN
Individual Continuous
N+1/2(when in points add L+U/2) N -cf
M= 2 *i
f
MODE
Z= L1+ f1-f0 *i or Z= 3Meadian-2Mean
2f1-f0-f2
RANGE
Range (R) = Largest value- Small value (L-S)
Cofficient CR= L-S
L+S
QUARTILES DEVIATION
Individual Contionuos
Q1= N+1
4
Q3 = [3(N+1)]
4
QD= Q3-Q1
2
N – cf
QD= L+ 4 *i
f
Coeff. = Q3-Q1
Q3+Q1
MEAN DEVIATION
Individual Discrete &
Continuous
Cofficent
MD= ∑ d
N
MD= ∑f d
N
MD
Median or Mean
STANDARD DEVIATION
C Direct Short cut Step deviation
Individual SD= ∑ (X-X)
N
2
∑dx2 - ∑dx
N N
∑dx2 - ∑dx 2 *C
N N
Discrete &
Continuous
∑fdx2 - ∑fdx 2
N N
∑dx2 - ∑dx 2 *C
N N
COEFFICIENT OF SD AND COEFFICIENT OF
VARIATION OR C.VD
Coefficient of SD Coefficient of Variation or
C.VD
=σ
x
= σ *100
x
Combined SD = N1σ 1 + N2σ 2 + N1d1 + N2d2
N1 + N2
SKEWNESS
Karl pearson Bowleey Kelly
Mean-Mode
SD
Q3+Q1-2Median
Q3-Q1
d9+d1-2med
d9-d1
INDEX NUMBER
SIMPLE METHODS
Formula Price Quantity
Simple aggregative ∑p1 *100
∑p0
∑q1 *100
∑q0
Price Relative ∑ * p1 *100
p0
N
∑ * q1 *100
q0
N
WEIGHTED AGGREGATIVE METHOD
Formula Price Quantity
Laspeyre’s ∑p1q0 *100
∑p0q0
∑q1p0 *100
∑q0p0
Paaschee’s ∑p1q1 *100
∑p0q1
∑q1p1 *100
∑q0p1
Fisher’s ∑p1q0 * ∑p1q1 *100
∑p0q0 ∑p0q1
∑q1p0 * ∑q1p1 *100
∑q0p0 ∑q0p1
Dorbish & Bowley’s ∑p1q0 + ∑p1q1 *100
∑p0q0 ∑p0q1
2
∑q1p0 + ∑q1p1 *100
∑q0p0 ∑q0p1
2
Marshall edgeworth’s ∑p1q0 + ∑p1q1 *100
∑p0q0 + ∑p0q1
∑q1q0 + ∑q1p1 *100
∑q0p0 + ∑q0p1
Time Reversal Test Factor Reversal Test
P01 X P10 =1 P01 X Q01= ∑P1q1/ ∑P0q0
CORRELATION
A-KARL PEARSON
Actual mean r = ∑xy
∑x2 . ∑y2
Assumed mean r = N. ∑dxdy-∑dx. ∑dy
N.∑dx2 –(∑dx)2 . N. ∑dy 2 – (∑dy)2
Actual data r = N. ∑XY-∑X. ∑Y
N. ∑X 2 – (∑X)2 . N.∑Y2 – (∑Y)2
REGRESSION
A-LEAST SQUARE METHOD
(using normal equation)
1. Y on X
Y= a+bX
∑Y = Na + b∑X
∑XY = a∑X + b∑X 2
2. X on Y
X= a+ bY
∑X= Na+ b∑Y
∑XY= a∑Y + b∑Y2
B- Equation using coefficient (Using Mean)
1. Y on X
Y-Y= byx (X-X)
byx= N. ∑xy-∑x. ∑y
N. ∑x2 – (∑x)2
2. X on Y
X-X= bxy (Y-Y)
bxy= N. ∑xy-∑y. ∑x
N. ∑y2- (∑y)2
(Assumed Mean)
1. Y on X
Y-Y = byx(X-X)
byx= N. ∑dxdy-∑dx. ∑dy
N. ∑dx2 – (∑dx)2
2. X on Y
X-X=bxy(Y-Y)
bxy= N. ∑dxdy- ∑dy. ∑dx
N. ∑dy2- (∑dy)2
Time Series
Least Square Method
yc= a+bx
If x=0 then
a= ∑y
N
b= ∑xy
∑x2

Buisness Statistical Formula ppt

  • 1.
    BADDI UNIVERSITY OFEMERGING SCIENCE AND TECHNOLOGY STATISTICS FORMULA’S Sahil Gautam 17PBA058
  • 2.
    MEAN Formula Individual DiscreteContinuous Direct ∑ X N ∑f X N ∑ f m N Short Cut A+∑d N A+∑ f d N A+∑ f d N Step Deviation A+∑ f d * i N A+∑ f d * i N
  • 3.
    COMBINED MEAN WEIGHTEDMEAN N1 X1 + N2 X2 N1 + N2 ∑ W X ∑ W
  • 4.
    MEDIAN Individual Continuous N+1/2(when inpoints add L+U/2) N -cf M= 2 *i f
  • 5.
    MODE Z= L1+ f1-f0*i or Z= 3Meadian-2Mean 2f1-f0-f2
  • 6.
    RANGE Range (R) =Largest value- Small value (L-S) Cofficient CR= L-S L+S
  • 7.
    QUARTILES DEVIATION Individual Contionuos Q1=N+1 4 Q3 = [3(N+1)] 4 QD= Q3-Q1 2 N – cf QD= L+ 4 *i f Coeff. = Q3-Q1 Q3+Q1
  • 8.
    MEAN DEVIATION Individual Discrete& Continuous Cofficent MD= ∑ d N MD= ∑f d N MD Median or Mean
  • 9.
    STANDARD DEVIATION C DirectShort cut Step deviation Individual SD= ∑ (X-X) N 2 ∑dx2 - ∑dx N N ∑dx2 - ∑dx 2 *C N N Discrete & Continuous ∑fdx2 - ∑fdx 2 N N ∑dx2 - ∑dx 2 *C N N
  • 10.
    COEFFICIENT OF SDAND COEFFICIENT OF VARIATION OR C.VD Coefficient of SD Coefficient of Variation or C.VD =σ x = σ *100 x Combined SD = N1σ 1 + N2σ 2 + N1d1 + N2d2 N1 + N2
  • 11.
    SKEWNESS Karl pearson BowleeyKelly Mean-Mode SD Q3+Q1-2Median Q3-Q1 d9+d1-2med d9-d1
  • 12.
    INDEX NUMBER SIMPLE METHODS FormulaPrice Quantity Simple aggregative ∑p1 *100 ∑p0 ∑q1 *100 ∑q0 Price Relative ∑ * p1 *100 p0 N ∑ * q1 *100 q0 N
  • 13.
    WEIGHTED AGGREGATIVE METHOD FormulaPrice Quantity Laspeyre’s ∑p1q0 *100 ∑p0q0 ∑q1p0 *100 ∑q0p0 Paaschee’s ∑p1q1 *100 ∑p0q1 ∑q1p1 *100 ∑q0p1 Fisher’s ∑p1q0 * ∑p1q1 *100 ∑p0q0 ∑p0q1 ∑q1p0 * ∑q1p1 *100 ∑q0p0 ∑q0p1 Dorbish & Bowley’s ∑p1q0 + ∑p1q1 *100 ∑p0q0 ∑p0q1 2 ∑q1p0 + ∑q1p1 *100 ∑q0p0 ∑q0p1 2 Marshall edgeworth’s ∑p1q0 + ∑p1q1 *100 ∑p0q0 + ∑p0q1 ∑q1q0 + ∑q1p1 *100 ∑q0p0 + ∑q0p1 Time Reversal Test Factor Reversal Test P01 X P10 =1 P01 X Q01= ∑P1q1/ ∑P0q0
  • 14.
    CORRELATION A-KARL PEARSON Actual meanr = ∑xy ∑x2 . ∑y2 Assumed mean r = N. ∑dxdy-∑dx. ∑dy N.∑dx2 –(∑dx)2 . N. ∑dy 2 – (∑dy)2 Actual data r = N. ∑XY-∑X. ∑Y N. ∑X 2 – (∑X)2 . N.∑Y2 – (∑Y)2
  • 15.
    REGRESSION A-LEAST SQUARE METHOD (usingnormal equation) 1. Y on X Y= a+bX ∑Y = Na + b∑X ∑XY = a∑X + b∑X 2 2. X on Y X= a+ bY ∑X= Na+ b∑Y ∑XY= a∑Y + b∑Y2 B- Equation using coefficient (Using Mean) 1. Y on X Y-Y= byx (X-X) byx= N. ∑xy-∑x. ∑y N. ∑x2 – (∑x)2 2. X on Y X-X= bxy (Y-Y) bxy= N. ∑xy-∑y. ∑x N. ∑y2- (∑y)2
  • 16.
    (Assumed Mean) 1. Yon X Y-Y = byx(X-X) byx= N. ∑dxdy-∑dx. ∑dy N. ∑dx2 – (∑dx)2 2. X on Y X-X=bxy(Y-Y) bxy= N. ∑dxdy- ∑dy. ∑dx N. ∑dy2- (∑dy)2 Time Series Least Square Method yc= a+bx If x=0 then a= ∑y N b= ∑xy ∑x2